首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Through a detailed case study of a two‐species (Lolium rigidum and Avena sterilis) weed community at contrasting scales, this paper examined factors that affect weed distribution across space and time in a commercial wheat field in north‐east Spain. A. sterilis showed relatively stable spatial distribution and spatial structure of its population over time at large scale, with well‐defined patches, although weed density rose quickly. L. rigidum showed poorly defined patches that were not stable across time. Interaction between species could explain to some degree the spatial distribution at large scale: a negative relationship was detected between the spatial structures of both weed populations. At fine scale, both species showed a clear interaction effect from primary dispersal (more important in A. sterilis) and secondary dispersal from combine harvesting (more important in L. rigidum).  相似文献   

2.
The competitive abilities of a wide range of genotypes of wheat (Trilicvm aestivum L.) and durum wheat (Triticum durum Desf.) against Lolium rigidum Gaud, (annual ryegrass) were examined 1o determine the potential for breeders to select strongly competitive varieties, Considerable potential within the wheat genome to breed varieties with greater competitive ability was demonstrated. In 1993, 250 genotypes from around the world were screened and in 1994 a subset of 45 (mainly Australian) genotypes were further examined. A uniform density of L. rigidum reduced grain yield of wheat by up to about 80% in 1993 and to 50% in 1994, depending on wheat genotype. Reduction in grain yield was correlated with L. rigidum dry matter. Wheats varied in competitive ability with source, and durum wheats were less competitive than T. aestivum. The ‘old’ standard wheat varieties (released between 1880 and 1950) suppressed the weed more than all the current varieties, with the exception of eight F1 hybrids. A doubling of the crop seeding rate of 10 of the genotypes in 1994 reduced the biomass of L. rigidum by an average of 25% compared with the standard seeding rate. Ranking of competitive ability of varieties at high density was consistent at both seeding rates. The strongly competitive genotypes had high early biomass accumulation, large numbers of tillers, and were tall with extensive leaf display. The potential for breeding enhanced competitive ability in wheat is discussed.  相似文献   

3.
Development of integrated weed management strategies is dependent on a thorough knowledge of the demography of individual species. The current research established eight winter or summer weed species in a winter annual wheat cropping system at Wongan Hills, Western Australia, and investigated emergence of the first cohort of each species, survivorship, plant size, seed production and seed shedding over three years (2016–2019). The winter weeds Bromus diandrus and Lolium rigidum emerged at the same time as the wheat crop, and the initial cohort of marked plants had 100% survival to seed production in each year. By comparison, other winter weed species like Hordeum leporinum, Rumex hypogaeus, Sonchus oleraceus and Polygonum aviculare frequently emerged later than the crop and had a lower percentage of plants surviving to seed production. However, individual S. oleraceus and P. aviculare plants had the greatest seed production compared to other species. All winter weeds had variable patterns of seed shedding between years, with the exception of L. rigidum. Summer weed species emerged at the same time, but plants in the initial cohort of each species did not always survive to produce seed. The early emergence and high survivorship of B. diandrus indicates high competitive ability, but shedding commenced at a similar time to L. rigidum and harvest weed seed control may be a viable control method for this species.  相似文献   

4.
Intensification of agricultural practices has severely reduced weed diversity in arable fields, which affects the delivery of ecosystem services. However, in parallel, some species have benefited from intensive farming and have vastly increased their abundance, as is the case for Lolium rigidum and Avena sterilis in cereal fields. These highly competitive species severely reduce yields but can also compete with other weed species, and, when less intensive practices are applied, they might limit the recovery of weed diversity and the success of arable species reintroductions. A gradient of infestation was established in a winter wheat field in Catalonia (north‐eastern Spain) by sowing seeds of both species at three different densities to test their effects on the abundance, diversity and composition of the natural weed community. The emergence of seeds and the survival and biomass of transplanted seedlings of two rare species, Agrostemma githago and Vaccaria hispanica, were also evaluated. Avena sterilis and L. rigidum infestations reduced the diversity, abundance and biomass and changed the composition of the natural weed community, even at low infestation densities. Moreover, infestations of both species affected the overall performance of A. githago and V. hispanica. This study reveals that A. sterilis and L. rigidum are highly competitive and that their infestations might hamper the recovery of diverse weed communities. Their densities should be considered when selecting suitable sites for promoting diversity and reintroducing rare species.  相似文献   

5.
This paper considers the relationships between the dispersal of seeds and the distribution pattern of an annual weed. A comparative study of seed dispersal by combine harvesters, with and without a straw chopper attached, was established using Lolium rigidum, a common weed in Mediterranean cereal crops. Seed dispersal distance was quantified and the relationships between dispersal and fine‐scale seedling distribution evaluated. Primary dispersal of L. rigidum seeds occurs in a very limited space around the parent plants, but the density of seed is low because most seeds do not fall from spikes spontaneously. In contrast, many seeds are spread by combine harvesters. In this study the maximum dispersal exceeded 18 m from established stands in cereal fields, although the modal distance was close to the origin. In addition, the action of the combine harvesters tended to accumulate L. rigidum seeds predominantly under the straw swath, with some lateral movement. This action could explain the fine‐scale banded pattern of L. rigidum in cereal fields. Although the treatment of straw by the standard and straw chopper combines differed, the resultant seed distribution showed few differences.  相似文献   

6.
Lolium rigidum (annual or rigid ryegrass) is a widespread annual weed in cropping systems of southern Australia, and herbicide resistance in L. rigidum is a common problem in this region. In 2010, a random survey was conducted across the grain belt of Western Australia to determine the frequency of herbicide‐resistant L. rigidum populations and to compare this with the results of previous surveys in 1998 and 2003. During the survey, 466 cropping fields were visited, with a total of 362 L. rigidum populations collected. Screening of these populations with the herbicides commonly used for control of L. rigidum revealed that resistance to the ACCase‐ and ALS‐inhibiting herbicides was common, with 96% of populations having plants resistant to the ACCase herbicide diclofop‐methyl and 98% having plants resistant to the ALS herbicide sulfometuron. Resistance to another ACCase herbicide, clethodim, is increasing, with 65% of populations now containing resistant plants. Resistance to other herbicide modes of action was significantly lower, with 27% of populations containing plants with resistance to the pre‐emergent herbicide trifluralin, and glyphosate, atrazine and paraquat providing good control of most of the populations screened in this survey. Ninety five per cent of L. rigidum populations contained plants with resistance to at least two herbicide modes of action. These results demonstrate that resistance levels have increased dramatically for the ACCase‐ and ALS‐inhibiting herbicides since the last survey in 2003 (>95% vs. 70–90%); therefore, the use of a wide range of integrated weed management options are required to sustain these cropping systems in the future.  相似文献   

7.
The competitive abilities of eight winter crops were compared against Lolium rigidum Gaud, (annual ryegrass), an important weed of southern Australia, as a potential strategy to suppress weeds and reduce dependence on herbicides. Two cultivars of each species were chosen to represent the range of competitive ability within each crop and grown in field experiments in 1992 and 1993. The order of decreasing competitive ability (with the ranges of percentage yield reduction from L. rigidum at 300 plants m?2 in parenthesis) was as follows: oats (Avena sativa L.), 2–14%; cereal rye (Secale cereale L.), 14–20%; and triticale (×Triticosecale), 5–24%; followed by oilseed rape, (Brassica napus L.), 9–30%; spring wheat (Triticum aestivum L.), 22–40%; spring barley (Hordeum vulgare L.), 10–55%; and, lastly, field pea (Pisum sativum L.), 100%, and lupin (Lupinus angustifolius L.), 100%. Differences in competitive ability of cultivars within each species were identified, but competition was strongly influenced by seasonal conditions. Competition for nutrients (N, P and K) and light was demonstrated. L. rigidum dry matter and seed production were negatively correlated with grain yield of the weedy crops. More competitive crops offer the potential to suppress grass weeds while maintaining acceptable grain yields. Ways of improving the competitive abilities of grain legume crops are discussed.  相似文献   

8.
Field studies were conducted to determine the potential of multispectral classification of late‐season grass weeds in wheat. Several classification techniques have been used to discriminate differences in reflectance between wheat and Avena sterilis, Phalaris brachystachys, Lolium rigidum and Polypogon monspeliensis in the 400–900 nm spectrum, and to evaluate the accuracy of performance for a spectral signature classification into the plant species or group to which it belongs. Fisher’s linear discriminant analysis, nonparametric functional discriminant analysis and several neural networks have been applied, either with a preliminary principal component analysis (PCA) or not and in different scenarios. Fisher’s linear discriminant analysis, feedforward neural networks and one‐layer neural network, all showed classification percentages between 90% and 100% with PCA. Generally, a preliminary computation of the most relevant principal components considerably improves the correct classification percentage. These results are promising because A. sterilis and L. rigidum, two of the most problematic, clearly patchy and expensive‐to‐control weeds in wheat, could be successfully discriminated from wheat in the 400–900 nm range. Our results suggest that mapping grass weed patches in wheat could be feasible with analysis of real‐time and high‐resolution satellite imagery acquired in mid‐May under these conditions.  相似文献   

9.
Glyphosate is a key component of weed control strategies in Australia and worldwide. Despite widespread and frequent use, evolved resistance to glyphosate is rare. A herbicide resistance model, parameterized for Lolium rigidum has been used to perform a number of simulations to compare predicted rates of evolution of glyphosate resistance under past, present and projected future use strategies. In a 30‐year wheat, lupin, wheat, oilseed rape crop rotation with minimum tillage (100% shallow depth soil disturbance at sowing) and annual use of glyphosate pre‐sowing, L. rigidum control was sustainable with no predicted glyphosate resistance. When the crop establishment system was changed to annual no‐tillage (15% soil disturbance at sowing), glyphosate resistance was predicted in 90% of populations, with resistance becoming apparent after between 10 and 18 years when sowing was delayed. Resistance was predicted in 20% of populations after 25–30 years with early sowing. Risks of glyphosate resistance could be reduced by rotating between no‐tillage and minimum‐tillage establishment systems, or by rotating between glyphosate and paraquat for pre‐sowing weed control. The double knockdown strategy (sequential full rate applications of glyphosate and paraquat) reduced risks of glyphosate and paraquat resistance to <2%. Introduction of glyphosate‐resistant oilseed rape significantly increased predicted risks of glyphosate resistance in no‐tillage systems even when the double knockdown was practised. These increased risks could be offset by high crop sowing rates and weed seed collection at harvest. When no selective herbicides were available in wheat crops, the introduction of glyphosate‐resistant oilseed rape necessitated a return to a minimum‐tillage crop establishment system.  相似文献   

10.
Weed seeds are introduced to agronomic systems naturally or through human-mediated seed dispersal, and introduced seeds have a high chance of being resistant to selective, in-crop herbicides. However, colonisation (invasion) rates for a weed species are usually much lower than rates of seed dispersal. The current research investigated colonisation of a winter annual wheat cropping system in Western Australia by a range of winter or summer annual weed species. The weed seeds were sown (at 100 seeds/m2) directly before seeding the crop in 2016 and allowed to grow in the following 3 years of wheat. Selective herbicides were not applied, to simulate growth of weed populations if the initial seed had been resistant to herbicide. Bromus diandrus, Hordeum leporinum, Rumex hypogaeus, Sonchus oleraceus, Polygonum aviculare, Lolium rigidum, Citrullus amarus and Tribulus terrestris colonised the crop, while Dactyloctenium radulans, Chloris truncata and Salsola australis failed to establish over 3 years. The most successful weed was B. diandrus, with a plant density of 1,170/m2 by the third year and seed production of 67,740/m2. The high density of B. diandrus reduced wheat density by 76% in the third year and reduced average yield by 36%. Lolium rigidum reduced average yield by 11%, and the other weed species did not affect crop yield. Further research is required on the invasiveness of these species in other regions, but it is clear that the spread of B. diandrus to new areas or the introduction of resistant B. diandrus seeds via contaminated grain should be avoided.  相似文献   

11.
Light is an important resource that crops and weeds compete for and so increased light interception by the crop can be used as a method of weed suppression in cereal crops. This research investigated the impact of altered availability of photosynthetically active radiation (PAR) (from crop row orientation or seeding rate) on the growth and fecundity of Lolium rigidum. Wheat and barley crops were sown in an east–west (EW) or north–south (NS) direction, at a high or low seeding rate, in three field trials in 2010 and 2011 (at Merredin, Wongan Hills and Katanning, Western Australia). The average PAR available to L. rigidum in the inter‐row space of EW crops compared with NS crops was 78% to 91% at crop tillering, 39% to 56% at stem elongation, 28% to 53% at boot/anthesis and 41% to 59% at grain fill. Reduced PAR in the EW crop rows resulted in reduced L. rigidum fecundity in five of the six trials (average of 2968 and 5705 L. rigidum seeds m?2 in the EW and NS crops). Availability of PAR was not influenced by seeding rate, but the high seeding rate reduced fecundity in three of the six trials (average of 3354 and 5092 seeds m?2 in the crops with high and low seeding rate). Increased competitive ability of crops (through increased interception of PAR or increased crop density) was highly effective in reducing L. rigidum fecundity and is an environmentally friendly and low cost method of weed suppression.  相似文献   

12.
The presence of herbicide‐resistant Lolium rigidum in Mediterranean (Spanish) citrus orchards was reported in 2005 and it poses a serious threat to crop management. The main objective of this research was to investigate which components could be responsible for the persistence of annual ryegrass populations in Mediterranean mandarin and orange orchards. This is the first study regarding L. rigidum populations in Mediterranean citrus orchards. Surveys were conducted in 55 commercial citrus orchards in eastern Spain in 2013 by interviewing technicians who were working in cooperatives about crop management. The level of infestation by L. rigidum and the presence of harvester ants (Messor barbarus) then were estimated in the same orchards. The variables were subjected to a two‐dimensional analysis and both univariate and multivariate logistic regression models were fitted for each of the three L. rigidum density levels that had been established. The multivariate models showed the significant factors that were associated with various L. rigidum densities: (i) at a low density, the herbicides that were applied, the number of applications in 2013 and the type of irrigation (flood or drip); (ii) at a medium density, the presence of harvester ants; and (iii) at a high density, the herbicides that were applied in 2013. The results indicated that drip irrigation and one application of glyphosate mixed with other herbicides (or herbicides other than glyphosate) were associated with a lower L. rigidum density. The alternative management options that are presented here should help farmers to reduce weed problems in Mediterranean citrus orchards. Future research is required to better understand the presence of herbicide‐resistant populations, as well as the possible beneficial presence of granivorous ant species.  相似文献   

13.

Background

Selecting wheat varieties with allelopathic potential or high competitiveness against weeds is a sustainable solution for organic farming to eliminate the use of synthetic herbicides. Wheat is one of the most economically important crops. This study focuses on screening the allelopathic or competitive potential of four wheat cultivars, Maurizio, NS 40S, Adesso and Element, on two weeds of interest due to acquired herbicide resistance, Portulaca oleracea and Lolium rigidum, through germination and growth bioassays and the identification and quantification of benzoxazinoids (BXZs) and polyphenols (phenolic acids and flavonoids).

Results

The different cultivars showed different abilities to manage surrounding weeds and different capacity to exude or accumulate specialized metabolites in the presence of those weeds. Furthermore, each cultivar behaved differently depending on the weed present in the medium. The most efficient cultivar to control the tested monocot and dicot weeds was Maurizio, as it effectively controlled germination and growth of L. rigidum and P. oleracea while exuding large amounts of benzoxazinones through the roots, especially the hydroxamic acids 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one and dihydroxy-2H-1,4-benzoxaxin-3(4H)-one. By contrast, NS 40S, Adesso and Element showed the potential to control the growth of just one of the two weeds through allelopathy or competition.

Conclusion

This study reveals that Maurizio is the most promising wheat cultivar for sustainable weed control, and that the screening of crop varieties with allelopathic potential, which results in the displacement of synthetic herbicides, is an immediate solution in ecological and sustainable agriculture. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

14.
Estimation of thresholds for weed control in Australian cereals   总被引:1,自引:0,他引:1  
A non-linear model relating crop yield to the density of weeds was fitted to nine Victorian weeds to evaluate their competitive abilities. The weeds were: Acroptilon repens (L.) DC. (creeping knapweed), Chondrilla juncea L. (Skeleton weed, Raphanus raphanistrum L. (Wild radish), lolium rigidum Gaud. (Annual ryegrass), Lithospermum arvense L. (White iron weed), Brassica tournefortii Gouan (Wild turnip), Lamium amplexicaule L. (Deadnettle), Fumaria parviflora Lam. (White fumitory) and Amsinckia hispida (Ruiz & Pav.) I.M. Johnston (Amsinckia). Where more than one experiment was available for a weed, the net return for a herbicide treatment over a range of weed densities was calculated to obtain the economic threshold density. Generally, the economic threshold densities within a weed species were the same order of magnitude, except for the perennial Chondrilla Juncea L., For this species data were collected in years of contrasting rainfall. The model used here is discussed in view of the threshold approach currently used in continental Europe.  相似文献   

15.
The 1995/6 International Survey of Herbicide-Resistant Weeds recorded 183 herbicide-resistant weed biotypes (124 different species) in 42 countries. The increase in the number of new herbicide-resistant weeds has remained relatively constant since 1978, at an average of nine new cases per year worldwide. Whilst 61 weed species have evolved resistance to triazine herbicides, this figure now only accounts for one-third of all documented herbicide-resistant biotypes. Triazine-resistant weeds have been controlled successfully in many countries by the use of alternative herbicides. Due to the economic importance of ALS and ACCase inhibitor herbicides worldwide, and the ease with which weeds have evolved resistance to them, it is likely that ALS and ACCase inhibitor-resistant weeds will present farmers with greater problems in the next five years than triazine-resistant weeds have caused in the past 25 years. Thirty-three weed species have evolved resistance to ALS-inhibitor herbicides in 11 countries. ALS-inhibitor-resistant weeds are most problematic in cereal, corn/soybean and rice production. Thirteen weed species have evolved resistance to ACCase inhibitors, also in 11 countries. ACCase inhibitor resistance in Lolium and Avena spp. threatens cereal production in Australia, Canada, Chile, France, South Africa, Spain, the United Kingdom and the USA. Fourteen weed species have evolved resistance to urea herbicides. Isoproturon-resistant Phalaris minor infesting wheat fields in North West India and chlorotoluron-resistant Alopecurus myosuroides in Europe are of significant economic importance. Although 27 weed species have evolved resistance to bipyridilium herbicides, and 14 weed species have evolved resistance to synthetic auxins, the area infested and the availability of alternative herbicides have kept their impact minimal. The lack of alternative herbicides to control weeds with multiple herbicide resistance, such as Lolium rigidum and Alopecurus myosuroides, makes these the most challenging resistance problems. The recent discovery of glyphosate-resistant Lolium rigidum in Australia is a timely reminder that sound herbicide-resistant management strategies will remain important after the widespread adoption of glyphosate-resistant crops. ©1997 SCI  相似文献   

16.
BACKGROUND: Lolium rigidum Gaud. is one of the most common weed species in winter cereals in north‐eastern Spain, with populations that have evolved resistance to herbicides becoming more widespread since the mid‐1990s. Nine trials on commercial fields with herbicide‐resistant L. rigidum were conducted during the cropping seasons 2001–2002 to 2003–2004, testing the efficacy of 20 herbicides and mixtures pre‐ and post‐emergence and as sequential applications. Weed populations chosen had different resistance patterns to chlortoluron, chlorsulfuron, diclofop‐methyl and tralkoxydim, representative of the resistance problems faced by farmers. RESULTS: In pre‐emergence, prosulfocarb mixed with trifluralin, chlortoluron or triasulfuron was effective on six populations. In post‐emergence, iodosulfuron alone or mixed with mesosulfuron gave the best results but did not control three resistant populations. At Ferran 1, none of the herbicide combinations reached 90% efficacy. CONCLUSIONS: The diverse efficacy patterns of the different populations demonstrate the need for detailed knowledge of the populations before using herbicides. Moreover, the unexpected insufficient efficacy of the new herbicide iodosulfuron prior to its field use shows the need to combine herbicides with other non‐chemical weed control methods to control resistant L. rigidum in north‐eastern Spain. Copyright © 2010 Society of Chemical Industry  相似文献   

17.
The effects of nitrogen fertilizer on the growth and density of natural weed populations in spring barley (Hordeum vulgare L.) and winter wheat (Triticum aestivum L.) were investigated in the absence of herbicide. An increased level of applied nitrogen did not enhance: weed germination, tended to decrease the total weed biomass and had a differential effect upon the biomass of individual weed species in both wheat and barky. In competition with barley, Chenopodium album L. and Lamium spp. had lower nitrogen optima than the crop, while Urtica urens L. had a higher nitrogen optimum. In competition with wheat, Stellaria media (L.) Vill., Lamium spp. and Veronica spp. had lower nitrogen optima than the crop. The systematic changes in nitrogen effect with time were analysed by fitting orthogonal polynomials to the growth and density curves. The methodology could be recommended for other studies in which time or other systematic factors are included, as it supplies information which a traditional analysis of variance cannot provide. Since seed production is positively correlated with biomass, so nitrogen level affects seed production and, hence, the seed pool and future weed population, suggesting that fertilizer usage can be exploited in an integrated programme of crop: weed management. A trend towards lower N fertilizer application owing to concerns about the environment willfavour most of the weed species investigated in these experiments and change the composition of weed populations.  相似文献   

18.
Lolium rigidum is an extremely competitive and prevalent grass weed in cereal fields of Mediterranean areas. The proper timing of control measures is a prerequisite to maximising herbicide efficacy, in terms of both improved control and reduced herbicide inputs. The development of models to predict emergence flushes will contribute to this goal. Pooled cumulative emergence data obtained during three seasons from a cereal field were used to develop a Gompertz model. This explained relative seedling emergence from crop sowing onwards as a function of: (i) standard soil thermal time accumulation (TT) with a base temperature of 1.8°C and (ii) soil thermal time accumulation corrected for soil moisture (cTT). For the latter, no thermal time accumulation was computed for days in which the soil water balance within the upper 10‐cm soil layer indicated no water available for plants, because evapotranspiration was greater than rainfall plus the stored water remaining from the previous day. The model was validated with six datasets from four different sites and seasons. Compared with TT, the model based on cTT showed better performance in predicting L. rigidum emergence, particularly in predicting the end of emergence. Complemented with in‐field observations to minimise deviations, the model may be used as a predictive tool to better control this weed in dryland cereal fields of Mediterranean climate areas.  相似文献   

19.
Interspecific competition between wheat (Triticum aestivum L.) and Chenopodium album L., was studied in pots using the replacement series design of de Wit. Competitive interference for phosphorus, and to some extent for nitrogen, between the two species was noted. This played a major part in limitation of growth of wheat plants by C. album, whereas wheat exhibited greater non-competitive interference in restricting potassium uptake by the weed. Increasing interference from the weed resulted in significant reductions in wheat grain size and yield.  相似文献   

20.
新疆核桃-小麦间作麦田杂草组成及群落特征   总被引:2,自引:0,他引:2  
为明确新疆核桃与小麦间作对麦田杂草种类及群落结构的影响,于2012—2017年对新疆南疆核桃-小麦间作、单作麦田杂草发生情况进行了调查。结果表明,南疆麦区杂草有39种,隶属14科33属,其中以菊科、禾本科、藜科为主;优势杂草有9种,分别是灰绿藜Chenopodium glaucum L.、稗草Echinochloa crusgalli(L.)Beauv.、播娘蒿Descurainia sophia(L.)Schur.、扁蓄Polygonum aviculare L.、硬草Sclerochloa kengiana L.、田旋花Convolvulus arvensis L.、离蕊芥Malcolmia africana(L.)R. Br.、小蓟Cephalanoplos segetum(Bunge.)Kitam.、苣荬菜Sonchus brachyotus DC.;与小麦单作田相比,核桃-小麦间作麦田杂草物种丰富度及Shannon-Wiener指数较高,2017年物种丰富度最高达27种,代表杂草优势集中性的Simpson指数则是小麦单作田高于核桃-小麦间作麦田,2013年高达0.32;核桃-小麦间作有利于麦田播娘蒿、苣荬菜和离蕊芥发生,但不利于萹蓄发生,其它5种优势杂草在间作和单作麦田的发生密度无显著差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号