首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
基于高光谱成像技术的水稻叶瘟病病害程度分级方法   总被引:2,自引:7,他引:2  
为了快速、准确地对水稻叶瘟病病害程度进行分级评估,结合定性分析与定量估算,提出了一种基于高光谱成像技术的水稻叶瘟病病害程度分级方法。利用HyperSIS高光谱成像系统采集了受稻瘟病侵染后不同病害等级的水稻叶片高光谱图像,通过分析叶瘟病斑区域与正常叶片部位的光谱特征,对差异较大的550和680 nm波段进行二维散点图分析,提取只含病斑的高光谱图像;然后通过主成分分析(principal component analysis,PCA)方法得到利于褐色病斑和灰色病斑分割的第2主成分图像,采用最大类间方差法(Otsu)分割出灰色病斑;最后结合延伸率和受害率2个参数对水稻叶瘟病病害程度进行分级。试验结果表明:测试的166个不同稻叶瘟病害等级的叶片样本中,其中160个样本可被准确分级,分级准确率为96.39%。该研究为稻叶瘟病田间病害程度评估提供了基础,也为稻瘟病抗性鉴定方法提供了新思路。  相似文献   

2.
基于深度卷积神经网络的水稻穗瘟病检测方法   总被引:15,自引:9,他引:6       下载免费PDF全文
穗瘟是一种严重影响水稻产量及品质的多发病害,有效地检测穗瘟是水稻病害防治的重要任务。该文提出基于深度卷积神经网络GoogLeNet模型的水稻穗瘟病检测方法,该方法利用Inception基本模块重复堆叠构建主体网络。Inception模块利用多尺度卷积核提取不同尺度穗瘟病斑分布式特征并进行级联融合。GoogLeNet利用其结构深度和宽度,学习复杂噪声高光谱图像的隐高维特征表达,并在统一框架中训练Softmax分类器,实现穗瘟病害预测建模。为验证该研究所提方法的有效性,以1 467株田间采集的穗株为试验对象,采用便携式户外高光谱成像仪Gaia Field-F-V10在自然光照条件下拍摄穗株高光谱图像,并由植保专家根据穗瘟病害描述确定其穗瘟标签。所有高光谱图像-标签数据对构成GoogLeNet模型训练和验证的原始数据集。该文采用随机梯度下降算法(SGD,stochastic gradient descent)优化GoogLeNet模型,提出随机扔弃1个波段图像和随机平移平均谱图像亮度的2种数据增强策略,增加训练数据规模,防止模型过拟合并改善其泛化性能。经测试,验证集上穗瘟病害预测最高准确率为92.0%。试验结果表明,利用GoogLeNet建立的深度卷积模型,可以很好地实现水稻穗瘟病害的精准检测,克服室外自然光条件下利用光谱图像进行病害预测面临的困难,将该类研究往实际生产应用推进一大步。  相似文献   

3.
高效、精确地评估叶瘟病害程度对水稻的早期防治、精准施药、产量损失预测至关重要。针对传统病害分级方法效率低、主观性强的问题,该研究提出了一种基于改进UNet(vgg16 coordinate dropout focal-dice mixed loss UNet,VCDM-UNet)的叶瘟分割模型。首先,针对病斑形状不规则、不易分辨问题,将VGG16作为UNet的主干网络,增强模型提取叶片、病斑特征的能力。其次,为了提升模型对叶片、病斑像素的关注度,增强模型的泛化能力,在上采样模块中引入CA(coordinate attention)注意力机制和Dropout机制。然后针对叶片、病斑占比过小问题,采用焦点-骰子混合损失改进模型的损失函数,以优化样本的不平衡性,缓解背景像素占比过大对模型学习带来的影响。基于田间收集的三叶期水稻叶片图像进行了验证,并与UNet、PSPNet、DeepLabV3+进行比较。结果表明,VCDM-UNet的平均交并比、平均像素精度、宏平均F1分数分别为82.93%、88.87%、89.96%,均优于3种对比模型,能够满足叶片和病斑的分割任务。最后,基于分割结果,计算病斑占叶面积的比例对病害程度进行分级,VCDM-UNet的平均分级准确率为83.95%,经验证,该模型可为叶瘟病害程度分级提供技术支持。  相似文献   

4.
基于高光谱成像的苹果虫害检测特征向量的选取   总被引:3,自引:7,他引:3  
利用高光谱成像技术,明确苹果虫害无损检测的最优特征向量,以实现对苹果虫害的快速、准确、无损检测。本文首先对646 nm波长的特征图像进行阈值分割、膨胀与腐蚀运算获得掩膜图像,并利用掩模图像对高光谱图像进行掩模和主成分分析,对获得的PC1(the first principal component,第一主成分)图像进行最大熵阈值分割以有效提取虫害区域。然后对比分析虫害区域与正常区域图像的纹理特征,提取灰度共生矩阵的4个方向的4个纹理参数(能量、熵、惯性矩和相关性),并且采用基于高光谱图像的光谱差值获取了2个特征波长对应的光谱相对反射率作为光谱特征。优化组合纹理特征和光谱特征成4个特征向量组,采用BP(back propagation,反向传播)神经网络对正常苹果和虫害苹果进行检测。结果表明,融合0度方向的能量、熵、惯性矩和相关性的纹理特征和646、824 nm波段的相对光谱反射率的光谱特征进行检测识别效果最好,正常果的识别率为100%,虫害果的识别率为100%,并且速度快、误差小。该研究所获得的特征向量可为开发多光谱成像的苹果品质检测和分级系统提供参考。  相似文献   

5.
基于高光谱成像的茶叶中EGCG分布可视化   总被引:5,自引:4,他引:1       下载免费PDF全文
针对目前关于表没食子儿茶素没食子酸酯(epigallocatechin gallate,EGCG)在茶叶中的分布缺乏可视化表达问题,该文采用高光谱成像技术以实现EGCG在茶叶中的分布可视化。通过高光谱成像仪采集茶叶的光谱信息,按照标准方法 HPLC(high performance liquid chromatography)法测量茶叶的EGCG浓度。运用化学计量学方法建立光谱与EGCG浓度之间的回归模型。为寻求相对较优的模型效果,对光谱进行不同的预处理,以确定最优的预处理方法;采用4种建模方法建立回归模型,以确定最优的建模方法;对光谱进行特征波段选择,以降低数据冗余提高模型的稳定性和运算速度。最后,将高光谱图像中像素点对应的光谱变量导入模型,从而生成EGCG浓度分布图。结果表明:可见-近红外光谱与EGCG浓度之间具有很强的相关性,其回归模型的决定系数达到0.905,利用高光谱成像技术对茶叶中EGCG分布进行可视化可行。通过对不同品种、叶位的茶叶中EGCG浓度分布进行可视化,能够为高EGCG浓度茶树品种的培育、EGCG代谢规律的分析以及茶树采摘部位的识别提供有效手段。  相似文献   

6.
基于高光谱成像技术的沙金杏成熟度判别   总被引:3,自引:1,他引:3  
为了实现对不同成熟度沙金杏进行快速、准确识别的目的,该研究利用高光谱成像技术(400~1 000 nm)对沙金杏的成熟度进行了判别研究,利用高光谱成像系统分别采集了处于4种不同成熟阶段(七成熟、八成熟、九成熟和十成熟)的沙金杏共480个样本的高光谱数据。首先,对不同成熟阶段所有样本的可溶性固形物含量值进行测定和单因素方差分析,结果表明,可溶性固形物与成熟度之间存在相关性,其相关系数为0.9386,可用该指标对沙金杏的成熟度进行划分。然后,对光谱数据利用偏最小二乘回归(partial least squares regression,PLSR)模型提取得到9个特征波长(434、528、559、595、652、678、692、728、954 nm),对图像数据利用灰度共生矩阵(gray level co-occurrence matrix,GLCM)提取到6项图像纹理指标(均值、对比度、相关性、能量、同质性和熵),并对图像数据采用RGB模型提取到6项图像颜色指标(R、G、B分量图像的平均值和标准差)。将这三类指标进行最优组合并分别建立关于沙金杏成熟度判别的极限学习机(extreme learning machine,ELM)模型。结果表明:使用特征波长与颜色特征融合值建立的ELM模型的判别正确率最高,达到93.33%。该研究为沙金杏的成熟度在线无损检测提供了理论参考。  相似文献   

7.
基于高光谱成像的苹果轻微损伤检测有效波长选取   总被引:5,自引:5,他引:5  
为了确定可用于苹果早期轻微损伤检测的有效波长,以具有代表性的阿克苏苹果为研究对象,采用高光谱成像技术和分段主成分分析方法对损伤发生仅为半小时之内的苹果进行损伤检测研究,对比分析不同光谱区域主成分分析对识别结果的影响,优选出识别光谱区域(780~1000nm)。基于此光谱区域结合主成分图像权重系数获取2个有效波长(820和970nm),并利用这2个波长和全局阈值理论开发了多光谱轻微损伤提取算法。利用独立测试集中25个正常苹果和25个损伤苹果对算法的性能进行评估,结果表明,正常果的识别率为100%,损伤果的识别率为96%,整体检测精度为98%。该研究所获得的有效波长可为开发基于多光谱成像技术的苹果损伤检测系统提供参考。  相似文献   

8.
基于高光谱成像技术的青香蕉碰撞损伤检测   总被引:3,自引:3,他引:0       下载免费PDF全文
针对青香蕉早期轻微碰撞损伤无法用肉眼和RGB图像识别的问题,研究利用光谱数据与图像信息,实现青香蕉早期轻微碰伤的检测和碰伤程度区分。通过高光谱成像仪获取碰撞损伤试验样品的光谱数据和图像信息,对原始光谱数据进行预处理和异常样本的剔除。通过特征波长提取,获取特征波长下的低维图像中创面区域像素点的分布数据,同时结合全像素点下的光谱反射率数据,将其作为BP神经网络模型的训练集和测试集,建立青香蕉碰撞损伤程度界定的无损检测模型。试验结果表明,利用高光谱技术可以识别肉眼不可见的轻微碰撞损伤,形成的BP神经网络检测模型的总体识别准确率为95.06%,并且可输出碰伤等级的可视化图像。研究为开发青香蕉碰伤快速无损检测系统提供理论依据。  相似文献   

9.
基于近红外高光谱成像技术鉴别杂交稻品系   总被引:4,自引:4,他引:0       下载免费PDF全文
种子的筛选和鉴别是农业育种过程中的关键环节。该文基于近红外高光谱成像技术(874~1 734 nm)结合化学计量学方法以及图像处理技术实现杂交稻种的品系鉴别及可视化预测。采集了3类不同品系共2 700粒杂交水稻的高光谱图像,用SPXY算法,按照2∶1的比例划分建模集和预测集。基于水稻样本的光谱特征,采用主成分分析(PCA)方法初步探究3类样本的可分性。采用连续投影算法(SPA),提取出7个特征波长:985.08、1 106、1 203.55、1 399.04、1 463.19、1 601.81、1 645.82 nm。基于特征波长和全波段光谱,建立了偏最小二乘判别分析(PLS-DA)和支持向量机(SVM)模型。试验结果表明,所建模型判别效果较好,识别正确率均达到了90%以上,其中,SVM模型的判别效果优于PLS-DA模型,基于全谱的判别分析模型结果优于基于特征波长的判别模型。结合SPA-SVM校正模型和图像处理技术,生成样本预测伪彩图,可以直观的鉴别不同品系的水稻种子。结果表明,近红外高光谱成像技术可以实现杂交稻的品系识别及可视化预测,为农业育种过程中种子的快速筛选及鉴定提供了新思路。  相似文献   

10.
基于高光谱成像的寒地水稻叶瘟病与缺氮识别   总被引:2,自引:2,他引:2  
为进行水稻叶瘟病与养分缺失的区分、实现叶瘟病及时、准确的诊断,以大田试验为基础,利用高光谱成像仪获取2个品种的健康、缺氮、轻度感病和重度感病共4类水稻叶片的反射率光谱,对其光谱特性进行分析,并采用多种预处理方法、分别结合偏最小二乘判别分析(partial least squares-discriminate analysis,PLS-DA)和主成分加支持向量机(principle component analysis-support vector machine,PCA-SVM)方法构建水稻叶瘟病识别模型。试验结果显示6个判别模型都获得了较高的识别准确率,经标准正态变量(standard normal variate,SNV)变换预处理的PLS-DA模型获得了最佳的识别结果,预测准确率达100%,经多元散射校正(multiplicative scatter correction,MSC)预处理的PCA-SVM模型的预测准确率也达到97.5%。本研究为水稻叶瘟病的判别和分级提供了新方法,也为稻瘟病大范围遥感监测提供了基础。  相似文献   

11.
稻瘟病菌孢子的检测通常在显微镜下由人工目测完成,该方法费时、费力、自动化程度低。因此,该研究提出了一种基于显微图像处理技术的稻瘟病菌孢子自动检测和计数方法。首先,采用显微图像系统获取稻瘟病菌孢子图像;然后提出一种分块背景提取法对其进行光照校正;根据显微图像中孢子的边缘特征,利用Canny算子进行边缘检测,其中Canny边缘检测过程中的阈值应用模糊C均值算法在梯度图上自动确定;接着对边缘检测后的二值图像进行数学形态学闭开运算处理。根据孢子和主要杂质的形态特征,利用椭圆度、复杂度和最小外接矩形宽度等形态特征参数对目标物进行分类,提取只含孢子的二值图像。最后,提出了基于距离变换和高斯滤波的改进分水岭算法对粘连孢子进行分离。测试结果表明:在100幅测试的显微图像样本中,孢子检测的平均准确率为98.5%,满足稻瘟病菌孢子自动检测和计数要求。  相似文献   

12.
基于压力和图像的鲜玉米果穗成熟度分级方法   总被引:1,自引:1,他引:1  
为实现鲜玉米果穗成熟度等级的客观评定,提出了基于压力传感器和计算机视觉技术的综合分析方法。研制了玉米果穗成熟度检测装置,提取纹理信息所得惯性矩和压力检测装置所得最大压力值作为鲜玉米果穗成熟度等级评定的特征参数,通过系统聚类分级研究,确定成熟度等级为3级。采用主成分分析法对11个颜色特征进行优化筛选,用第一、二主成分可综合反映11个颜色特征的分级信息,实现了参数的降维。试验结果表明:以最大压力值、惯性矩、颜色特征主成分分析第一、二主成分值作为构建概率神经网络的输入,进行鲜玉米果穗成熟度等级评定,正确率为96.67%。结合压力传感器和计算机视觉技术可实现对鲜玉米果穗成熟度的准确分级。  相似文献   

13.
基于高光谱图像处理的大豆品种识别(英文)   总被引:2,自引:0,他引:2  
大豆组分(油,蛋白质,脂肪等)在不同的大豆品种间差异很大。对于提高大豆品质来说,大豆品种识别是一个关键因素。该文利用高光谱图像技术对不同的大豆品种进行识别。利用高光谱成像系统获取大豆样本1 000~2 500 nm范围的光谱反射数据;应用主成分分析法(PCA,principal component analysis)对获取到的光谱数据进行数据降维并去除冗余数据;在分类算法中将得分高的主成分值作为输入特征,通过PCA方法从每个特征图像中提取4个特征变量(能量、熵、惯性矩和相关性);对于具体特征提取,从16个特征变量中提取8个重要特征参数;根据选择的特征,应用神经网络方法构建分类器;训练精度精度达到97.50%,平均测试精度达到93.88%以上。结果表明,应用高光谱图像技术结合神将网络建模方法可以对大豆品种进行分类。  相似文献   

14.
基于高光谱图像的稻瘟病抗氧化酶值早期预测   总被引:1,自引:6,他引:1  
杨燕  何勇 《农业工程学报》2013,29(20):135-141
水稻稻瘟病是危害水稻种植的真菌病害,早期预测病害源头是防治稻瘟病的有效手段。在病害症状显证之前实现早期预测,能从源头上更好地遏制病害,阻止分生孢子的大量繁殖,达到稻瘟病早期防治的目的。该文通过连续分时段测定水稻稻瘟病潜育期稻苗的高光谱图像和相对应的稻苗抗氧化物酶SOD(superoxide dismutase, SOD)酶值,利用高光谱图像处理技术结合化学计量学方法,建立稻瘟病潜育期内稻苗冠层高光谱图像与抗氧化酶SOD酶活之间的关联预测模型。结果表明,基于全光谱信息建立的SOD酶值预测模型,模型具有较好的预测效果,校正集相关系数RC=0.9921,校正集均方根误差RMSEC=5.135 U/g;预测集相关系数RP=0.9274,预测集均方根误差RESEP=8.634 U/g。出于建立更为广泛应用的稳定的多光谱成像检测系统的需要,基于选定的6个特征波长526、550、672、697、738和747 nm建立了简化的SOD酶值预测模型,该模型的RC=0.6945,RMSEC=17.92 U/g;RP=0.5488,RESEP=22.0085 U/g。研究表明,在水稻稻瘟病潜育期内,通过高光谱图像反演相应的SOD酶活性信息,推断水稻稻瘟病病害胁迫程度信息是可行的。  相似文献   

15.
基于高光谱图像纹理特征的牛肉嫩度分布评价   总被引:2,自引:5,他引:2  
传统牛肉品质的检测方法耗时长,效率低,破坏样品,已不能满足现代化生产的需要。为了实现对牛肉嫩度品质的快速无损检测和评价,该文利用高光谱成像系统,以西门塔尔牛多个胴体的背最长肌部位为研究对象,采集56个有效样本的高光谱立体图像,研究无损评价牛肉样品的嫩度分布。通过提取样本的反射光谱信息,并利用逐步回归算法结合遗传算法(GA,genetic algorithm)筛选出牛肉剪切力值(WBSF,warner-bratzler shear force)的特征波段。利用主成分分析(PCA,principle component analysis)提取样品的3个主成分。基于选出的特征波段图像和提取的主成分,通过计算图像灰度共生矩阵求取每幅图像8个主要纹理特征参数,分别建立了基于支持向量机(SVM,support vector machine)和线性判别(LDA,linear discriminant analysis)法的嫩度等级判别模型。经分析比较,基于主成分纹理特征优于基于特征波段图像建立的预测模型,并且,线性判别模型识别准确率相比支持向量机模型较高。基于主成分纹理特征建立的线性判别模型预测集判别精度为94.44%。研究结果证明,基于高光谱图像纹理特征分析,可以建立牛肉的嫩度判别模型,对牛肉嫩度快速无损检测技术研究提供理论参考。  相似文献   

16.
基于传统分散矩阵的特征选择方法易选出具有一定区分性但相互冗余的特征,这些冗余的特征制约了高光谱影像分类正确率的提高,针对此问题,该文对传统方法进行了改进,首先计算每2个类别的基于分散矩阵的可分性值,然后将它们的平均值作为特征选择准则,最后利用序列浮点向前搜索算法选出特定数量的特征,用于后续分类。将所选特征的均方相关系数作为冗余性度量,定量化衡量了所提出方法克服选择冗余特征的能力。利用一景常用的AVIRIS高光谱植被影像,从分类正确率的角度,比较了所提出方法与几种典型的基于互信息和基于可分性准则的特征选择方法,在高光谱影像植被分类中的性能。试验结果表明改进的特征选择方法能较好的避免选择相互冗余的特征,与基于互信息的特征选择方法相比,基于分散矩阵可分性准则的特征选择方法在总体上能获得较高的分类正确率,特别是所提出的特征选择方法,在2个数据集上均获得了最高的总体分类精度87.2%和90.1%,从而阐明了所提出的方法在高光谱影像植被分类中的有效性。  相似文献   

17.
为准确、快速的识别稻飞虱种类,采用自行设计的野外环境昆虫图像采集装置获取稻飞虱背部图像,通过对背景与目标像素的统计,选取140为阈值,对稻飞虱图像的蓝色通道进行二值化,将背景与目标分割开,采用形态学滤波以及开运算,与灰度图像进行与操作,获取单个稻飞虱虫体背部区域的灰度图像。然后对灰度图像进行二维傅里叶变换,获得虫体背部图像的二维傅里叶频谱。最后以ll(l=1,2,…,6)的二维频谱窗口数据作为稻飞虱特征参数,建立Fisher判别函数。训练集和验证集的试验结果表明,选用33二维傅里叶频谱窗口数据建立的判别模型,稻飞虱正确识别率可达到90%以上。该方法可以实现田间稻飞虱的自动识别。  相似文献   

18.
基于轮廓特征的稻种芽谷检测方法   总被引:4,自引:3,他引:1  
根据机器视觉检测杂交水稻种子质量的要求,针对单粒、静态稻种图像进行芽谷分析识别。对金优402、汕优10、中优207和加优99品种的稻种采集了黑、白背景, A、B两面共4×400幅图像,每幅图像提取出16个稻种轮廓特征参数,经主成分分析降维后作为网络输入,对网络结构进行优化并充分训练后分别建立了各品种的两层人工神经网络。网络对测试集正常稻种的识别准确率均超过95%,对芽谷的识别准确率在85%至90%之间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号