首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The subcatchments of two tributaries and the headwater mire of the 50 ha Swartberget catchment were studied. Monthly sampling was conducted during 1993 on the two tributaries and at the outlet of a mire. This was complemented by more intensive sampling during spring flood and a rain-driven episode at the end of July. Samples were analyzed for total methylmercury (MeHg), total mercury (Hg-tot) and TOC. The MeHg and TOC content of water were also fractionated into humic and non-humic components. Outputs budgets based on continuous flow monitoring and monthly volume weighted average concentrations of MeHg/ Hg were calculated for the subcatchments of the two tributaries and the mire. There was a pronounced decline in MeHg concentrations at all sampling locations during the spring flood. A clear pattern of the seasonal variation in the MeHg outputs was evident at all three sampling locations. Minimum MeHg concentrations occurred during spring flood and increased during the summer to peak levels in the autumn before tapering off during the winter (except for at the mire). The mire had larger increases in MeHg concentrations during the summer and did not decline during the winter. The warmth and increased soil humidity may promote the biogeochemical processes, including methylation, demethylation which make MeHg available for export by runoff from the soil. Variations in Hg-tot concentrations were differed from MeHg in streams that there were increases in Hg-tot concentrations with flow during both spring flood and the July rain event in runoff from the forested tributaries. The highest outputs of both humic and non-humic MeHg occurred during summer from all subcatchments. Those high outputs extended into the autumn at the mire. The largest monthly output of Hg-tot was during the spring flood period and the next largest was during the period of summer rainfall. Despite the similarity in mineralogy and atmospheric deposition on the two tributary subcatchments, there was ca 30% larger ouput of MeHg per unit area from the tributary which had deeper riparian peats. The output of Hg-tot, however, was higher on the catchment with the shallower riparian peats. The difference in the geometry of the riparian zone may contribute to these differences in output. The annual output concentrations at the mire outlet of MeHg was 0.65 ng /L and of Hg-tot was 4.04 ng/L. In the main tributary MeHg was 0.42 ng/L and Hg-tot was 3.64 ng/L. In the Västrabäcken tributary, the mean MeHg concerntration was 0.25 ng/L and the Hg-tot concerntration was 4.02 ng/L. Among the three subcatchments the largest annual output fluxes of MeHg were from the mire, 0.16 g/km2*yr, the next from Kallkällbäcken below the mire, 0.12 g/km2*yr, and the lowest from Västrabäcken, 0.08 g/km2*yr.  相似文献   

2.
The dynamics of MeHg during rain-driven runoff episodes are important in calculating the output of MeHg from forested catchments. These dynamics may also provide insight into the processes controlling MeHg output from soils to surface waters. The concentrations of MeHg, Hg-tot, TOC and associated chemistry were observed during a rain-driven, July runoff episode on two forested tributaries of the Svartberget Catchment, as well as at the outlet of a mire in the headwaters of that catchment. TOC concentrations in runoff increased during the episode. Hg-tot concentrations also tended to increase (from 3 to between 4 and 7 ng L?1), though the timing of that increase varied. MeHg concentrations, on the other hand, tended to decrease. The decrease was slight in the two forested tributaries (ca. 0.1 ng L?1), but greater in the mire runoff (from 0.8 to ca 0.3 ng L?1). These data are set in relation to a hypothesis about the processes which control MeHg output.  相似文献   

3.
The runoff of methylmercury (MeHg) from forested catchments to surface waters has been identified as a potentially significant input of MeHg to the aquatic ecosystem. Little, however, is known of the processes which control the transfer of MeHg from soils to surface waters. This study investigated the potential terrestrial sources of MeHg in runoff by sampling profiles of soil solution chemistry and determining the flux of water through those profiles into two tributaries on the Svartberget Catchment in northern Sweden. One study profile was from the podzol soil that covers most of the catchment area. The other profiles were taken in the riparian zone of each of the two tributaries. Soil solution was extracted from the soils by centrifugation. High catchment soil solution concentrations of MeHg (>1 ng l?1) occur in the surface layers of the soil, but overland flow on the catchment is rare. MeHg concentrations in the podzol profile dropped to less than 0.2 ng l?1 in the mineral soil just 5 cm below the mor layer. In the riparian soil profiles sampled in October, MeHg concentrations were higher (ca. 0.4 ng l?1), but in a July sampling the concentrations in the riparian profiles were comparable to those in the podzol (i.e. < 0.2 ng l?1). Very high concentrations of MeHg were found in the streambank sphagnum mosses (>2 ng l?1) partially submerged within the stream. The concentrations of MeHg observed under the podzol soil were insufficient to sustain the concentration of MeHg in runoff from the forested subcatchments where podzol profiles cover more than 70% of the surface area. The only sources of additional MeHg that lie along major runoff flow pathways are the riparian soils and mosses on the streambanks. It is therefore hypothesized that output of MeHg from the forest areas of the catchment is controlled by the biogeochemical processes in the riparian zone.  相似文献   

4.
Monthly sampling of a mire outlet and two tributaries, one of them originating in the mire, on the Svartberget catchment in northern Sweden was performed during one year. The concentration of total organic carbon (TOC) in the three waters was fairly high (10–40 mg/l). Methylmercury (MeHg) was analysed in the original water sample (MeHg-whl) and in the humic fraction (MeHg-hum). The MeHg-hum increased with increasing concentration of humic substances (HS; measured as absorbance at 254 nm) in the water. A seasonal variation of the MeHg-hum/TOC ratio was superimposed on a negative relationship to the water flow, which indicates that the methylation is a slow process which results in a rapid drainage of the storage during periods of high flow. A minimum of the MeHg-whl/TOC ratio observed during the spring flood was followed by a slow increase during the rest of the year.  相似文献   

5.
Studies of the biogeochemistry of total mercury (Hg) and methyl mercury (MeHg) in the Lake Gårdsjön watershed have shown that the atmosphere is the most important source of Hg and MeHg in the ecosystem. Soils are accumulating most of the deposited Hg and MeHg, but transport of Hg and MeHg from the forested catchments into the lake ecosystems is enough to explain elevated concentrations of MeHg in fish in more than 10 000 Swedish lakes. An experimental roof was constructed to study effects of decreased atmospheric input on an entire forested catchment. The experiment started in April 1991, and decreases in the output of both MeHg and Hg occurred during 1991, 1992 and 1993. Runoff fluxes from the control catchment during the pre-treatment period were related to the experimental catchment using regression analyses. Since April 1991, after three year experiment, predicted compared to measured fluxes showed that Hg output decreased by 32% and MeHg by 28%. The decrease in Hg was most obvious during high water flows in winter/spring while MeHg decreased during all seasons of the year. The decreased input of Hg and MeHg to the Forest Roof Catchment is the most probable explanation to the rapid decrease in output of Hg and MeHg by runoff from the catchment basin.  相似文献   

6.
During one year, samples from eight drainage lakes, seven run-off stations and three deposition sites from various geographical areas in Sweden were collected and analyzed for methyl Hg (MeHg) and total Hg (Hg-tot). The MeHg concentrations ranged from 0.04 to 0.64 ng L?1, 0.04 to 0.8 ng L?1, and <0.05 to 0.6 ng L?1 in run-off, lake water and rain water, respectively. The corresponding Hg-tot concentrations were found in the range 2 to 12 ng L?1, 1.35 to 15 ng L?1, and 7 to 90 ng L?1, respectively. A Hg-tot level of about 60 ng Hg L?1 was found in throughfall water. The MeHg and Hg-tot concentrations are positively correlated in both run-off and lake water, but not in rain and throughfall water. A strong positive correlation between the MeHg, as well as the Hg-tot concentration, and the water color is observed in both run-off and lake waters, which suggests that the transport of MeHg and other Hg fractions from soil via run-off water to the lake is closely related to the transport of organic substances; and is a consequence of the biogeochemical processes and the water flow pathway. The ratio between the mean values of MeHg and Hg-tot seems to be an important parameter, with an indicated negative coupling to the mean value of pH for run-off water, but a strong positive correlation to Hg-content in fish, the ratio between the area of the catchment and the lake, as well as to the retention time of lake.  相似文献   

7.
The runoff output of methylmercury (MeHg) from the 50 ha Svartberget Catchment in northern Sweden was studied during 1993. These outputs are compared to those from the Gårdsjön Catchment in the southwestern part of Sweden. Although the wet deposition of MeHg is several times higher in southern Sweden the output of MeHg per unit area from the two catchments was comparable (0.12 g /km* 2yr). Furthermore, the concentration of MeHg (0.4 ng/L) in the Svartberget Catchment was more than twice that from the Gårdsjön Catchment. These results suggest that the contemporary wet deposition of MeHg in itself is not a good indicator of runoff concentration or output per unit area. DOC transport and catchment characteristics such as wetland area, or possibly other forms of contemporary atmospheric deposition may all be more important for explaining MeHg output from the terrestrial ecosystem.  相似文献   

8.
锡林河流域融雪径流时间变化特征与成因分析   总被引:1,自引:0,他引:1  
融雪径流是寒旱区草原流域径流的重要补给方式和水源。融雪径流时间随着气象条件的变化而改变,这严重影响着研究区年径流量和各季径流量的分配。采用锡林河水文站1960—2009年水文年流量质心时间CT来表示锡林河水库上游融雪径流开始时间,分析了融雪径流时间变化特征。结果表明:锡林河水文站融雪径流时间具有提前趋势,且融雪径流发生在3月末与4月初期,锡林浩特气象站融雪期(3—4月)气温升高或积雪期(上年10月—当年4月降水量增加,锡林浩特水文站融雪径流时间会提前,但融雪期气温对融雪径流时间作用更明显。由融雪径流时间与年径流量和四季径流量的相关关系,可得融雪径流时间提前,年径流量、冬、夏、秋季径流量均会减小,而春季径流量会增大,但融雪径流时间与年径流量、夏、秋季径流量关系最为密切,相关系数分别为0.456,0.600与0.676。这对寒旱区草原流域合理利用雪水资源和洪水预警有重要作用。  相似文献   

9.
Lake sediments are a potential source of mercury (Hg) for aquatic biota. Here, we investigated the predictive power of (a) key parameters for lake catchment morphometry and (b) organic matter composition of sediments in an effort to account for observed variations of total (THg) and methyl (MeHg) mercury concentrations in lake sediments. Using regression models we demonstrate that the morphometric parameters lake depth as well as inclination of catchment soils and lake bottoms can significantly predict variations of THg concentrations, but not MeHg, at profundal lake sediments. Although THg and MeHg concentrations in sediments could not be predicted by specific organic matter sources, as elucidated by atomic C/N ratios, our data suggest that wetland-derived total organic carbon (TOC) contained less THg concentrations than TOC derived from mostly forested watersheds. However, TOC concentrations could significantly predict MeHg concentrations and the proportion of methylated Hg at all sediment stations. Finally, from an ecotoxicological point of view, we propose that concentrations of TOC at surface lake sediments, rather than parameters of catchment morphometry, may predict dietary sources of MeHg for benthic consumers and consequently perhaps for organisms at higher trophic levels.  相似文献   

10.
In the covered catchment at Lake Gårdsjön, the reversibility of acidification and the effects on Hg output of a decreased deposition of Hg and MeHg have been investigated since 1991. A first indication of a decreased from the covered catchment, caused by the artificial removal of Hg and MeHg input, has been observed. This has occurred in parallel with an overall decrease in Hg deposition fluxes in SW Sweden during 1990 to 1993. In the sediments of two acidified lakes, Lake Gårdsjön (limed) and Lake Härsevatten (acid), Hg concentrations decrease by 60% in the top cm, from the maximum around 1000 ng g–1 at 5 cm depth indicating a decreasing deposition during the last 10 years. This decrease has occurred in parallel with decreasing atmospheric S-levels and is most likely caused by decreasing European Hg emissions. Decreasing trends of MeHg in run-off from two catchments has also been observed while the Hg output has remained somewhat more stable.  相似文献   

11.
Increases in industrial mercury (Hg) emissions in recent years have led many researchers to believe that Hg from the atmosphere constitutes a main source of Hg to aquatic biota in the absence of point source discharges. Established background levels for fish (0.2–1.0 mg kg-1) now exceed the pre industrial level of 0.15 mg kg-1, suggesting an anthropogenic origin. This review of recent literature illustrates how levels of mercury (Hg) species in the atmosphere are effectively transported into the aquatic arena, where chemical parameters combine to determine bioaccumulation rates in fish. Limited studies on methyl mercury (MeHg) in precipitation shown that concentrations average from 5% of total-Hg (T-Hg), to 1% in industrial regions. Observations of increased Hg is snow and precipitation from the Arctic Circle, related to poleward atmospheric circulation patterns, also demonstrate a spring maximum accompanying ozone depletion. Increases in oxidants and soil derived Hg in the atmosphere during the summer best explain summer Hg maximums observed in precipitation, while increased temperatures raise fish metabolism increasing Hg uptake through respiration and ingestion rate. The major route of entry for MeHg to fish appears to be biomagnification, after input from precipitation, runoff and inlake methylation. Regions buffered against acid precipitation maintain low fish-Hg levels by reduced MeHg production and maintaining gill function. When considering the bioaccumulation of Hg in fish this study shows that there are many variables to consider, not all of which originate from inside the aquatic arena. Both catchment and atmospheric processes combine with aquatic variables to dictate the overall levels of MeHg observed in fish tissue. There now appears to be sufficient knowledge to develop an axiom for the identification of aquatic systems likely to be susceptible to bioaccumulation from atmospheric derived Hg.  相似文献   

12.
针对我国东北地区春季融雪期非点源污染的形成特点,提出了基于现场监测的径流浓度法估算春季融雪期非点源污染。该方法主要包括监测频次确定、监测点位布设、现场监测、融雪径流计算、非点源污染产生量估算、典型子流域入河系数估算和非点源污染入河量估算等7个过程。其中,监测点布设于不同土地利用类型的平均坡度与该种土地利用类型的主要土壤类型重合的区域,监测频次通过分析融雪过程和融雪径流特征确定。将该方法应用于东北地区的阿什河流域,计算出春季融雪期阿什河流域非点源污染COD的产生量为1 637.03 t,入河量为151.11 t。  相似文献   

13.
Methyl mercury (MeHg) concentrations were compared to total mercury (THg) concentrations in a variety of types of aqueous samples collected at the Experimental Lakes Area during 1991 through 1993. In several streams, an experimentally flooded wetland, and peat pore water, there was no relationship between MeHg and THg concentrations. %MeHg (compared to THg) ranged from < 1% to over 90%. In three ELA lakes, as in groups of lakes from other regions, a linear relationship between MeHg and THg concentration was found. However, these relationships differed by a factor of three from one region to another. This study shows that THg inputs and/or concentrations are not very useful in predicting MeHg concentrations, and that factors within ecosystems are very important in controlling MeHg concentrations.  相似文献   

14.
Pinpointing erosional ‘hot spots’ or sediment source areas within a watershed can be difficult because of the highly non-linear and episodic nature of effective runoff and sediment transport. Continuous monitoring of stream networks can provide insight into sediment source areas not possible from routine sampling by capturing episodic events and integrating entire storm events. This paper presents the results of a three-year study of spring snowmelt runoff in watersheds of Lake Tahoe, California, USA, using a network of nine nephelometric turbidometers. We estimate that montane badlands, comprising 1.2% of the Ward Creek watershed (25 km2), contributed 10–39% of snowmelt-derived suspended sediment load. The badlands are comprised of poorly-vegetated and deeply-incised gullies formed in parent material of Miocene volcanic mudflow breccia. The larger (29.5 km2) Blackwood Creek watershed also showed high relative erosion rates from volcanic terrain. Tributaries draining forested granitic and metasedimentary headwater regions had minimal sediment loads. Monitoring networks indicated that temporary main channel storage regulated release of fine sediment eroded from steep headwater slopes. This lag between erosion and delivery may lead to underestimation of gully erosion contribution to sediment budgets.  相似文献   

15.
The sources and concentrations of total mercury (total Hg) and methylmercury (MeHg) in the upper catchment of the Lake Gordon/Lake Pedder system in Tasmania, Australia were investigated. The catchment area, which contains over 50% wetlands, is located in a temperate region with no obvious point sources of mercury. Surface waters in the region had concentrations of total Hg ranging from 1.2 to 14.4 ng L-1 and MeHg from < 0.04 to 1.4 ng L-1. MeHg concentrations were seasonally dependent, with the highest concentrations occurring in summer. Sediments/soils in the catchment had concentrations of total Hg ranging from 4.0 to 194 ng g-1 and MeHg from <0.02 to 20.1 ng g-1. The low concentrations of total Hg confirmed that this region is pristine as regards mercury and has no geological enrichment of total Hg. The highest total Hg and MeHg concentrations in both sediment/soils and waters were found in bogs whereas the lowest concentrations typically occurred on the wetlandplains. MeHg concentrations, in bog and swamp sediments were correlatedwith the organic matter content (r = 0.942, P < 0.001). Acid volatile sulfide (AVS) measurements indicate that in most sediments AVS was greater than total Hg. Given the high reactivity of inorganic mercury and sulfide, this suggests that most of the particulate mercury in sediments is present as mercuric sulfide. The yield of MeHg from the catchment was estimated to be 3.2 mg ha-1 yr-1 and is higher than published rates measured in non-contaminated temperate catchments in the northern hemisphere. The higher yield was attributed to the generally warmer climatic conditions that favour net methylation and the relatively high rainfall (2–3 m yr-1) of the region, which supplies reactive inorganic mercury to the active zones ofmercury methylation and also flushes MeHg from the catchment.  相似文献   

16.
The objective of this investigation is to analyse the variations of xenobiotic concentrations and the fluxes of dissolved xenobiotics during runoff events in the small rural Mess catchment (35 km2) in the Southwestern part of Luxembourg. Sulfonamides, tetracyclines, analgesics and hormones, dissolved nutrients, sulphate and chloride were measured to gather information about runoff generation. Typically, the highest values can be found during the first flush mainly in the rising limb of the flood hydrographs. The highest concentrations in eleven flood events are measured for ibuprofen (2,383 ng l-1), estrone (27 ng l-1) and diclofenac (20 ng l-1). From the tetracycline group tetracycline (9 ng l-1) itself is of relevance, while the sulfonamides are mainly represented by sulfamethoxazole (5 ng l-1). The variable patterns of chemographs are attributed to the heterogeneous runoff generation characterised by different reactions of storm overflows from the combined sewer systems. During single flood events, the fluxes of ibuprofen (maximum 24,000 mg), 17α-ethinylestradiol (122 mg), 17β-estradiol (32 mg) or estrone (274 mg) are rather low.  相似文献   

17.
The effect of soil flooding on methylmercury (MeHg) production was studied by placing humus and peat with water in 40 liter vessels. Total mercury (Tot-Hg), MeHg, nutrients, total organic carbon (TOC) and color were measured in water. Potential mercury methylation and demethylation rates in water and in flooded soils (humus and peat) were measured using radiochemical methods under aerated and non-aerated conditions during a period of 117 days. In general, the potential methylation in humus and peat were one order of magnitude higher than in the water phase. During the experiment, methylation increased in humus and in peat but decreased in water. Demethylation decreased in all compartments. Anoxis increased methylation in soils but not in the water phase. On the other hand, demethylation was clearly higher in anoxic conditions. Tot-Hg increased more rapidly than MeHg in the water of the vessels, and a more rapid MeHg increase was observed in peat vessels than in humus vessels. Highest concentrations of MeHg (5.42 ng/L peat, 7.98 ng/L humus) were measured in non-aerated vessels. Water color correlated negatively with methylation in water but positively with MeHg concentrations, indicating that humic substances are the main MeHg carriers but are not active melhylating agents. Methylmercury fluxes to water (3.6–44 ng/m2*d) were of the same order of magnitude as those measured in field experiments in Canada and in a beaver lake in Finland but were notably higher than those fluxes from unflooded catchmets. The results indicate that increased net methylation in flooded humus and peat soils, especially in anoxic conditions, is the main reason for increased MeHg concentrations in reservoirs.  相似文献   

18.
The processes affecting the concentrations of total mercury (total Hg) and methylmercury (MeHg) in a freshwater system comprising two connected reservoirs in southwest Tasmania were investigated. Surface concentrations of total mercury (total Hg)were temporally and spatially uniform in both Lake Gordon (2.3±0.4 ng L-1, n = 27) and Lake Pedder (2.3±0.3 ng L-1, n = 11). The surface concentrations of MeHg in Lake Gordon (0.35±0.39 ng L-1, n = 25) were more variable than total Hg and MeHg typically comprised 10–20% of total Hg. The relatively high amount of total mercury present as MeHg in Lake Gordon was attributed to the high proportion of wetlandsin the upper catchment (50% of total area) and in-lake contributions (ca. 40% of total MeHg). Despite the close proximity of the two lakes, MeHg concentrations in Lake Pedder were consistently lower than in Lake Gordon. This phenomenon canbe explained in part by the greater contribution of direct rainfall to Lake Pedder leading to the dilution of MeHg. Water column MeHg concentrations were higher in warmer months in bothlakes, reflecting increased net methylation of inorganic mercury.Unlike previous studies of seasonally anoxic lakes, depth profiles of total mercury and MeHg in Lake Gordon were uniform and were not affected by water column stratification occurringin the summer months, and oxygen depletion with depth. This suggests that redox cycling and accumulation of MeHg in the hypolimnion following seasonally-induced anoxia is not a significant part of the mercury cycle in Lake Gordon. The primary location of MeHg production within the lake's water column is not conspicuous. Mercury speciation measurements made above and below the lake system over a period of 19 months indicates that after 20 yr of impoundment, the reservoirs are not significantly affecting MeHg concentrations in the downstreamriverine environment.  相似文献   

19.
We investigated the stream water quality during the snowmelt period in a livestock farm, located in Shizunai, southern Hokkaido, Japan. The water quality was very different between the early stage of the snowmelt period (March 15–21) and the later stage (March 22–April 5) in 2001. The load of nutrients (NH4 +-N, T-P, K+) was large along with the increase of the flow rate and nutrient concentrations during the early stage of the snowmelt period. The molar ratios of Si / T-N and Si / T-P of the stream water, as an index of eutrophication, were also under the threshold values (2.7, 64.3, respectively) during the early stage of the snowmelt period. In addition, the relationship between the Si and nutrient concentrations (NH4 +-N, T-P, K+) showed a significantly negative correlation (R 2 = 0.65), which indicated that the amount of nutrient load might be derived from surface runoff. Consequently both the quantity and quality of the stream water during snowmelt may exert an adverse effect on coastal waters, leading to eutrophication. Furthermore, since the main effluent source appeared to be surface runoff at the early stage of the snowmelt period, attention should be paid to land management before and during the snow covering period.  相似文献   

20.
Research on mercury (Hg) distribution and speciation was carried out in Lake Baikal, a large, strong-oligotrophic freshwater reservoir in Siberia, Russia, during June 1992 and march 1993. In summer, total Hg in the water column ranged from 0.14 to 0.77 ng Hg/L, with the highest concentrations observed in the central basin of the lake in surface water samples. Labile inorganic Hg was found to be 7 to 20 % of the total Hg content. Highest total Hg concentrations were found in river waters: up to 2 ng Hg/L. Labile methylmercury (MeHg) concentrations ranged from 2 to 38 pg Hg/L in the water column, with the higher concentrations in the central part of the lake, and showing a slight increase in near bottom waters. Labile MeHg makes up 1 to 15 % of the total Hg content in the water column, with larger fractions in deep waters. The slight increase of the MeHg gradient with depth corresponds with the O2 minimum region. Highest MeHg concentrations were observed in river waters (up to 145 pg Hg/L) and in some bays of the lake (up to 160 pg Hg/L). In these high temperature- and phytoplankton-rich water masses, the MeHg-fraction increased up to 35 % of total Hg. Labile MeHg concentrations in water samples taken in winter in the southern basin (under the ice cover), showed slightly higher concentrations than in summer, possibly due to an early spring bloom. In rainwater, total Hg ranged from 3 to 20 ng Hg/L and MeHg from 0.1 to 0.25 ng Hg/L. In snow, a large fraction of total Hg is bound to particulate matter; concentrations of total Hg ranged from 8 to 60 ng Hg/L and labile MeHg from 0.1 to 0.25 ng Hg/L. Atmospheric Hg was found to be 0.73 to 2.31 ng/m3 as gaseous Hg and 0.005 to 0.02 ng/m3 in its particulate form. Spatial distribution patterns of atmospheric Hg show slightly higher concentrations over the central part of the lake and the Selenga river delta. In winter, atmospheric Hg values (measured in the southern region), ranged from 1.2 to 6.1 ng/m3 as total gaseous Hg and 0.02 to 0.09 ng/m3 as total particulate Hg, and are higher than in summer, probably influenced by coal burning and traffic by the local population. MeHg contents in fish ranged from 20 ng Hg/g dry weight in small Cottocomephorus to 300 ng Hg/g dry weight in pike and trout species, which were caught in organic-rich waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号