首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this research was to investigate the antioxidant activity of Gracilaria lemaneiformis polysaccharide degradation and its underlying mechanism involved in the Nrf-2/Keap-1 signaling pathway in HepG2 cells with oxidative stress induced by H2O2. The result of the scavenging ability of free radicals showed that GLP-HV (polysaccharide degraded by H2O2–vitamin C (Vc)) performed a better scavenging ability than GLP (G. lemaneiformis polysaccharide). Moreover, the scavenging ability of polysaccharide to these free radicals from strong to weak was as follows: superoxide radical, ferric ion, ABTS+, and DPPH radical, and their IC50 values were 3.56 ± 0.0028, 4.97 ± 0.18, 9.62 ± 0.35, and 23.85 ± 1.78 mg/mL, respectively. Furthermore, GLP-HV obviously relieved oxidative stress in HepG2 cells, which strengthened the activity of T-AOC, CAT, GSH-PX, and SOD, and diminished the intensity of MDA, intracellular ROS, and calcium ion based on the Nrf-2/Keap-1 signaling pathway. The PCR result revealed that polysaccharide upregulated the expression of the genes Nrf-2, HO-1, NQO-1, and ZO-1 and downregulated Keap-1. The correlation between chemical properties and antioxidant mechanism of GLP-HV was evaluated via a heat map. The results illustrated that reducing sugar and active groups presented a positive correlation, and molecular weight and viscosity exhibited a negative relation with antioxidant activity.  相似文献   

2.
In the current study, the preparation conditions of neutrase hydrolysate (SMH) from skate (Raja porosa) muscle protein were optimized using orthogonal L9(3)4 tests, and R values indicated that pH was the most important factor affecting HO· scavenging activity of SMH. Under the optimum conditions of pH 7.0, enzymolysis temperature 60 °C, enzyme/substrate ratio (E/S) 2%, and enzymolysis time 5 h, EC50 of SMH on HO· was 2.14 ± 0.17 mg/mL. Using ultrafiltration, gel filtration chromatography, and RP-HPLC, two novel antioxidant nonapeptides (SP-A and SP-B) were isolated from SMH and their amino acid sequences were found to be APPTAYAQS (SP-A) and NWDMEKIWD (SP-B) with calculated molecular masses of 904.98 Da and 1236.38 Da, respectively. Both showed strong antioxidant activities. SP-A and SP-B exhibited good scavenging activities on HO· (EC50 0.390 and 0.176 mg/mL), DPPH· (EC50 0.614 and 0.289 mg/mL), and O2· (EC50 0.215 and 0.132 mg/mL) in a dose-dependent manner. SP-B was also effective against lipid peroxidation in the model system. The aromatic (2Trp), acidic (2Asp and Glu), and basic (Lys) amino acid residues within the sequences of SP-B might account for its pronounced antioxidant activity. The results of this study suggested that protein hydrolysate and peptides from skate muscle might be effective as food additives for retarding lipid peroxidation occurring in foodstuffs.  相似文献   

3.
For making full use of aquatic by-products to produce high value-added products, Siberian sturgeon (Acipenser baerii) cartilages were degreased, mineralized, and separately hydrolyzed by five kinds of proteases. The collagen hydrolysate (SCH) generated by Alcalase showed the strongest 2,2-diphenyl-1-picrylhydrazyl radical (DPPH·) and hydroxide radical (HO·) scavenging activity. Subsequently, thirteen antioxidant peptides (SCP1-SCP3) were isolated from SCH, and they were identified as GPTGED, GEPGEQ, GPEGPAG, VPPQD, GLEDHA, GDRGAEG, PRGFRGPV, GEYGFE, GFIGFNG, PSVSLT, IELFPGLP, LRGEAGL, and RGEPGL with molecular weights of 574.55, 615.60, 583.60, 554.60, 640.64, 660.64, 885.04, 700.70, 710.79, 602.67, 942.12, 714.82, and 627.70 Da, respectively. GEYGFE, PSVSLT, and IELFPGLP showed the highest scavenging activity on DPPH· (EC50: 1.27, 1.05, and 1.38 mg/mL, respectively) and HO· (EC50: 1.16, 0.97, and 1.63 mg/mL, respectively), inhibiting capability of lipid peroxidation, and protective functions on H2O2-damaged plasmid DNA. More importantly, GEYGFE, PSVSLT, and IELFPGLP displayed significant cytoprotection on HUVECs against H2O2 injury by regulating the endogenous antioxidant enzymes of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) to decrease the contents of reactive oxygen species (ROS) and malondialdehyde (MDA). Therefore, the research provided better technical assistance for a higher-value utilization of Siberian sturgeon cartilages and the thirteen isolated peptides—especially GEYGFE, PSVSLT, and IELFPGLP—which may serve as antioxidant additives for generating health-prone products to treat chronic diseases caused by oxidative stress.  相似文献   

4.
Sargassum brown seaweed is reported to exhibit several biological activities which promote human health, such as anticancer, antimicrobial, antidiabetic, anti-inflammatory, and antioxidant activity. This study aimed to investigate the anti-inflammatory and antioxidant activity of crude lipid extracts of Sargassum ilicifolium obtained from four different coastal areas in Indonesia, namely Awur Bay–Jepara (AB), Pari Island–Seribu Islands (PI), Sayang Heulang Beach–Garut (SHB), and Ujung Genteng Beach–Sukabumi (UGB). Results showed that treatment of RAW 264.7 macrophage cells with UGB and AB crude lipid extracts (12.5–50 µg/mL) significantly suppressed the nitric oxide production after lipopolysaccharide stimulation, both in pre-incubated and co-incubated cell culture model. The anti-inflammatory effect was most marked in the pre-incubated cell culture model. Both two crude lipid extracts showed 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and high ferric reducing antioxidant power, which were amounted to 36.93–37.87 µmol Trolox equivalent/g lipid extract and 681.58–969.81 µmol FeSO4/g lipid extract, respectively. From this study, we can conclude that crude lipid extract of tropical S. ilicifolium can be further developed as a source of anti-inflammatory and antioxidant agent.  相似文献   

5.
Three new metabolites, furobenzotropolones A, B (1–2) with unusual benzene and dihydrofuran moieties and 3-hydroxyepicoccone B (3), together with seven known compounds (4–10) were obtained from the endophytic fungus Epicoccum nigrum MLY-3 isolated from the fresh leaf of mangrove plant Bruguiear gymnorrhiza collected from Zhuhai. Their structures were assigned by the analysis of UV, IR, NMR, and mass spectroscopic data. Compound 1 was further confirmed by single-crystal X-ray diffraction experiment using Cu Kα radiation. In antioxidant activities in vitro, compounds 2, 3, 5, and 8 showed promising DPPH· scavenging activity with IC50 values ranging from 14.7 to 29.3 µM. Compounds 2, 3, 5, 7, and 8 exhibited promising potent activity in scavenging ABTS· with IC50 values in the range of 18–29.2 µM, which was stronger than that of the positive control ascorbic acid (IC50 = 33.6 ± 0.8 µM).  相似文献   

6.
The loss of density and elasticity, the appearance of wrinkles and hyperpigmentation are among the first noticeable signs of skin aging. Beyond UV radiation and oxidative stress, matrix metalloproteinases (MMPs) assume a preponderant role in the process, since their deregulation results in the degradation of most extracellular matrix components. In this survey, four cyanobacteria strains were explored for their capacity to produce secondary metabolites with biotechnological potential for use in anti-aging formulations. Leptolyngbya boryana LEGE 15486 and Cephalothrix lacustris LEGE 15493 from freshwater ecosystems, and Leptolyngbya cf. ectocarpi LEGE 11479 and Nodosilinea nodulosa LEGE 06104 from marine habitats were sequentially extracted with acetone and water, and extracts were analyzed for their toxicity in cell lines with key roles in the skin context (HaCAT, 3T3L1, and hCMEC). The non-toxic extracts were chemically characterized in terms of proteins, carotenoids, phenols, and chlorophyll a, and their anti-aging potential was explored through their ability to scavenge the physiological free radical superoxide anion radical (O2•−), to reduce the activity of the MMPs elastase and hyaluronidase, to inhibit tyrosinase and thus avoid melanin production, and to block UV-B radiation (sun protection factor, SPF). Leptolyngbya species stood out for anti-aging purposes: L. boryana LEGE 15486 presented a remarkable SPF of 19 (at 200 µg/mL), being among the best species regarding O2•− scavenging, (IC50 = 99.50 µg/mL) and also being able to inhibit tyrosinase (IC25 = 784 µg/mL), proving to be promising against UV-induced skin-aging; L. ectocarpi LEGE 11479 was more efficient in inhibiting MMPs (hyaluronidase, IC50 = 863 µg/mL; elastase, IC50 = 391 µg/mL), thus being the choice to retard dermal density loss. Principal component analysis (PCA) of the data allowed the grouping of extracts into three groups, according to their chemical composition; the correlation of carotenoids and chlorophyll a with MMPs activity (p < 0.01), O2•− scavenging with phenolic compounds (p < 0.01), and phycocyanin and allophycocyanin with SPF, pointing to these compounds in particular as responsible for UV-B blockage. This original survey explores, for the first time, the biotechnological potential of these cyanobacteria strains in the field of skin aging, demonstrating the promising, innovative, and multifactorial nature of these microorganisms.  相似文献   

7.
A growing market for novel antioxidants obtained from non-expensive sources justifies educated screening of microalgae for their potential antioxidant features. Characterization of the antioxidant profile of 18 species of cyanobacteria (prokaryotic microalgae) and 23 species of (eukaryotic) microalgae is accordingly reported in this paper. The total antioxidant capacity, accounted for by both water- and lipid-soluble antioxidants, was evaluated by the (radical cation) ABTS method. For complementary characterization of cell extracts, a deoxyribose assay was carried out, as well as a bacteriophage P22/Salmonella-mediated approach. The microalga Scenedesmus obliquus strain M2-1 exhibited the highest (p > 0.05) total antioxidant capacity (149 ± 47 AAU) of intracellular extracts. Its scavenger activity correlated well with its protective effects against DNA oxidative damage induced by copper(II)-ascorbic acid; and against decay in bacteriophage infection capacity induced by H2O2. Finally, performance of an Ames test revealed no mutagenic effects of the said extract.  相似文献   

8.
Background:This study was devoted to assessing the inhibitory potential of acetone, methanol, and ethanol extracts of Acroptilon repens against disease-associated enzymes, as well as their antioxidant/antibacterial activity and phytochemical composition. Methods:Comparative assessment using various antioxidant evaluation methods, including FRAP, scavenging ability on DPPH radical and hydrogen peroxide, and RP, indicated that the acetone extract presented the highest antioxidant activity, due to its highest total antioxidant content. Results:The TPC and TFC of these extracts were 3.44 ± 0.32 mg GAE/g DW and 2.09 ± 0.2 mg QE/g DW, respectively. The hydrodistillation essential oil from A. repens was analyzed by GC/MS, and 17 compounds were identified. All extracts showed good inhibitory activities against disease-related enzyme acetylcholinesterase and α-amylase, with the lowest IC50 for acetonic extract. Extracts of A. repens exhibited inhibiting activities against the Gram-positive bacteria, with the most effect of acetone extract. Conclusion:Our findings suggest A. repens as a promising source of natural antioxidant, antimicrobial, anti-cholinesterase and anti-amylase agents for the management of oxidative damage, and pharmaceutical, food, and cosmeceutical purposes. Key Words: Acroptilon repens, Antioxidants, Phytochemicals  相似文献   

9.
With respect to the potential natural resources in the marine environment, marine macroalgae or seaweeds are recognized to have health impacts. Two marine algae that are found in the Red Sea, Codium tomentosum (Green algae) and Actinotrichia fragilis (Red algae), were collected. Antibacterial and antioxidant activities of aqueous extracts of these algae were evaluated in vitro. Polyphenols from the extracts were determined using HPLC. Fillet fish was fortified with these algal extracts in an attempt to improve its nutritional value, and sensory evaluation was performed. The antibacterial effect of C. tomentosum extract was found to be superior to that of A. fragilis extract. Total phenolic contents of C. tomentosum and A. fragilis aqueous extract were 32.28 ± 1.63 mg/g and 19.96 ± 1.28 mg/g, respectively, while total flavonoid contents were 4.54 ± 1.48 mg/g and 3.86 ± 1.02 mg/g, respectively. Extract of C. tomentosum demonstrates the highest antioxidant activity, with an IC50 value of 75.32 ± 0.07 μg/mL. The IC50 of L-ascorbic acid as a positive control was 22.71 ± 0.03 μg/mL. The IC50 values for inhibiting proliferation on normal PBMC cells were 33.7 ± 1.02 µg/mL and 51.0 ± 1.14 µg/mL for C. tomentosum and A. fragilis, respectively. The results indicated that both algal aqueous extracts were safe, with low toxicity to normal cells. Interestingly, fillet fish fortified with C. tomentosum extract demonstrated the greatest overall acceptance score. These findings highlight the potential of these seaweed species for cultivation as a sustainable and safe source of therapeutic compounds for treating human and fish diseases, as well as effective food supplements and preservatives instead of chemical ones after performing in vivo assays.  相似文献   

10.
Gracilariopsis lemaneiformis polysaccharides (GLP) were degraded using pectinase, glucoamylase, cellulase, xylanase, and β-dextranase into low-molecular-weight polysaccharides, namely, GPP, GGP, GCP, GXP, and GDP, respectively, and their antioxidant capacities were investigated. The degraded GLP showed higher antioxidant activities than natural GLP, and GDP exhibited the highest antioxidant activity. After the optimization of degradation conditions through single-factor and orthogonal optimization experiments, four polysaccharide fractions (GDP1, GDP2, GDP3, and GDP4) with high antioxidant abilities (hydroxyl radical scavenging activity, DPPH radical scavenging activity, reduction capacity, and total antioxidant capacity) were obtained. Their cytoprotective activities against H2O2-induced oxidative damage in human fetal lung fibroblast 1 (HFL1) cells were examined. Results suggested that GDP pretreatment can significantly improve cell viability, reduce reactive oxygen species and malonaldehyde levels, improve antioxidant enzyme activity and mitochondria membrane potential, and alleviate oxidative damage in HFL1 cells. Thus, the enzyme degradation of GLP with β-dextranase can significantly improve its antioxidant activity, and GDP might be a suitable source of natural antioxidants.  相似文献   

11.
The recovery of amino acids and other important bioactive compounds from the comb penshell (Atrina pectinata) using subcritical water hydrolysis was performed. A wide range of extraction temperatures from 140 to 290 °C was used to evaluate the release of proteins and amino acids. The amount of crude protein was the highest (36.14 ± 1.39 mg bovine serum albumin/g) at 200 °C, whereas a further increase in temperature showed the degradation of the crude protein content. The highest amount of amino acids (74.80 mg/g) was at 230 °C, indicating that the temperature range of 170–230 °C is suitable for the extraction of protein-rich compounds using subcritical water hydrolysis. Molecular weights of the peptides obtained from comb penshell viscera decreased with the increasing temperature. SDS-PAGE revealed that the molecular weight of peptides present in the hydrolysates above the 200 °C extraction temperature was ≤ 1000 Da. Radical scavenging activities were analyzed to evaluate the antioxidant activities of the hydrolysates. A. pectinata hydrolysates also showed a particularly good antihypertensive activity, proving that this raw material can be an effective source of amino acids and marine bioactive peptides.  相似文献   

12.
Influence of amino acid compositions and peptide profiles on antioxidant capacities of two protein hydrolysates from skipjack tuna (Katsuwonus pelamis) dark muscle was investigated. Dark muscles from skipjack tuna were hydrolyzed using five separate proteases, including pepsin, trypsin, Neutrase, papain and Alcalase. Two hydrolysates, ATH and NTH, prepared using Alcalase and Neutrase, respectively, showed the strongest antioxidant capacities and were further fractionated using ultrafiltration and gel filtration chromatography. Two fractions, Fr.A3 and Fr.B2, isolated from ATH and NTH, respectively, showed strong radical scavenging activities toward 2,2-diphenyl-1-picrylhydrazyl radicals (EC50 1.08% ± 0.08% and 0.98% ± 0.07%), hydroxyl radicals (EC50 0.22% ± 0.03% and 0.48% ± 0.05%), and superoxide anion radicals (EC50 1.31% ± 0.11% and 1.56% ± 1.03%) and effectively inhibited lipid peroxidation. Eighteen peptides from Fr.A3 and 13 peptides from Fr.B2 were isolated by reversed-phase high performance liquid chromatography, and their amino acid sequences were determined. The elevated antioxidant activity of Fr.A3 might be due to its high content of hydrophobic and aromatic amino acid residues (181.1 and 469.9 residues/1000 residues, respectively), small molecular sizes (3–6 peptides), low molecular weights (524.78 kDa), and amino acid sequences (antioxidant score 6.11). This study confirmed that a smaller molecular size, the presence of hydrophobic and aromatic amino acid residues, and the amino acid sequences were the key factors that determined the antioxidant activities of the proteins, hydrolysates and peptides. The results also demonstrated that the derived hydrolysates and fractions from skipjack tuna (K. pelamis) dark muscles could prevent oxidative reactions and might be useful for food preservation and medicinal purposes.  相似文献   

13.
Bioactive lipidic compounds of microalgae, such as polyunsaturated fatty acids (PUFA) and carotenoids, can avoid or treat oxidation-associated conditions and diseases like inflammation or cancer. This study aimed to assess the bioactive potential of lipidic extracts obtained from Gloeothece sp.–using Generally Recognized as Safe (GRAS) solvents like ethanol, acetone, hexane:isopropanol (3:2) (HI) and ethyl lactate. The bioactive potential of extracts was assessed in terms of antioxidant (ABTS•+, DPPH, NO and O2assays), anti-inflammatory (HRBC membrane stabilization and Cox-2 screening assay), and antitumor capacity (death by TUNEL, and anti-proliferative by BrdU incorporation assay in AGS cancer cells); while its composition was characterized in terms of carotenoids and fatty acids, by HPLC-DAD and GC-FID methods, respectively. Results revealed a chemopreventive potential of the HI extract owing to its ability to: (I) scavenge -NO radical (IC50, 1258 ± 0.353 µg·mL−1); (II) inhibit 50% of COX-2 expression at 130.2 ± 7.4 µg·mL−1; (III) protect 61.6 ± 9.2% of lysosomes from heat damage, and (IV) induce AGS cell death by 4.2-fold and avoid its proliferation up to 40% in a concentration of 23.2 ± 1.9 µg·mL−1. Hence, Gloeothece sp. extracts, namely HI, were revealed to have the potential to be used for nutraceutical purposes.  相似文献   

14.
Nature-based and sustainably sourced cosmetics have been dominating the area of skincare products worldwide. Due to their antioxidant and antiaging properties, compounds from cyanobacteria, such as carotenoids and phycobiliproteins, may replace synthetic ingredients in cosmetic formulations and may be used in products such as sunscreens, skincare creams, and makeup. In this study, we evaluated the potential of acetonic and aqueous extracts from cyanobacteria strains of the genera Cyanobium and Leptothoe and from strains within Synechococcales and Oscillatoriales orders, for use in cosmetics. Extractions were sequentially performed with acetone and water. Extracts were firstly analyzed for their toxicity to keratinocytes, fibroblasts, and endothelial cells (HaCAT, 3T3L1 and hCMEC/D3, respectively). The non-cytotoxic extracts were characterized in terms of total proteins, carotenoids, chlorophyll, phenols, phycobiliproteins, and analyzed for their antioxidant potential against the superoxide anion radical (O2•−), and for their ability to inhibit key enzymes associated with the skin aging process. Aqueous extracts were richer in total proteins and phycobiliproteins. The aqueous extracts of Synechococcales cyanobacterium LEGE 181157 and Synechococcales cyanobacterium LEGE 181150 showed the highest value for total proteins (760.81 and 695.25 μg BSA mL−1dry extract, respectively) and the best values regarding O2•− scavenging (IC50 = 63.24 and 112.18 μg mL−1dry extract, respectively) with a significant negative correlation observed (p < 0.01). Moreover, aqueous extracts of Synechococcales cyanobacterium LEGE 181150 and Synechococcales cyanobacterium LEGE 181157 inhibited hyaluronidase, (IC50 of 483.86 and 645.06 μg mL−1dry extract, respectively), with a significant negative correlation with total proteins (p < 0.05), pointing out the contribution of these compounds to the biological activities observed. Acetonic extracts were richer in carotenoids and phenols. Zeaxanthin and β-carotene were predominant among all strains, being present in higher amount in Cyanobium sp. LEGE 07175 (53.08 μg mg−1) and Leptothoe sp. LEGE 181156 (47.89 μg mg−1), respectively. The same strains also showed the highest values for collagenase inhibition at 750 μg mL−1dry extract (32.88 and 36.61%, respectively). Furthermore, Leptothoe sp. LEGE 181156 exhibited the lowest IC50 value for tyrosinase inhibition (465.92 μg mL−1dry extract) and Synechococcales cyanobacterium LEGE 181157 presented the best values for elastase inhibition (IC50 of 380.50 and IC25 of 51.43 μg mL−1dry extract). In general, cyanobacteria extracts demonstrated potential for being used for antiaging purposes, with aqueous extracts being more efficient at free radicals scavenging and acetonic ones at avoiding degradation of dermal matrix components.  相似文献   

15.
Organic solvent (methanol, ethanol, and acetone) extracts and water extracts of cherry (Prunus serrulata var. spontanea) blossoms were prepared, and antioxidant activities of the extracts were evaluated. Methanolic CBE (100 μg/ml) showed the highest total phenol content (104.30 μM), radical scavenging activity (34.2%), and reducing power (0.391). The effect of CBE on DNA damage induced by H2O2 in human leukocytes was evaluated by Comet assay. All CBE was a potent dose dependent inhibitor of DNA damage induced by 200 μM of H2O2, methanolic CBE showed the most strong inhibition activity. The methanolic CBE of 500 μg/ml showed 38.8% inhibition against growth of human colon cancer cell line HT-29. These results indicated that cherry blossoms could provide valuable bioactive materials.  相似文献   

16.
Gracilaria lemaneiformis polysaccharide (GLP) exhibits good physiological activities, and it is more beneficial as it is degraded. After its degradation by hydrogen peroxide combined with vitamin C (H2O2-Vc) and optimized by Box–Behnken Design (BBD), a new product of GLP-HV will be generated. While using GLP as control, two products of GLP-H (H2O2-treated) and GLP-V (Vc-treated) were also produced. These products chemical characteristics (total sugar content, molecular weight, monosaccharide composition, UV spectrum, morphological structure, and hypolipidemic activity in vitro) were assessed. The results showed that the optimal conditions for H2O2-Vc degradation were as follows: H2O2-Vc concentration was 18.7 mM, reaction time was 0.5 h, and reaction temperature was 56 °C. The total sugar content of GLP and its degradation products (GLP-HV, GLP-H and GLP-V) were more than 97%, and their monosaccharides are mainly glucose and galactose. The SEM analysis demonstrated that H2O2-Vc made the structure loose and broken. Moreover, GLP, GLP-HV, GLP-H, and GLP-V had significantly inhibition effect on α-glucosidase, and their IC50 value were 3.957, 0.265, 1.651, and 1.923 mg/mL, respectively. GLP-HV had the best inhibition effect on α-glucosidase in a dose-dependent manner, which was the mixed type of competitive and non-competitive. It had a certain quenching effect on fluorescence of α-glucosidase, which may be dynamic quenching.  相似文献   

17.
This study was aimed at investigating the effect of low polarity water (LPW) on the extraction of bioactive compounds from Fucus vesiculosus and to examine the influence of temperature on the extraction yield, total phenolic content, crude alginate, fucoidan content, and antioxidant activity. The extractions were performed at the temperature range of 120–200 °C with 10 °C increments, and the extraction yield increased linearly with the increasing extraction temperature, with the highest yields at 170–200 °C and with the maximum extraction yield (25.99 ± 2.22%) at 190 °C. The total phenolic content also increased with increasing temperature. The extracts showed a high antioxidant activity, measured with DPPH (2,2-Diphenyl-1-picrylhydrazyl) radicals scavenging and metal-chelating activities of 0.14 mg/mL and 1.39 mg/mL, respectively. The highest yield of alginate and crude fucoidan were found at 140 °C and 160 °C, respectively. The alginate and crude fucoidan contents of the extract were 2.13% and 22.3%, respectively. This study showed that the extraction of bioactive compounds from seaweed could be selectively maximized by controlling the polarity of an environmentally friendly solvent.  相似文献   

18.
The viscera of Urechis unicinctus with polypeptides, fatty acids, and amino acids are usually discarded during processing to food. In order to improve the utilization value of the viscera of Urechis unicinctus and avoid resource waste, antioxidant polypeptides were isolated from the viscera of Urechis unicinctus. First, a protein hydrolysate of Urechis unicinctus (UUPH) was prepared by ultrasonic-assisted enzymatic hydrolysis, and the degree of hydrolysis was as high as 79.32%. Subsequently, three new antioxidant peptides (P1, P2, and P3) were purified from UUPH using ultrafiltration and chromatography, and their amino acid sequences were identified as VTSALVGPR, IGLGDEGLRR, TKIRNEISDLNER, respectively. Then, the antioxidant activity of the polypeptide was predicted by the structure–activity relationship and finally verified by experiments on eukaryotic cells. The P1 peptide exhibited the strongest antioxidant activity among these three antioxidant peptides. Furthermore, P1, P2, and P3 have no toxic effect on RAW264.7 cells at the concentration of 0.01~2 mg/mL and can protect RAW264.7 cells from H2O2-induced oxidative damage in a concentration-dependent manner. These results suggested that these three new antioxidant peptides were isolated from the viscera of Urechis unicinctus, especially the P1 peptide, which might serve as potential antioxidants applied in health-derived food or beverages. This study further developed a new use of the by-product of Urechis unicinctus, which improved the comprehensive utilization of marine biological resources.  相似文献   

19.
Marine sponge-derived endozoic fungi have been gaining increasing importance as promising sources of numerous and unique bioactive compounds. This study investigates the phytochemical profile and biological activities of the ethyl acetate extract of Penicillium chrysogenum derived from Cliona sp. sponge. Thirty-six compounds were tentatively identified from P. chrysogenum ethyl acetate extract along with the kojic acid (KA) isolation. The UPLC-ESI-MS/MS positive ionization mode was used to analyze and identify the extract constituents while 1D and 2D NMR spectroscopy were used for kojic acid (KA) structure confirmation. The antimicrobial, antioxidant, and cytotoxic activities were assessed in vitro. Both the extract and kojic acid showed potent antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa with MIC 250 ± 0.82 µg/mL. Interestingly, the extract showed strong antifungal activity against Candida albicans and Cryptococcus neoformans with MIC 93.75 ± 0.55 and 19.53 ± 0.48 µg/mL, respectively. Furthermore, KA showed the same potency against Fusarium oxysporum and Cryptococcus neoformans with MIC 39.06 ± 0.85 and 39.06 ± 0.98 µg/mL, respectively. Ultimately, KA showed strong antioxidant activity with IC50 33.7 ± 0.8 µg/mL. Moreover, the extract and KA showed strong cytotoxic activity against colon carcinoma (with IC50 22.6 ± 0.8 and 23.4 ± 1.4 µg/mL, respectively) and human larynx carcinoma (with equal IC50 30.8 ± 1.3 and ± 2.1 µg/mL, respectively), respectively. The current study represents the first insights into the phytochemical profile and biological properties of P. chrysoenum ethyl acetate extract, which could be a promising source of valuable secondary metabolites with potent biological potentials.  相似文献   

20.
This study was carried out to investigate the protective effects of chitosan nanoparticles (CNP) against hydrogen peroxide (H2O2)-induced oxidative damage in murine macrophages RAW264.7 cells. After 24 h pre-incubation with CNP (25–200 μg/mL) and chitosan (CS) (50–200 μg/mL, as controls), the viability loss in RAW264.7 cells induced by H2O2 (500 μM) for 12 h was markedly restored in a concentration-dependent manner as measured by MTT assay (P < 0.05) and decreased in cellular LDH release (P < 0.05). Moreover, CNP also exerted preventive effects on suppressing the production of lipid peroxidation such as malondialdehyde (MDA) (P < 0.05), restoring activities of endogenous antioxidant including superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) (P < 0.05), along with increasing total antioxidant capacity (T-AOC) (P < 0.05). In addition, pre-incubation of CNP with RAW264.7 cells for 24 h resulted in the increase of the gene expression level of endogenous antioxidant enzymes, such as MnSOD and GSH-Px (P < 0.05). At the same concentration, CNP significantly decreased LDH release and MDA (P < 0.05) as well as increased MnSOD, GSH-Px, and T-AOC activities (P < 0.05) as compared to CS. Taken together, our findings suggest that CNP can more effectively protect RAW264.7 cells against oxidative stress by H2O2 as compared to CS, which might be used as a potential natural compound-based antioxidant in the functional food and pharmaceutical industries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号