首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enzymatic hydrolysates from Oysters (OAH) display multiple biological activities. Previously, a 3~5 KDa oyster ultrafiltration component (OUP) showed a high property of preventing skin oxidation. Subsequently, we identified specific peptides with such activity. OUP was fractionated stepwise by Sephadex-G25 and RP-HPLC, and active fractions were screened using UV-irradiated HaCaT cells. The most active fractions (OP5-3) were analyzed by LC-MS/MS and a total of 17 peptides were identified. Results from mass spectrometry showed that OP5-3 consisted of peptides with a molecular weight range of 841.51–1786.92 Da. Six of these peptides were synthesized for validating the activity of resisting skin oxidation in the same cell model. All six peptides showed varying degrees of antioxidant activity, while pretreatment of HaCaT cells with AIVAEVNEAAK alleviated UV cytotoxicity, inhibited metalloproteinase 1 (MMP-1) expression, and showed the highest activity to resist UV-induced skin photo-oxidation among these peptides. In addition, results from molecular docking analysis of MMP-1 with AIVAEVNEAAK showed that AIVAEVNEAAK suppresses its enzymatic activity by directly interacting with MMP-1 and thus exhibit anti-photoaging activity.  相似文献   

2.
The recovery of amino acids and other important bioactive compounds from the comb penshell (Atrina pectinata) using subcritical water hydrolysis was performed. A wide range of extraction temperatures from 140 to 290 °C was used to evaluate the release of proteins and amino acids. The amount of crude protein was the highest (36.14 ± 1.39 mg bovine serum albumin/g) at 200 °C, whereas a further increase in temperature showed the degradation of the crude protein content. The highest amount of amino acids (74.80 mg/g) was at 230 °C, indicating that the temperature range of 170–230 °C is suitable for the extraction of protein-rich compounds using subcritical water hydrolysis. Molecular weights of the peptides obtained from comb penshell viscera decreased with the increasing temperature. SDS-PAGE revealed that the molecular weight of peptides present in the hydrolysates above the 200 °C extraction temperature was ≤ 1000 Da. Radical scavenging activities were analyzed to evaluate the antioxidant activities of the hydrolysates. A. pectinata hydrolysates also showed a particularly good antihypertensive activity, proving that this raw material can be an effective source of amino acids and marine bioactive peptides.  相似文献   

3.
Inflammatory bowel disease is characterized by extensive intestinal inflammation, and therapies against the disease target suppression of the inflammatory cascade. Nutrition has been closely linked to the development and suppression of inflammatory bowel disease, which to a large extent is attributed to the complex immunomodulatory properties of nutrients. Diets containing fish have been suggested to promote health and suppress inflammatory diseases. Even though most of the health-promoting properties of fish-derived nutrients are attributed to fish oil, the potential health-promoting properties of fish protein have not been investigated. Fish sidestreams contain large amounts of proteins, currently unexploited, with potential anti-inflammatory properties, and may possess additional benefits through bioactive peptides and free amino acids. In this project, we utilized fish protein hydrolysates, based on mackerel and salmon heads and backbones, as well as flounder skin collagen. Mice fed with a diet supplemented with different fish sidestream-derived protein hydrolysates (5% w/w) were exposed to the model of DSS-induced colitis. The results show that dietary supplements containing protein hydrolysates from salmon heads suppressed chemically-induced colitis development as determined by colon length and pro-inflammatory cytokine production. To evaluate colitis severity, we measured the expression of different pro-inflammatory cytokines and chemokines and found that the same supplement suppressed the pro-inflammatory cytokines IL-6 and TNFα and the chemokines Cxcl1 and Ccl3. We also assessed the levels of the anti-inflammatory cytokines IL-10 and Tgfb and found that selected protein hydrolysates induced their expression. Our findings demonstrate that protein hydrolysates derived from fish sidestreams possess anti-inflammatory properties in the model of DSS-induced colitis, providing a novel underexplored source of health-promoting dietary supplements.  相似文献   

4.
Previous studies have revealed that excessive exposure to UV irradiation is the main cause of skin photoaging and the signaling pathways of MAPK and NF-κB are involved in this progression. The present study aims to investigate the anti-photoaging effects of low molecular weight hydrolysates from Theragra chalcogramma (TCH) and to clarify the underlying mechanism. The degradation of mechanical barrier functions in photoaged skin was substantially ameliorated after TCH administration; meanwhile, TCH significantly elevated the antioxidant capacity and suppressed the over-production of inflammatory cytokine IL-1β. Moreover, the histopathological deteriorations such as epidermal hyperplasia and dermal loss were significantly alleviated, along with the increase in procollagen type I content and decrease in MMP-1 activity (p < 0.05). Furthermore, TCH effectively blocked the MAPK and NF-κB signaling pathways through inhibition of the phosphorylation of p38, JNK, ERK, iκB, and p65 proteins. Collectively, these data indicate that TCH has potential as a novel ingredient for the development of anti-photoaging foods.  相似文献   

5.
SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) is a novel coronavirus strain that emerged at the end of 2019, causing millions of deaths so far. Despite enormous efforts being made through various drug discovery campaigns, there is still a desperate need for treatments with high efficacy and selectivity. Recently, marine sulfated polysaccharides (MSPs) have earned significant attention and are widely examined against many viral infections. This article attempted to produce a comprehensive report about MSPs from different marine sources alongside their antiviral effects against various viral species covering the last 25 years of research articles. Additionally, these reported MSPs were subjected to molecular docking and dynamic simulation experiments to ascertain potential interactions with both the receptor-binding domain (RBD) of SARS CoV-2’s spike protein (S-protein) and human angiotensin-converting enzyme-2 (ACE2). The possible binding sites on both S-protein’s RBD and ACE2 were determined based on how they bind to heparin, which has been reported to exhibit significant antiviral activity against SARS CoV-2 through binding to RBD, preventing the virus from affecting ACE2. Moreover, our modeling results illustrate that heparin can also bind to and block ACE2, acting as a competitor and protective agent against SARS CoV-2 infection. Nine of the investigated MSPs candidates exhibited promising results, taking into consideration the newly emerged SARS CoV-2 variants, of which five were not previously reported to exert antiviral activity against SARS CoV-2, including sulfated galactofucan (1), sulfated polymannuroguluronate (SPMG) (2), sulfated mannan (3), sulfated heterorhamnan (8), and chondroitin sulfate E (CS-E) (9). These results shed light on the importance of sulfated polysaccharides as potential SARS-CoV-2 inhibitors.  相似文献   

6.
The COVID-19 pandemic is a major human health concern. The pathogen responsible for COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), invades its host through the interaction of its spike (S) protein with a host cell receptor, angiotensin-converting enzyme 2 (ACE2). In addition to ACE2, heparan sulfate (HS) on the surface of host cells also plays a significant role as a co-receptor. Our previous studies demonstrated that sulfated glycans, such as heparin and fucoidans, show anti-COVID-19 activities. In the current study, rhamnan sulfate (RS), a polysaccharide with a rhamnose backbone from a green seaweed, Monostroma nitidum, was evaluated for binding to the S-protein from SARS-CoV-2 and inhibition of viral infectivity in vitro. The structural characteristics of RS were investigated by determining its monosaccharide composition and performing two-dimensional nuclear magnetic resonance. RS inhibition of the interaction of heparin, a highly sulfated HS, with the SARS-CoV-2 spike protein (from wild type and different mutant variants) was studied using surface plasmon resonance (SPR). In competitive binding studies, the IC50 of RS against the S-protein receptor binding domain (RBD) binding to immobilized heparin was 1.6 ng/mL, which is much lower than the IC50 for heparin (~750 ng/mL). RS showed stronger inhibition than heparin on the S-protein RBD or pseudoviral particles binding to immobilized heparin. Finally, in an in vitro cell-based assay, RS showed strong antiviral activities against wild type SARS-CoV-2 and the delta variant.  相似文献   

7.
Fucoidans constitute a large family of sulfated polysaccharides with several biochemical properties. A commercial fucoidan from brown algae, containing low molecular weight polysaccharidic species constituted of l-fucose, uronic acids and sulfate groups, was simply treated here with calcium acetate solution. This treatment led to a purified fraction with a yield of 45%. The physicochemical characterizations of the purified fucoidan using colorimetric assay, MALLS, dRI, FT-IR, NMR, exhibited molecular weight distributions and chemical profiles similar for both fucoidans whereas the sulfate and l-fucose contents increased by 16% and 71%, respectively. The biodistribution study in rat of both compounds labeled with 99mTc evidenced a predominant renal elimination of the purified fucoidan, but the crude fucoidan was mainly retained in liver and spleen. In rat myocardial ischemia-reperfusion, we then demonstrated the better efficiency of the purified fucoidan. This purified sulfated polysaccharide appears promising for the development of molecular imaging in acute coronary syndrome.  相似文献   

8.
Malignant gliomas, the most common subtype of primary brain tumors, are aggressive, highly invasive and neurologically destructive tumors, considered being the deadliest of human cancers. As an attempt to understand the biology of glial tumor, a study on macromolecules like proteins, matrix metalloproteinases, lipids antioxidants and Deoxyribonucleic acid, in the blood of glioma patients was made. Biochemical assessment of significant pathophysiological enzymes, antioxidants and marker enzymes was performed. MMP expression was determined using gelatin zymography. Karyotyping analysis was done to determine chromosomal aberrations. A marked rise was observed in the proteins and lipids of glioma patients as compared to the normal cases. The antioxidant status of the patients was found to be lowered. Karyotypic analysis of the peripheral blood chromosomes presented various chromosomal aberrations in glioma patients. The biochemical parameters were significantly increased in the patient population (p<0.01, p<0.001) when compared to those of normal. Zymographic analysis showed the presence of MMP-2 and MMP-9 in the patient sample. Karyotypic investigation showed alterations in the chromosomal pattern of the glioma patients. The study provides baseline information on the biochemical alterations in the blood of glioma patients which can be further exploited for detailed investigations.  相似文献   

9.
In previous studies, it has not been reported that protein isolated from chia interferes favorably with antibacterial activity, and reduces cholesterol synthesis. The objective of this study was to determine whether commonly used commercial microbial proteases can be utilized to generate chia protein-based antibacterial and hypocholesterolemic hydrolysates/peptides, considering the effects of protein extraction method. Alcalase, Flavourzyme and sequential Alcalase-Flavourzyme were used to produce hydrolysates from chia protein (CF), protein-rich fraction (PRF) and chia protein concentrates (CPC1 and CPC2). These hydrolysates were evaluated for their antimicrobial activity against Gram-positive (G+) and Gram-negative (G?) microorganisms. The protein hydrolysates were purified by ultrafiltration through a membrane with 3 kDa nominal molecular weight, for evaluation of hypocholesterolemic activity. An inhibition zone was observed when the hydrolysate was tested against S. aureus, and minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values were obtained. Peptides from chia protein with molecular mass lower than 3 kDa reduced up to 80.7% of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) enzymatic reaction velocity. It was also observed that, independent of the method used to obtain chia proteins, the fractions showed relevant bioactivity. Moreover, the intensity of the bioactivity varied with the method for obtaining the protein and with the enzyme used in the hydrolysis process. This is the first report to demonstrate that chia peptides are able to inhibit cholesterol homeostasis.  相似文献   

10.
Mutable collagenous tissues (MCTs) of echinoderms can be regarded as intelligent and dynamic biomaterials, due to their ability to reversibly change their mechanical properties in a short physiological time span. This mutability phenomenon is nervously mediated and involves secreted factors of the specialized 'juxtaligamental' cells, which, when released into the extracellular matrix (ECM), change the cohesive forces between collagen fibrils. MCTs exist in nature in several forms, including some associated with echinoderm autotomy mechanisms. Since the molecular mechanism of mutability is still incompletely understood, the aim of this work was to provide a detailed biochemical analysis of a typical mutable collagenous structure and to identify possible correlations between its biochemistry and mechanical states. A better understanding of the mutability phenomena is likely to provide a unique opportunity to develop new concepts that can be applied in the design of dynamic biomaterial for tissue regeneration, leading to new strategies in regenerative medicine. The MCT model used was the compass depressor ligament (CDL) of a sea urchin (Paracentrotus lividus), which was analyzed in different mechanical states, mimicking the mutability phenomenon. Spectroscopic techniques, namely Fourier transform infrared (FT-IR) and confocal Raman microscopy, were used to identify the specific molecular components that contribute to the CDL biochemical microenvironment and to investigate the possibility that remodelling/synthesis of new ECM components occurs during the mutability phenomenon by analogy with events during pregnancy in the uterine cervix of mammals (which also consists mainly of mechanically adaptable connective tissues). The results demonstrate that CDL ECM includes collagen with biochemical similarities to mammalian type I collagen, as well as sulphated glycosaminoglycans (GAGs). CDL mutability seems to involve a molecular rearrangement of the ECM, without synthesis of new ECM components. Although there were no significant biochemical differences between CDLs in the various mechanical states were observed. However, subtle adjustments in tissue hydration seemed to occur, particularly during stiffening.  相似文献   

11.
In this study, the stable collagen hydrolysate was prepared by alcalase hydrolysis and twice simulated gastrointestinal digestion from Alaska pollock skin. The characteristics of hydrolysates and antioxidant activities in vitro, including 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical (ABTS•+) scavenging activity, ferric-reducing antioxidant power (FRAP) and hydroxyl radical (OH·) scavenging activity, were determined. After twice simulated gastrointestinal digestion of skin collagen (SGI-2), the degree of hydrolysis (DH) reached 26.17%. The main molecular weight fractions of SGI-2 were 1026.26 and 640.53 Da, accounting for 59.49% and 18.34%, respectively. Amino acid composition analysis showed that SGI-2 had high content of total hydrophobic amino acid (307.98/1000). With the simulated gastrointestinal digestion progressing, the antioxidant activities increased significantly (p < 0.05). SGI-2 was further purified by gel filtration chromatography, ion exchange chromatography and high performance liquid chromatography, and the A1a3c–p fraction with high hydroxyl radical scavenging activity (IC50 = 7.63 μg/mL) was obtained. The molecular weights and amino acid sequences of key peptides of A1a3c–p were analyzed using high resolution mass spectrometry (LC-ESI-LTQ-Orbitrap-MS) combined with de novo software and UniProt of MaxQuant software. Four peptides were identified from A1a3c–p, including YGCC (444.1137 Da) and DSSCSG (554.1642 Da) identified by de novo software and NNAEYYK (900.3978 Da) and PAGNVR (612.3344 Da) identified by UniProt of MaxQuant software. The molecular weights and amino acid sequences of four peptides were in accordance with the features of antioxidant peptides. The results indicated that different peptides were identified by different data analysis software according to spectrometry mass data. Considering the complexity of LC-ESI-LTQ-Orbitrap-MS, it was necessary to use the different methods to identify the key peptides from protein hydrolysates.  相似文献   

12.
Rising trends in fish filleting are increasing the amount of processing by-products, such as skins of turbot, a flatfish of high commercial value. In line with circular economy principles, we propose the valorization of turbot skins through a two-step process: initial gelatin extraction described for the first time in turbot, followed by hydrolysis of the remaining solids to produce collagen hydrolysates. We assayed several methods for gelatin extraction, finding differences in gelatin properties depending on chemical treatment and temperature. Of all methods, the application of NaOH, sulfuric, and citric acids at 22 °C results in the highest gel strength (177 g), storage and loss moduli, and gel stability. We found no relation between mechanical properties and content of pyrrolidine amino acids, but the best performing gelatin displays higher structural integrity, with less than 30% of the material below 100 kDa. Collagen hydrolysis was more efficient with papain than alcalase, leading to a greater reduction in Mw of the hydrolysates, which contain a higher proportion of essential amino acids than gelatin and show high in vitro anti-hypertensive activity. These results highlight the suitability of turbot skin by-products as a source of gelatin and the potential of collagen hydrolysates as a functional food and feed ingredient.  相似文献   

13.
The resveratrol-enriched transgenic rice line Iksan526 (IS526), first developed by the Rural Development Administration of Korea using genetic engineering techniques, shows beneficial health effects in mitigating metabolic syndrome and obesity. However, the effects of IS526 on the differentiation of chondrocytes and the underlying mechanism have not been investigated in detail. In this study, the effects and cellular regulatory mechanisms of IS526 on rabbit articular chondrocytes were examined. Following IS526 callus extract treatment, the expression levels of differentiation-related proteins were detected via western blotting, Alcian blue staining and immune-luorescence staining. IS526 decreased the type II collagen and proteoglycan levels in dose- and time-dependent manners. We further analyzed the effects of IS526 on skeleton genesis in zebrafish larvae using Alcian blue staining, which showed a reduction in cartilage formation along with increased production of matrix metalloproteinase (MMP)-13. IS526 also increased the phosphorylation of ERK1/2 and p38 kinase but inhibited the phosphorylation of Akt. Pharmacological inhibition of MMP-13 blocked the IS526-induced decrease in type II collagen levels. Inhibition of p38 kinase or PI-3K/Akt with SB203580 and LY294002 enhanced the suppression of type II collagen, but the blockage of ERK-1/2 by PD98059 rescued IS526-induced dedifferentiation. These results suggested that IS526 regulates type II collagen and MMP-13 expression via the ERK1/2 and PI-3K/Akt pathways in rabbit articular chondrocytes.  相似文献   

14.
Thromboembolic diseases are increasing worldwide and always require anticoagulant therapy. We still need safer and more secure antithrombotic drugs than those presently available. Sulfated polysaccharides from marine organisms may constitute a new source for the development of such drugs. Investigation of these compounds usually attempts to reproduce the therapeutic effects of heparin. However, we may need to follow different routes, focusing particularly in the following aspects: (1) defining precisely the specific structures required for interaction of these sulfated polysaccharides with proteins of the coagulation system; (2) looking for alternative mechanisms of action, distinct from those of heparin; (3) identifying side effects (mostly pro-coagulant action and hypotension rather than bleeding) and preparing derivatives that retain the desired antithrombotic action but are devoid of side effects; (4) considering that sulfated polysaccharides with low anticoagulant action on in vitro assays may display potent effects on animal models of experimental thrombosis; and finally (5) investigating the antithrombotic effect of these sulfated polysaccharides after oral administration or preparing derivatives that may achieve this effect. If these aspects are successfully addressed, sulfated polysaccharides from marine organisms may conquer the frontier of antithrombotic therapy and open new avenues for treatment or prevention of thromboembolic diseases.  相似文献   

15.
Restoring homeostasis following tissue damage requires a dynamic and tightly orchestrated sequence of molecular and cellular events that ensure repair and healing. It is well established that nutrition directly affects skin homeostasis, while malnutrition causes impaired tissue healing. In this study, we utilized fish sidestream-derived protein hydrolysates including fish collagen as dietary supplements, and investigated their effect on the skin repair process using a murine model of cutaneous wound healing. We explored potential differences in wound closure and histological morphology between diet groups, and analyzed the expression and production of factors that participate in different stages of the repair process. Dietary supplementation with fish sidestream-derived collagen alone (Collagen), or in combination with a protein hydrolysate derived from salmon heads (HSH), resulted in accelerated healing. Chemical analysis of the tested extracts revealed that Collagen had the highest protein content and that HSH contained the great amount of zinc, known to support immune responses. Indeed, tissues from mice fed with collagen-containing supplements exhibited an increase in the expression levels of chemokines, important for the recruitment of immune cells into the damaged wound region. Moreover, expression of a potent angiogenic factor, vascular endothelial growth factor-A (VEGF-A), was elevated followed by enhanced collagen deposition. Our findings suggest that a 5%-supplemented diet with marine collagen-enriched supplements promotes tissue repair in the model of cutaneous wound healing, proposing a novel health-promoting use of fish sidestreams.  相似文献   

16.
Influence of amino acid compositions and peptide profiles on antioxidant capacities of two protein hydrolysates from skipjack tuna (Katsuwonus pelamis) dark muscle was investigated. Dark muscles from skipjack tuna were hydrolyzed using five separate proteases, including pepsin, trypsin, Neutrase, papain and Alcalase. Two hydrolysates, ATH and NTH, prepared using Alcalase and Neutrase, respectively, showed the strongest antioxidant capacities and were further fractionated using ultrafiltration and gel filtration chromatography. Two fractions, Fr.A3 and Fr.B2, isolated from ATH and NTH, respectively, showed strong radical scavenging activities toward 2,2-diphenyl-1-picrylhydrazyl radicals (EC50 1.08% ± 0.08% and 0.98% ± 0.07%), hydroxyl radicals (EC50 0.22% ± 0.03% and 0.48% ± 0.05%), and superoxide anion radicals (EC50 1.31% ± 0.11% and 1.56% ± 1.03%) and effectively inhibited lipid peroxidation. Eighteen peptides from Fr.A3 and 13 peptides from Fr.B2 were isolated by reversed-phase high performance liquid chromatography, and their amino acid sequences were determined. The elevated antioxidant activity of Fr.A3 might be due to its high content of hydrophobic and aromatic amino acid residues (181.1 and 469.9 residues/1000 residues, respectively), small molecular sizes (3–6 peptides), low molecular weights (524.78 kDa), and amino acid sequences (antioxidant score 6.11). This study confirmed that a smaller molecular size, the presence of hydrophobic and aromatic amino acid residues, and the amino acid sequences were the key factors that determined the antioxidant activities of the proteins, hydrolysates and peptides. The results also demonstrated that the derived hydrolysates and fractions from skipjack tuna (K. pelamis) dark muscles could prevent oxidative reactions and might be useful for food preservation and medicinal purposes.  相似文献   

17.
DNA分子标记与玉米种质研究   总被引:1,自引:3,他引:1  
DNA分子标记是继形态标记、细胞标记和生化标记之后发展起来的一类重要的遗传标记,已在生命科学领域中广泛应用。介绍几种DNA分子标记的原理,综述了DNA分子标记在玉米种质遗传多样性鉴定、绘制指纹图谱、杂种优势类群划分和杂种优势预测等方面的应用,并探讨了在玉米种质研究中存在的问题和应用前景。  相似文献   

18.
In this study, the exopolysaccharides of Chlorella sp. (CEP) were isolated to obtain the purified fraction CEP4. Characterization results showed that CEP4 was a sulfated heteropolysaccharide. The main monosaccharide components of CEP4 are glucosamine hydrochloride (40.8%) and glucuronic acid (21.0%). The impact of CEP4 on the immune activity of RAW264.7 macrophage cytokines was detected, and the results showed that CEP4 induced the production of nitric oxide (NO), TNF-α, and IL-6 in a dose-dependent pattern within a range of 6 μg/mL. A total of 4824 differentially expressed genes (DEGs) were obtained from the results of RNA-seq. Gene enrichment analysis showed that immune-related genes such as NFKB1, IL-6, and IL-1β were significantly upregulated, while the genes RIPK1 and TLR4 were significantly downregulated. KEGG pathway enrichment analysis showed that DEGs were significantly enriched in immune-related biological processes, including toll-like receptor (TLR) signaling pathway, cytosolic DNA-sensing pathway, and C-type lectin receptor signaling pathway. Protein–protein interaction (PPI) network analysis showed that HSP90AB1, Rbx1, ISG15, Psmb6, Psmb3, Psmb8, PSMA7, Polr2f, Rpsa, and NEDD8 were the hub genes with an essential role in the immune activity of CEP4. The preliminary results of the present study revealed the potential mechanism of CEP4 in the immune regulation of RAW264.7 macrophages, suggesting that CEP4 is a promising immunoregulatory agent.  相似文献   

19.
Immature rice was reported to contain higher quantities of bioactive compounds than mature rice. Young rice protein is easy to digest and has hypoallergenic potential, with protein content of 7.2–11.5% compared to rice bran at 9.8%. Few studies have reported on bioactivities and characterization of young rice proteins and their hydrolysates. Bioactivities of native protein and protein hydrolysates of two rice varieties (white rice and colored rice) were characterized and investigated for four development stages (flowery, milky, dough, and mature). Degree of hydrolysis of young rice protein was considerably higher than at the mature stage. Highest DPPH and iron chelating activity were found in alcalase® protein hydrolysate during the flowery-to-milky stage. Iron chelating activity was constant in all development stages because of the low polar amino acid content in rice. The ACE activity of alcalase® protein hydrolysate was higher than native protein at the same development stage, as observed in the milky and dough stages. Inhibitory activity of young rice hydrolysate HepG2 cells was concentration-dependent and not correlated with protein molecular size.  相似文献   

20.
The effect of thermal and ultrasonic treatment of cowpea proteins (CP) on amino acid composition, radical scavenging and reducing potential of hydrolysates (CPH) obtained from in vitro simulated gastrointestinal digestion of CP was evaluated. Hydrolysis of native and treated CP with gastrointestinal pepsin and pancreatin yielded CPH that displayed antioxidant activities based on oxygen radical scavenging capacity (ORAC), ferric reducing antioxidant power (FRAP) and superoxide radical scavenging activity (SRSA). CPH derived from the treated CP yielded higher ORAC values than CPH from untreated proteins. However, lower significant FRAP and SRSA values were observed for these samples compared to untreated CPH (p?<?0.05). Amino acid analysis indicated that CP processing decreased total sulphur-containing amino acids in the hydrolysates, particularly cysteine. The amount of cysteine appeared to be positively related to FRAP and SRSA values of CPH samples, but not ORAC. The results indicated that thermal and ultrasonic processing of CP can reduce the radical scavenging and reducing potential of the enzymatic hydrolysates possibly due to the decreased amounts of cysteine. Since the hydrolysates were generated with gastrointestinal enzymes, it is possible that the resulting compounds are produced to exert some health functions during normal consumption of cowpea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号