首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The first isolation of Tenacibaculum maritimum from wedge sole, Dicologoglossa cuneata, is reported. The pathogen was recovered from ulcers of cultured fish, from three different outbreaks. The six isolates obtained were biochemically and serologically characterized and diagnosis was confirmed by polymerase chain reaction using specific primers and partial 16S rRNA gene sequencing. The isolates constituted a homogeneous phenotypic group; however, they belong to two of the different serotypes described within this species. A virulence evaluation of the isolates using Wedge sole fry was also performed.  相似文献   

2.
Physiological responses to a high stocking density were tested in juvenile wedge sole Dicologoglossa cuneata (Moreau). Fish were kept at low (1 kg m−2), medium (3 kg m−2) and high (9 kg m−2) stocking densities for 22 days. No differences in the weight, length, survival and hepatosomatic index were observed among treatments. Basal plasma cortisol and osmolality were found to be directly and positively related to stocking density. A mild increase in plasma glucose was seen at medium density, and plasma protein was elevated at medium and high densities. The liver glucose and glycogen content was inversely related to stocking density. The liver triglyceride level was significantly elevated at the highest density, and the α-amino acid content decreased at the highest density. In muscle, glucose levels were significantly higher in fish kept at the lowest density; the α-amino acid content was elevated in fish kept at high density. In conclusion, plasma cortisol levels indicated an increasing stress level depending on the culture density, but significant changes in energy reserves did not occur in tissue (mainly liver and muscle glycogen and glucose reserves were significantly affected).  相似文献   

3.
The stress responses in early growth stages of the wedge sole have been studied to determine whether the high cortisol levels described in juvenile fish are present from early developmental stages. Whole‐body cortisol, glucose and lactate contents, as well as biometric parameters in wedge sole larvae were measured at three different stocking densities. Stocking density affected growth‐related variables significantly, and larvae in lower stocking densities grew faster. Survival did not significantly differ among treatments. At hatching, the whole‐body cortisol concentration was 0.33 ± 0.01 ng g?1 and varied significantly from 0 to 30 days after hatching (DAH) for each stocking density, though values remained stable for the remaining time in the low‐stocking density group. These hormone levels rose significantly (5.17 ± 2.43 to 22.10 ± 4.95 ng g?1) at the end of the experiment, depending directly on the stocking density. Glucose and lactate‐body concentrations did not vary among treatments. We conclude that the stress responses of wedge sole larvae are detectable from 45 DAH and that stocking density already can be a stressor at that age. As described for juvenile stage, cortisol content values in wedge sole larvae under non‐stressful conditions are one of the highest among those reported in the literature. The captivity conditions could be responsible for this apparently stressful situation, though those values also could be normal in wild specimens.  相似文献   

4.
5.
In this work, we have assessed the effects of different stocking densities on the biometry, survival and physiological status of the wedge sole (Dicologoglossa cuneata), focusing on changes in the stress system and intermediate metabolism, with the aim of determining a stress indicator for chronic‐stress situations in this species. Wedge sole were kept at three different stocking densities (0.2, 0.4 and 0.8 kg m?3) for 197 days, and survival, growth, plasma metabolites, cortisol and enzymatic activities were assessed. Survival rates were the highest at low density, though growth did not vary significantly among treatments. Enzymatic activities, mainly in muscle, differed depending on stocking density. Liver hexokinase activity at low stocking density was the highest, while no differences were detected for the other enzymes assessed. In muscle, all enzymes significantly increased in activity with stocking density. We concluded that long‐term high stocking density culture significantly changed enzyme activities (hexokinase, glutamate dehydrogenase, glyceraldehyde 3‐phosphate dehydrogenase, and lactate dehydrogenase) in wedge sole muscle, although liver enzymes, plasma cortisol and metabolites did not vary significantly. Therefore, muscle enzymes, hexokinase and glutamate dehydrogenase, could be considered stress indicators for this species in chronic‐stress situations.  相似文献   

6.
The wedge sole is a target species in the fisheries of the Gulf of Cadiz (Spain). Having reared them to commercial size, we have studied reproduction and breeding in captivity of the wedge sole in this work here. The breeders adapt easily to captivity, and they can spawn in less than 1 year in captivity. The relative fecundity is relatively high, 1.06–2.33 · 106 eggs kg−1 per spawning season (mean 1.6 ± 0.1). Larval SGR is high, 7.2 ± 0.2% day−1 (range 5.8–9.1), similar to other cultured flatfish species. In 1 year, some individuals reach market size and can release eggs, registering SGRs of 1.39–1.66% day−1 (mean 1.56 ± 0.01). This species presents some very different characteristics with respect to other farmed flatfishes (turbot, halibut and Senegal sole, mainly), so that it is necessary to develop new techniques to optimise its cultivation. In the present work, the first results are presented on the biology of the wedge sole in captivity.  相似文献   

7.
Groups of Atlantic salmon (Salmo salar) yearling smolts were reared in duplicate tanks supplied with freshwater or seawater, and subjected to different feeding frequencies, 100% (fed every day), 50% (fed every other day), 25% (fed every forth day) and 0% (starved), from 26 May to 26 July. After 8 weeks, all the groups were re‐fed in excess for 6 weeks. Fish were maintained on their respective a priori salinity treatments during the 6‐week follow‐up period. Starvation for a period of 8 weeks in freshwater resulted in a loss of hypo‐osmoregulatory ability when smolts were challenged with seawater and unfed smolts maintained in freshwater were unable to adapt to seawater in mid‐July. Ration levels influenced the growth rate and body size significantly. The overall growth rate was higher in freshwater than at corresponding rations in seawater. Partial compensatory growth was observed in the 0 and 25% groups following re‐feeding. Branchial Na+,K+‐ATPase (NKA) activity decreased rapidly in unfed smolts in freshwater and was the lowest in the starved group, whereas an initial increase was observed in those groups reared in seawater. After re‐feeding NKA activity differences decreased between the former feeding groups. Our results suggest that nutritional factors and/or energy levels are critical for the maintenance of hydro‐mineral balance of salmon smolts.  相似文献   

8.
The effects of two different environmental salinities [brackish water (BW), 12‰; sea water (SW), 39‰] and initial stock densities [low (LD), 1.0 g L?1; high (HD), 2.0 g L?1] on growth, osmoregulation, stress and energy metabolism of the fry Pagrus pagrus were investigated over a period of 45 days. Pagrus pagrus (n=80, 5.51 ± 0.25 g mean initial body weight) were randomly divided in eight groups. Growth, weight gain and specific growth rate increased in BW‐acclimated fish compared with SW‐acclimated fish. No differences were observed between the two stock densities tested at either environmental salinity. Plasma osmolality was lowest in BW‐acclimated specimens, but the stock density had no effect on this parameter. Branchial Na+,K+‐ATPase activity was positively correlated with environmental salinity, but unaltered at the renal level. Plasmatic parameters were enhanced by salinity and stocking conditions. At the hepatic level, triglyceride values were enhanced in BW‐acclimated fish maintained at LD. Muscle metabolites (glycogen, glucose and lactate) increased in BW‐ compared with SW‐acclimated fish; stock density had no influence. Our data suggest that changes in metabolic parameters could be correlated with the higher growth rates observed in P. pagrus acclimated to BW, while no significant effects due to the stocking density used were observed.  相似文献   

9.
Loligo vulgaris is a commercially important squid throughout the Mediterranean region and is a candidate species in biomedical and aquaculture research. Some loligo species (L. opalescens, L. forbesi, Sepiteuthis lessoniana) have now been cultured through some successive generations in closed, recirculating seawater systems. The effects of salinity on hatching European Squid (L. vulgaris Lamarck, 1798) eggs were investigated during November 2004. The egg capsules were incubated directly in salinity of 32, 34, 36, 38, 40, 42 and 37 g L?1 (control group) at 19.8°C (SD 1.2°C), and a photoperiodicity of 12 h light:12 h dark for 16–23 days before hatching. In all treatments, the eggs were developed and hatched normally after 16–22 days at 32 g L?1, 17–22 days at 34, 18–21 days at 42 g L?1, 18–22 days at 36 and 40 g L?1, 19–22 days at 37 g L?1 and 19–23 h at 38 g L?1. In the experiments, the highest hatching rate and hatching success (HS) of the eggs were obtained at 38 g L?1 (hatching rate: 100% (SD 0%) and HS: 96.7% (SD 3.5%)) and the lowest hatching rate at 42 g L?1 (hatching rate: 3% (SD 6%) and HS: 0%). Dorsal mantle lengths (DML) of new hatchlings ranged from 2.08 to 2.80 mm. The present study showed that salinity affects the hatching rate and HS of eggs and first hatching time and DML of paralarvae in L. vulgaris. The squid eggs at stage 11 (I) can tolerate 5 g L?1 reduction and 3 g L?1 increase in salinity.  相似文献   

10.
Larvae of Metapenaeus monoceros (Fabricius) at protozoea 1 (PZ1) stage were stocked in 2‐L glass flasks to investigate the effects of various salinities (25, 30, 35, 40, 45, 50 and 55 ppt) on growth and survival until the post‐larval (PL) stages. The PZ larvae were not able to tolerate a sudden salinity drop of over 10 ppt. Yet, an abrupt salinity increase of over 10 or even 15 ppt did not cause mortality. The PZ larvae were successfully acclimated to different test salinities at a rate of 4 ppt h?1. The larvae displayed better tolerance to high rather than low salinities. The lowest and highest critical salinities appeared to be 22 and 55 ppt respectively. Taking into account survival, growth and development results, the optimal salinity for the larval culture of M. monoceros inhabiting the Eastern Mediterranean was 40 ppt. At this salinity, the PZ1 larvae were successfully cultured until PL1 stage within 11 days with 68% survival on a feeding regime of Tetraselmis chuii Kylin (Butcher) (20 cells μ L?1), Chaetoceros calcitrans Paulsen (50 cells μ L?1), Isochrysis galbana Parke (30 cells μL?1) and five newly hatched Artemia nauplii mL?1 from M1 onwards at 28 °C.  相似文献   

11.
中华绒螯蟹亲蟹渗透压调节和抗氧化系统对盐度的响应   总被引:5,自引:1,他引:5  
探讨了中华绒螯蟹亲蟹血清离子和渗透压对盐度的响应以及肝胰腺抗氧化能力与盐度的关系.设立4个盐度组(盐度6、12、18、24)和1个淡水对照组,检测第4天和第20天时中华绒螯蟹亲蟹血清中Na+、K+、Cl-浓度、渗透压以及肝胰腺超氧化物歧化酶(SOD)、过氧化氧酶(CAT)活性和还原型谷胱甘肽(GSH)、丙二醛(MDA)...  相似文献   

12.
The giant freshwater prawn, Macrobrachium rosenbergii, is a species with a high commercial value in aquaculture. Two experiments were performed to determine the effects of salinities on the osmoregulation, growth and molting cycles of M. rosenbergii during growout. The first experiment was designed to determine whether these animals are capable of adapting to the changes in salinity seen in salinity intrusions in tropical deltas, with an incremental increase in salinity of 3‰ per day from 0‰ to 30‰ Haemolymph osmolality was rapidly regulated up to salinities of 15‰ , whereas animals conformed at higher salinities. The second experiment determined the growth, moulting cycle, osmolality, muscle water content and mortality during a 4‐month experiment at 0‰, 15‰ or 25‰ salinity. The weight gains in 0‰ and 15‰ were not significantly different and were comparable to the growth rates achieved in production farms with body mass increases of 2.6 and 2.3‐fold their initial body mass, respectively, after 4 months. The 25‰ group suffered from low growth, high mortality and a significantly lower moulting frequency. These data show that this species can be reared in brackish water up to 15‰, allowing for farming in the large areas impacted by salt water intrusions in tropical deltas.  相似文献   

13.
This study aimed at evaluating the ploidy effects on growth performances of Chinese shrimp ( Fenneropenaeus chinensis Osbeck, 1765) reared in different salinities under laboratory conditions. In the acute salinity experiment, there was no difference ( P >0.05) in tolerance observed in triploid and diploid shrimp due to abrupt salinity changes. The lethal salinity for 50% of the individuals in 96 h at 23–25 °C was about 2 g L−1 in both triploids and diploids. While for the chronic salinity experiment, statistical analyses confirmed that the differences in growth performances including the specific growth rate (SGR), the feeding rate (FR), feed conversion efficiency (FCE) and intermoult period (IP) between triploid and diploid were related to salinity. Diploid shrimp reared in 20 g L−1 exhibited highest SGR ( P <0.05), while triploids performed well in 20 and 30 g L−1 salinities ( P <0.05). Based on the survival and growth data, the optimal salinity for the culture of diploid F. chinensis should be 20 g L−1 and for triploids it should be between 20 and 30 g L−1.  相似文献   

14.
Growth hormone (GH) effectively promotes seawater (SW) adaptation in salmonids, but little is known of its effect in tilapias. Experiments were performed to investigate the effects of recombinant eel GH (reGH) on osmoregulatory actions and ultrastructural features of gill chloride cells in juvenile tilapia, Oreochromis niloticus. Tilapia showed a markedly improved SW survival, when directly transferred from freshwater (FW) to 62.5% SW 24h after a single reGH injection (0.25 or 2.5 µg g-1) or 3 reGH injections (0.25 µg g-1 every other day). Plasma Na+ and Mg2+ levels were significantly reduced by reGH (0.25 and 2.5 µg g-1) compared with saline injections; Ca2+ concentrations were reduced significantly by high dose of reGH (2.5 µg g-1) after SW transfer. However, fish failed to survive more than 24h when directly transferred to 70% SW, although the fish treated with reGH could survive longer than the controls. When examined by electron microscopy, the chloride cells were identified as mitochondrion-rich and an extensive tubular system was induced by GH treatment. The results of the present study suggest that, similar to its effect on salmonids, GH also exerts acute osmoregulatory actions and enhances SW adaptation in juvenile tilapia. GH also stimulates the differentiation of chloride cells toward SW adaptation.  相似文献   

15.
16.
Brown (BT) and rainbow trout (RT) in freshwater (FW) were treated with ovine growth hormone (GH), GH + iopanoic acid (IOP), and GH + IOP plus triiodothyronine (T3) for RT only. After 1 week of treatment, trout were transferred to 30 o/oo SW and treatment continued. In FW, GH treatment increased significantly plasma T3 level (BT) and T3/T4 ratio (BT and RT) by stimulating T4 to T3 deiodination. In the GH + IOP group, the plasma T3 levels and T3/T4 ratio fell significantly as T4 to T3 deiodination was inhibited. In GH + IOP + T3-treated RT, plasma T3 and T3/T4 ratios increased significantly relative to other groups. No mortality occurred and plasma osmolarity (PO) was not altered by any treatment in FW. After transfer to SW, all IOP + GH trout died within 2 (BT) or 3 days (RT). All GH-treated or control BT survived to the end of the experiment (6 days). RT survival rates tended to be improved in GH and GH + IOP + T3 groups relative to controls. Correlatively on day 1 the PO increase was significantly higher in IOP + GH groups (BT and RT) than in the other groups and significantly lower in GH and GH + IOP + T3 treated RT than in controls from days 1 to 6. These data confirm the requirement of T3 and deiodination of T4 to T3 for the development of hypoosmoregulatory mechanisms in SW as previously shown (Lebel and Leloup 1992). Furthermore, the suppression of the hypoosmoregulatory effect of GH, when conversion of T4 to T3 was inhibited by IOP and the reversal when T3 was added to IOP + GH treatment suggests that GH osmoregulatory action in SW acts via the simulation of T4-5′ monodeiodination which increases T3 production.  相似文献   

17.
18.
赵峰  张涛  侯俊利  刘鉴毅  章龙珍  庄平 《水产学报》2013,37(12):1795-1800
为了研究长江口中华鲟幼鱼盐度适应过程及其调节规律,将7月龄幼鱼直接转入0(淡水对照),5,10,15等4个盐度组中养殖32天,分别在0.5,1,2,4,8,16,和32 d 检测幼鱼血液水分、血清渗透压和血清Na 、Cl-、K 的浓度,结果显示:试验过程中,淡水和盐度5组中华鲟幼鱼血液各项指标始终保持一致,未呈现显著性差异。盐度10和15组,中华鲟幼鱼血液水分含量呈先下降后上升趋势,下降程度与盐度呈正相关,16 d时各组幼鱼血液水分无显著性差异。中华鲟幼鱼转入盐度10和15条件下,其血清渗透压与Na 和Cl-浓度的变化趋势一致,表现为先上升后下降,最后达到新的平衡;12 h是其上升和下降的拐点。而血清K 浓度的变化趋势与血清渗透压和Na 、Cl-离子不同,呈现先下降后趋于平稳的趋势。从结果可以看出,中华鲟幼鱼与其他广盐性鱼类一样,其盐度适应过程可分为2个阶段,即临界期和调整期。  相似文献   

19.
The Senegalese sole is a marine pleuronectiform that naturally occurs in Southern Europe and Mediterranean region where it is being produced in aquaculture, in particular in Portugal and Spain. The aim of this study was to assess the quality of hatchery-reared larvae in comparison with those reared in the wild, and determine to which extension wild growing larvae are also affected by skeletal deformities. The main structures affected included those forming the axial skeleton, the caudal fin complex and both anal and dorsal fins, with the most prevalent anomalies affecting caudal vertebrae and arches. Hatchery-reared fish presented a higher incidence of deformities (79%) compared with the 19% observed in wild specimens. In wild postlarvae collected in Autumn no deformities were observed. This work clearly shows that wild Senegalese sole present less skeletal deformities than those hatchery-reared during larval stages, indicating a selective mortality of wild deformed fish and/or an effect of aquaculture-related rearing conditions in the development of skeletal deformities in sole.  相似文献   

20.
Senegalese sole (Solea senegalensis, Kaup) is a promising flatfish species in aquaculture. However, skeletal anomalies are still a great concern in sole farming. Investigation of this issue is crucial to improving larval quality and optimizing production. The aim of this study was to thoroughly assess anomalies in the rachis of reared sole at early developmental stages. Sole (n = 507) were sampled at 31 or 32 days after hatching (dah). The specimens were stained with alcian blue and alizarin red and evaluated for the detection of vertebral deformities. Most fish presented 9:34:3 vertebrae in abdominal, caudal and caudal complex regions, respectively. Remarkably, all specimens showed at least one spinal anomaly. Alterations of neural/haemal elements, as well as deformities of hypurals, parhypural and epural, were recurrent. Vertebral body anomalies and/or vertebral column deviations were identified in 52% of the individuals. Vertebral deformations and fusions were common, especially in caudal complex. ‘Minor’ anomalies were predominant, and some of the detected disorders might be a result of non‐/low‐pathological processes. These results contribute a new insight into the main skeletal anomalies affecting cultured sole larvae. Further research is required to determine their impact on fish welfare and external appearances at commercial stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号