首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Although water chemistry of precipitation and lakes in Nova Scotia is dominated by C1 from sea salt, correction for marine influence reveals that the dominant anion in acidified lakes is SO4. Atmospheric deposition of non-marine SO4 (SO4) and NO3- for the period 1977–1980 at 4 stations in southwest Nova Scotia averaged 47 meq SO4 * m?2 yr?1 and 21 meq NI3-m?2 yr?1 compared with 38 and 13 meq, respectively, for the average of 3 stations in the northeastern third of the province. Precipitation pH increased from 4.5 to 4.8 along the same axis. Almost 50% of the SO4 deposition occurred when storms came from the southwest, indicating low pressure tracks which pass south of major Canadian sources of S. SO4 * deposition in metropolitan Halifax (1982 bulk data) was 87 meq m?2 yr?1, due to local emissions of ca. 28 300 tonne S in the area, as well as LRTAP. Concurrent deposition of NO3-N was 15 meq m?2 yr?1 (2.1 kg ha?1 yr ?1). Loadings from SO4 deposition in the Halifax area amount to 42 kg ha?1 yr?1 and clearly exceed the federal guideline (M.O.I., 1983) of 20 kg ha?1 yr?1. Water chemistry of southwest, northeast, and Halifax area lakes show the same general SOI trends as observed for atmospheric deposition. In addition we find a positive relationship between SOI concentrations in the urban lakes and proximity to the center of the urban area.  相似文献   

2.
Precipitation chemistry was discussed from the viewpoint of potential sources for four rural sites where wet-only daily-basis measurement data sets were available during the period from April 1996 to March 1997 in Japan. Annual volume-weighted mean concentrations of nss-SO4 2? and NO3 ? ranged from 18.0 to 34.6 µeq L?1, and from 9.3 to 23.1 µeq L?1, respectively. The degree of neutralization of input acidity in terms of the concentration ratio, [H+] / ([nss-SO4 2?] + [NO3 ?]), ranged from 0.46 to 0.63. This suggests that about half of the input acidity due to H2SO4 and HNO3 was neutralized by NH4 + and nss-Ca2+ to produce the pH values of 4.46 to 4.82 for these sites. Maximum likelihood factor analysis was then performed on the logarithmically transformed daily wet deposition of major ions. Two factors successfully explained a total of about 80% of the variance in the data for each site. Interpreting varimax rotated factor loadings, we could identify two source types: (1) acid source with large loadings on ln(H+), ln(nss-SO4 2?), ln(NO3 ?) and ln(NH4 +), (2) sea-salt source with large loadings on ln(Na+), ln(Cl?), ln(Mg2+) and ln(K+). The rural wet deposition over Japan appears to have a similar structure in terms of the kinds of sources and their relative location.  相似文献   

3.
Wet deposition monitoring was conducted at six rural stations in western Japan, during the period from 1987 through 1996. Long-term trends in the concentration of non-sea salt ions were analyzed on the basis of the data obtained. The monitoring results indicated that annual average concentrations of NO3 ? and NH4 + in precipitation significantly increased on the order of 45%, and that of nss-Ca2+ and nss-SO4 2?, concentrations did not change over the past 10 years. The ratio of NO3 ?/nss-SO4 2? in precipitation significantly increased, the ratio of NO3 ?/NH4 + showed no marked fluctuations, and the ratio of [nss-Ca2++NH4 +]/[nss-SO4 2?+NO3 ?] slightly increased during the period. These findings suggested that the wet deposition of NO3 ? and NH4 + in western Japan, particularly that in the winter season, was influenced by the long-range transport of nitrogen oxides and ammonia from the Asian continent.  相似文献   

4.
Several fog episodes occurred in California’s San Joaquin Valley during winter 2000/2001. Measurements revealed the fogs to generally be less than 50 m deep, but to contain high liquid water contents (frequently exceeding 200 mg/m3) and large droplets. The composition of the fog water was dominated by ammonium (median concentration?=?608 μN), nitrate (304 μN), and organic carbon (6.9 ppmC), with significant contributions also from nitrite (18 μN) and sulfate (56 μN). Principal organic species included formate (median concentration?=?32 μN), acetate (31 μN), and formaldehyde (21 μM). High concentrations of ammonia resulted in high fog pH values, ranging between 5.8 and 8.0 at the core measurement site. At this high pH aqueous phase oxidation of dissolved sulfur dioxide and reaction of S(IV) with formaldehyde to form hydroxymethanesulfonate are both important processes. The fogs are also effective at scavenging and removal of airborne particulate matter. Deposition velocities for key solutes in the fog are typically of the order of 1–2 cm/s, much higher than deposition velocities of precursor accumulation mode aerosol particles. Variations were observed in deposition velocities for individual constituents in the order NO2 ??>?fogwater?>?NH4 +?>?TOC ~ SO4 2??>?NO3 ?. Nitrite, observed to be enriched in large fog drops, had a deposition velocity higher than the average fogwater deposition velocity, due to the increase in drop settling velocity with size. Species enriched in small fog drops (NH4 +, TOC, SO4 2?, and NO3 ?) all had deposition velocities smaller than observed for fogwater. Typical boundary layer removal rates for major fog solute species were estimated to be approximately 0.5–1 μg m?3 h?1, indicating the important role regional fogs can play in reducing airborne pollutant concentrations.  相似文献   

5.
A monitoring study was carried out in an alluvial fan area in Tsukui, Central Japan during the study period of 1999–2003, in order to explain selenium (Se) behaviors in ecosystem combined with air, soil and groundwater. Monthly Se concentrations in open bulk precipitation (rainfall+aerosol, gaseous deposition and etc.), soil solution (collected by porous ceramic-cup) and groundwater ranged from 0.1 to 1.4 μg L?1 (volume-weighted average: 0.34 μg L?1), 0.21 to 1.0 μg L?1 (0.48 μg L?1) and 1.6 to 2.4 μg L?1 (2.2 μg L?1), respectively. Se concentration in open bulk precipitation was negatively correlated with the rainfall amount. Se concentration in soil solution significantly increased with DOC concentration in soil solution. Besides, despite atmospheric Se input and rainfall to the grassland study area, Se concentration in soil solution and groundwater received no significant effect from the rainfall amount, pH, Se, DOC, SO4 2?, NO3 ? and EC in rainfall. Even though Se concentrations in groundwater were significantly correlated with soil solution volume, Se, DOC and NO3 ? and groundwater level, the result of multiple regression analyses (MRA) indicated that the groundwater Se was negatively influenced by groundwater level, which depended on groundwater recharge. Se was transported into the groundwater through the groundwater recharge that largely increased in this alluvial fan study area after heavy rain.  相似文献   

6.
To assess the influence of acidic deposition on the forest ecosystem, it is necessary to evaluate the gross amount of acidic deposition. In this paper, we discuss the variation of sulfate (SO4 2?) and nitrate (NO3 ?) loads as well as related concentration from 1991 to 1999 in the Hinoki (Chamaecyparis obtusa) plantation in Kochi, southwest Japan. The annual precipitation varied significantly from 1,700 to 3,900 mm during the study period. The annual sulfate concentration of rainfall was about 15 µmol L?1, including about 80% non sea salt sulfate, while the annual nitrate concentration of rainfall was increased. The sulfate and nitrate concentrations of the through fall and the nitrate concentration of the stem flow were equal to or slightly higher than those of rainfall. However, the sulfate concentration of the stem flow was higher than that of rainfall, 21 to 55 µmol L?1. The sulfate and nitrate loads of rainfall were measured to be 27 to 46 and 14 to 43 mmol m?2 y?1, respectively. The sulfate and nitrate loads of the through fall were the same or slightly higher than those of rainfall. In contrast, the sulfate and nitrate loads of the stem flow were less than those of rainfall. Combined sulfate loads of the through fall and the stem flow reached about 1.5 times that of the sulfate load of rainfall.  相似文献   

7.
Amending vegetable soils with organic materials is increasingly recommended as an agroecosystems management option to improve soil quality. However, the amounts of NO, N2O, and N2 emissions from vegetable soils treated with organic materials and frequent irrigation are not known. In laboratory-based experiments, soil from a NO 3 ? -rich (340 mg N?kg?1) vegetable field was incubated at 30°C for 30 days, with and without 10 % C2H2, at 50, 70, or 90 % water-holding capacity (WHC) and was amended at 1.19 g?C kg?1 (equivalent to 2.5 t?C ha?1) as Chinese milk vetch (CMV), ryegrass (RG), or wheat straw (WS); a soil not amended with organic material was used as a control (CK). At 50 % WHC, cumulative N2 production (398–524 μg N?kg?1) was significantly higher than N2O (84.6–190 μg N?kg?1) and NO (196–224 μg N?kg?1) production, suggesting the occurrence of denitrification under unsaturated conditions. Organic materials and soil water content significantly influenced NO emissions, but the effect was relatively weak since the cumulative NO production ranged from 124 to 261 μg N?kg?1. At 50–90 % WHC, the added organic materials did not affect the accumulated NO 3 ? in vegetable soil but enhanced N2O emissions, and the effect was greater by increasing soil water content. At 90 % WHC, N2O production reached 13,645–45,224 μg N?kg?1 from soil and could be ranked as RG?>?CMV?>?WS?>?CK. These results suggest the importance of preventing excess water in soil while simultaneously taking into account the quality of organic materials applied to vegetable soils.  相似文献   

8.
Year-to-year variation in acidic deposition within a mature sugar maple-dominated forest and in leaching of ions from the associated podzolic soil were examined at the Turkey Lakes Watershed between 1981 and 1986. Below-canopy inputs to the soil of SO4 2? and NO3 ? in throughfall averaged 640 and 295 eq. ha?1 yr?1; the corresponding ranges were 493–917 and 261–443 eq. ha?1 yr?1. The contribution of atmospheric deposition to SO4 2? NO3 ? and Ca2+ leaching decreased over the six years. During the study period, the mean annual volume-weighted NO3 ? concentration decreased in throughfall and forest-floor percolate and increased in the mineral-soil solution collected below the effective rooting zone. A substantial shift in the balance between SO4 2? and NO3 ?leaching from the mineral soil was observed; leaching of SO4 2?decreased and NO3 ? leaching increased with time. Leaching of Ca2+ and Mg2+ from the soil was increased as a result of excess NO3 ? production in the soil. The calculated output of NO3 ? from the soil, which averaged 1505 eq. ha?1 yr?1, considerably exceeded the atmospheric deposition of NO3 ?, whereas SO4 2? outputs were only moderately greater than inputs.  相似文献   

9.
Inputs of wet and dry deposition were monitored at the Huntington Forest in the Adirondack Mountains of New York for two years in the open and beneath the canopy of a northern hardwood forest. In the open, ion flux estimates were similar using wet-only weekly (NADP protocol) and event collections, but bulk collections were higher for all ions except H+, which was much lower. These differences were due to the contribution of dry deposition and possible biotic alterations in bulk collectors. Dry deposition was estimated using air concentrations and ion-specific depositional velocities modeled with meteorological data, and contributed substantially to the input of all ions [H+ (45%), Na+ (24%), K+ (22%), NH4 + (12%), Ca2+ (58%), Mg2+(43%), NO3 ? (55%), Cl? (27%) and SO4 ?2 (26%)]. Dry input of base cations was dominated by coarse particles, whereas gaseous inputs were more important for S and NO3 ?. Atmospheric concentrations of SO2 and inputs of SO4 2? and H+ were lower at this site than sites closer to point sources of S gas emission. The importance of estimating atmospheric inputs was examined using examples of elemental budgets. For example, different estimates of the contribution of dry deposition of SO4 2? (9–21 meq m?2 y?1) resulted in conclusions ranging from no net retention to a net loss of this element. Such differences have important implications in assessing the current and future role of atmospheric inputs in affecting elemental cycling.  相似文献   

10.
The influence of the relation between NO3 and NH4 in the nutrient solution on yield and organic and inorganic ion contents of tomato plants. . Tomato plants were grown in aerated media of oppositly varying supply of (NH4)2SO4-and NaNO3 with a constant N-quantity of 15 meq/1 or a quantity of NH4-, NO3 or (NO3 + NH4) increasing from 3 to 30 meq.N/1. Yield and ion content were determined. A maximum yield was achieved by a mixed N-supply i.e. 4 to 5 parts NO3, 1 part NH4-N and 7, 5 meq N/l. The “(C-A) value” was calculated by the content of the cationions “C” (=K+ + Na+ + Ca++ + Mg++ + NH4+) and the inorganic anions “A” (= NO3? + Cl? + H2PO4? + SO4). The “(C-A)” value is equivalent to the content of the organic anions. Furthermore we determined the citrate, malate, oxalate, and pektinate content. These make up 60–80% of the (C-A) value. The NO3- and K content increase considerably, the Ca-, Mg-, Na-, Citrate, Malate and Oxalate content increase less pronounced, the Cl-, H2PO4- and SO4- content decrease as the NO3 content increases from 0–80%. If the medium contains 80–100% NO3 - N, the NO3 and K content remain almost constant, while the Ca-, Mg-, citrate, malate and oxalate content especially increase in this case. The K content decreases in the presence of a high (NH4)2SO4 supply. Parallel to this the value (C-A) decreases greatly, so that it is less than the sum of the determined organic anions. In this case the content of organic anions obviously does not correlate with the (C-A) value. The yield correlates with the carboxylate contents. (C-A) values of 150–170 mval/100 gm. d. m. cause a lowering of the yield. The plants contain an almost equal amount of citrate, malate and oxalate. Depending on the N-concentration of the medium, the malate content will be a bit more than the amount of citrate in case of maximum yield. If there is a lack or toxicity in the medium the citrate content will be higher than the malate content. The yield per dry weight correlates positivly with the quotients of citrate and malate.  相似文献   

11.
To clarify nitrogen (N) sources, the overall N budget in a forested watershed in Kanagawa Prefecture, Central Japan was estimated by measuring dissolved inorganic N (DIN; NH4 + + NO3 + NO2 ) from Nov 2004 through Oct 2005. The estimated N budget (–1.43 kg N ha–1 year–1) showed that the N output rate (stream water N) was higher than the N input rate (bulk deposition N) in the watershed. The annual NO2 and NO3 input rates were 0.02 and 1.99 kg N ha–1 year–1, respectively. NH4 + was the predominant source in this forested watershed, accounting for 71% (4.99 kg N ha–1 year–1) of DIN input rate. In addition, this study estimated rainfall pH, air temperature, and wind direction, which were considered as controlling factors related to the atmospheric deposition rate of NH4 +. This study showed that the rainfall NH4 + was inversely proportional to the initial pH of the rainfall, which was calculated by adding the amount of H+ consumed by the dissociation process of NH3(aq) to the measured rainfall pH. This result implies that acid rain can elevate the solubility of NH3(g) and the dissociation capacity of NH4 + throughout the process of precipitation. Also, this study provides strong evidence that the high NH4 + deposition rate is mainly derived from NH3(g) emitted from livestock wastes under the NH3 transport condition of warm summer and favorable wind direction.  相似文献   

12.
Abstract

Vegetables are a large source of nitrate (NO3?) in our diet. As NO2? is toxic to humans, it is undesirable to consume vegetables with high NO3? content. Therefore, this study aimed to investigate the effect of supplementing of red- and blue-LED lighting to B. alboglabra grown in the tropical greenhouse in terms of moderating NO3? accumulation, improving photosynthesis, and enhancing productivity. All plants were grown hydroponically in full nutrients under prevailing greenhouse conditions for 20?days (full sunlight). Thereafter, plants were subjected to three different light treatments for 12?days: full sunlight, shade, and shade supplemented with LEDs. The average midday photosynthetic photon flux density (PPFD) during the light treatment periods were 220?μmol m?2 s?1 (full sunlight), 55?μmol m?2 s?1 (shade), and 220?μmol m?2 s?1 (shade supplemented with LEDs). Shoot nitrate (NO3?) concentration increased significantly in plants grown in the shade. However, shoot NO3? concentration was reduced when plants were supplemented with red- and blue-LED lighting. Photosynthetic CO2 assimilation, stomatal conductance, and productivity also improved in these plants. Our results suggest that supplemental red- and blue-LED lighting in a tropical greenhouse during periods of cloudy and hazy weather could improve productivity and nutrient quality of Chinese broccoli.  相似文献   

13.
Mineral N accumulates in autumn under pastures in southeastern Australia and is at risk of leaching as nitrate during winter. Nitrate leaching loss and soil mineral N concentrations were measured under pastures grazed by sheep on a duplex (texture contrast) soil in southern New South Wales from 1994 to 1996. Legume (Trifolium subterraneum)‐based pastures contained either annual grass (Lolium rigidum) or perennial grasses (Phalaris aquatica and Dactylis glomerata), and had a control (soil pH 4.1 in 0.01 m CaCl2) or lime treatment (pH 5.5). One of the four replicates was monitored for surface runoff and subsurface flow (the top of the B horizon), and solution NO3 concentrations. The soil contained more mineral N in autumn (64–133 kg N ha?1 to 120 cm) than in spring (51–96 kg N ha?1), with NO3 comprising 70–77%. No NO3 leached in 1994 (475 mm rainfall). In 1995 (697 mm rainfall) and 1996 (666 mm rainfall), the solution at 20 cm depth and subsurface flow contained 20–50 mg N l?1 as NO3 initially but < 1 mg N l?1 by spring. Nitrate‐N concentrations at 120 cm ranged between 2 and 22 mg N l?1 during winter. Losses of NO3 were small in surface runoff (0–2 kg N ha?1 year?1). In 1995, 9–19 kg N ha?1 was lost in subsurface flow. Deep drainage losses were 3–12 kg N ha?1 in 1995 and 4–10 kg N ha?1 in 1996, with the most loss occurring under limed annual pasture. Averaged over 3 years, N losses were 9 and 15 kg N ha?1 year?1 under control and limed annual pastures, respectively, and 6 and 8 kg N ha?1 year?1 under control and limed perennial pastures. Nitrate losses in the wet year of 1995 were 22, 33, 13 and 19 kg N ha?1 under the four respective pastures. The increased loss of N caused by liming was of a similar amount to the decreased N loss by maintaining perennial pasture as distinct from an annual pasture.  相似文献   

14.
Fog water and precipitation were collected and analyzed to study fog and precipitation chemistry. The research was carried out through one year from April 1997 to March 1998 at Mt. Rokko in Kobe. Higher fog occurrence and larger volume of fog water were observed in summer, corresponding to the trend of seasonal variation in precipitation amount. The annual mean pH value of fog water (3.80) was lower by ca. one pH unit than that of precipitation (4.74). The concentration of chemical species in fog water was ca. 7 times that in precipitation. The highest anion and cation concentrations were SO4 2? and NH4 + in fog water and Cl? and Na+ in precipitation, although the Cl?/Na+ equivalent ratio in both fog water and precipitation was almost the same value as that in sea water. It is considered that in the longest fog event, NH4 + and nss-SO4 2? in fog water mainly scavenged as (NH4)2SO4, mainly derived from (NH4)2SO4 (aerosol) in the atmosphere, NH3 was scavenged at the growing stage, and SO2 was also scavenged after the mature stage. NO3 ? in this fog event was mainly absorbed as HNO3.  相似文献   

15.
SO4 2?, NO3 ? and H+ depositions are estimated in the Brazilian territory based on the existing rainfall chemical data and on annual rainfall distribution over the whole territory. Local and regional depositions are estimated. Rainfall chemical data over the Braziliian territory shows that the average pH values are usually low (between 4.0 and 5.5). These values are observed in the tropical Amazon forest as well as in urban areas. However, the rainwater acidity in the tropical forests are due to organic acids naturally produced by the vegetation while in urban areas the acidity is mainly due to acidic anion deposition (NO3 ? and SO4 2?). In some Amazonian areas, the average input values through rainfall for NO3 ? is about 0.06 keq.ha.yr?1 and for SO4 2? is between 0.23 and 0.54 keq.ha?1.yr?1. On the other hand, in some urban centers, such as São Paulo, values of .072 keq.ha?1.yr?1 for NO3 ? and 1.16 keq.ha?1.yr?1 of SO4 2? are found and in sites where sulfate sources (coal mining) are present, as for the area of Florianópolis, values as high as 5.59 keq.ha?1.yr?1 for SO4 2? are found.  相似文献   

16.
A long-term hydrological and water chemistry research was conducted in three experimental microbasins differing in land cover: (1) a purely agricultural fertilized microbasin, (2) a forested microbasin dominated by Carpinus betulus (European hornbeam), and (3) a forested microbasin dominated by Picea abies (L.) (Norway spruce). The dissolved inorganic nitrogen (DIN: NH 4 + , NO 2 ? , NO 3 ? ) budget was examined for a period of 3 years (1991–1993). Mean annual loads of DIN along with sulfate SO 4 2? and base cations Ca2+, Mg2+, Na+, K+, and HCO 3 ? were calculated from ion concentrations measured in stream water, open-area rainfall, throughfall (under tree canopy), and streamwater at the outlets from the microbasins. Comparison of the net imported/exported loads showed that the amount of NO 3 ? leached from the agricultural microbasin is ~3.7 times higher (43.57 kg ha?1?a?1) than that from the spruce dominated microbasin (11.86 kg ha?1?a?1), which is a markedly higher export of NO 3 ? compared to the hornbeam dominated site. Our analyses showed that land cover (tree species) and land use practices (fertilization in agriculture) may actively affect the retention and export of nutrients from the microbasins, and have a pronounce impact on the quality of streamwater. Sulfate export exceeded atmospheric rainfall inputs (measured as wet deposition) in all three microbasins, suggesting an additional dry depositions of SO 4 2? and geologic weathering.  相似文献   

17.
A total of 26 soft-water, seepage lakes in the Northern Highlands (NH) of Wisconsin (N =16) and the Upper Peninsula (UP) of Michigan (N=10) were sampled four times between early May and mid October 1984 as part of the ‘PIRLA’ Project (Paleolimnological Investigations of Recent Lake Acidification). Because of low antecedent recharge of the local water-table, this ‘summer’ interval likely featured minimal groundwater inputs (<2 cm over lake surface) to most of these seepage lakes. Based on this hydrogeologic relationship, and on regional deposition data, I evaluated short-term net epilimnetic (June–August) and whole-lake (May–October) sediment-water exchange of ANC, base cations, acid oxy-anions, Al, DOC and silicic acid in these lakes using a simplified mass balance algorithm. Silica, nitrate and ammonium were all efficiently retained in these seepage lakes. The assimilation of NO3 ? (19±4 meq m?2) slightly exceeded assimilation of NH4 + (16±4), resulting in a net internal ANC production of only +3 meq m?2 over 161 d between early May and mid October 1984. Over this same interval ANC production resulting from lacustrine S retention averaged +35±8 meq m?2 in the NH, but was too variable to be statistically significant (+21±21 meq m?2) in the UP. Epilimnetic S retentions in mid summer were more comparable (21±4 in NH; 14±5 meq m?2 in UP). McNearney Lake (UP) illustrates how high sulfate, linked to low alkalinity, high Al, low P, and low productivity, can become a negative correlate of lacustrine S retention. Temporal changes in base cations in the 26 lakes were generally small and erratic compared with uncertainties in deposition inputs and analytical errors, rendering estimates of related ANC production inconclusive. Even small analytical biases can be critical when designing and interpreting lake monitoring studies.  相似文献   

18.
From 1986–1989, a team of scientists measured atmospheric concentrations and fluxes in precipitation and throughfall, and modeled dry and cloudwater deposition in a spruce-fir forest of the Great Smoky Mountains National Park which is located in the Southern Appalachian Region of the United States. The work was part of the Integrated Forest Study (IFS) conducted at 12 forests in N. America and Europe. The spruce-fir forest at 1740 m consistently received the highest total deposition rates (~2200, 1200, and 700 eq ha?1 yr?1 for SO4 2?, NO3 ?, and NH4 +). During the summers of 1989 and 1990 we used multiple samplers to measure hydrologie, SO4 2?, and NO3 ? fluxes in rain and throughfall events beneath spruce forests above (1940 m) and below (1720 m) cloud base. Throughfall was used to estimate total deposition using relationships determined during the IFS. Although the SO4 2? fluxes increased with elevation by a factor of ~2 due to higher cloudwater interception at 1940 m, the NO3 ? fluxes decreased with elevation by ~30%. To investigate further, we began year round measurements of fluxes of all major ions in throughfall below spruce-fir forests at 1740 m and at 1920 m in 1993–1994. The fluxes of most ions showed a 10–50% increase with elevation due to the ~70 cm yr?1 cloudwater input at 1920 m. However, total inorganic nitrogen exhibited a 40% lower flux in throughfall at 1920 m than at 1740 m suggesting either higher dry deposition to trees at 1740 m or much higher canopy uptake of nitrogen by trees at 1920 m. Differential canopy absorption of N by trees at different elevations would have significant consequences for the use of throughfall N fluxes to estimate deposition. We used artificial trees to understand the foliar interactions of N.  相似文献   

19.
Nitrate (NO3?) can contribute to surface water eutrophication and is deemed harmful to human health if present at high concentrations in the drinking water. In grazed grassland, most of the NO3?‐N leaching occurs from animal urine‐N returns. The objective of this study was to determine the effectiveness of a nitrification inhibitor, dicyandiamide (DCD), in decreasing NO3? leaching in three different soils from different regions of New Zealand under two different rainfall conditions (1260 mm and 2145 mm p.a.), and explore the relationships between NO3?‐N leaching loss and ammonia oxidizing bacteria (AOB) and ammonia oxidizing archaea (AOA). The DCD nitrification inhibitor was found to be highly effective in decreasing NO3?‐N leaching losses from all three soils under both rainfall conditions. Total NO3?‐N leaching losses from the urine patch areas were decreased from 67.7–457.0 kg NO3?‐N/ha to 29.7–257.4 kg NO3?‐N/ha by the DCD treatment, giving an average decrease of 59%. The total NO3?‐N leaching losses were not significantly affected by the two different rainfall treatments. The total NO3?‐N leaching loss was significantly related to the amoA gene copy numbers of the AOB DNA and to nitrification rate in the soil but not to that of the AOA. These results suggest that the DCD nitrification inhibitor is highly effective in decreasing NO3? leaching under these different soil and rainfall conditions and that the amount of NO3?‐N leached is mainly related to the growth of the AOB population in the nitrogen rich urine patch soils of grazed grassland.  相似文献   

20.
The charge characteristics of A1 or Ap and B2 horizon samples of total 23 Ultisols, Alfisols and Oxisols in Korea and Thailand were studied by measuring the retention of NH4+ and NO3? at different pH values (4–8) and NH4NO3 concentrations (0.1–0.005 m ). The magnitude of their negative charge (σ?; meq/100g) was dependent on pH and NH4NO3 concentration (C; m ) as represented by a regression equation: log σ?=apH +blogC +c. The values of the coefficient a (0.04–0.226), b (0.03–0.264) and c (–0.676–1.262) were correlated with the kinds of the soil and horizon and with the region where the soil exists. The retention of NO3? was less than 1 and 2–3 meq/100 g for the A1 or Ap and B2 horizon samples, respectively. The sum of exchangeable base and Al (‘effective’ CEC) was close to and higher than the magnitude of permanent charge (=σ? measured at pH = 4.3 and at C = 0.005 m ) for one-third and two-thirds of samples, respectively. A σ? value of 16 meq/100 g clay at pH = 7 and C = 0.01 m was found appropriate to separate the B2 horizons of Thai Ultisols and Oxisols from those of Korean Ultisols and Alfisols. Korean Alfisols and Ultisols and Thai Ultisols were distinguished from each other on the status of exchangeable base and Al  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号