首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 250 毫秒
1.
铜锌超氧化物歧化酶是植物响应逆境胁迫过程中的关键酶,其含量和活性与植物抗逆性密切相关。本研究以结缕草cDNA为模板,利用同源克隆法,从结缕草转录组数据库中克隆获得了结缕草ZjCSD基因,该基因编码一个含有152个氨基酸的蛋白质。生物信息学分析结果显示:ZjCSD基因编码蛋白为稳定的、亲水的、酸性、非分泌脂溶蛋白,定位于细胞质中,含有CSD蛋白家族特有的保守结构域,具有典型的Cu2+和Zn2+结合位点;与小米、玉米等禾本科植物具有较高的同源性,进化关系较近。采用实时荧光定量PCR研究该基因在不同组织中、不同胁迫处理下的表达模式,结果表明,ZjCSD基因在根、茎、叶中都有表达,叶中表达量最高;干旱胁迫(30% PEG)、盐胁迫(150 mmol/L NaCl)和Cd2+胁迫(200 mg/L Cd2+)均能诱导ZjCSD基因表达量上调,Pb2+胁迫(1 g/L Pb2+)诱导ZjCSD基因表达量下调。故推测结缕草ZjCSD基因在结缕草应对干旱、盐和重金属胁迫的过程中发挥作用。  相似文献   

2.
同源异型域-亮氨酸拉链蛋白(HD-Zip)第I类亚家族在植物非生物胁迫调控过程中起着重要作用,已在多个物种中进行了克隆鉴定,但关于紫花苜蓿该家族基因的研究还鲜有报道。本研究旨在研究紫花苜蓿HD-Zip第I类亚家族基因MsHB7对拟南芥抗旱性的调控功能。通过克隆得到大小为738 bp、编码245个氨基酸的MsHB7基因的开放阅读框。多重序列比对和系统进化树分析结果显示,MsHB7蛋白属于HD-Zip I亚家族,且与拟南芥中ATHB7和ATHB12亲缘关系较近。实时荧光定量分析表明,MsHB7基因受干旱诱导。将MsHB7基因转化拟南芥并获得了阳性植株。干旱处理后,转基因拟南芥比野生型拟南芥萎蔫程度更明显,转基因植株相对含水量显著低于野生型拟南芥,并积累了更多的脯氨酸和丙二醛。qRT-PCR检测发现处理之后逆境胁迫指示基因ATCAT1ATDREB2AATRD29A在转基因拟南芥中的表达量显著升高,而ATLEA3的表达量显著下降。上述结果表明MsHB7基因的过表达可降低转基因拟南芥的耐旱性,为进一步开发利用该基因提供理论依据。  相似文献   

3.
植物高亲和性K+转运蛋白基因(HKT)编码K+、Na+转运或K+-Na+共转运质膜通道蛋白,在植物抗逆过程中发挥重要作用。为了研究长穗偃麦草EeHKT1;4(GenBank: KF956112.1)的功能作用,构建了EeHKT1;4过表达植物表达载体转化拟南芥,进行拟南芥转基因植株的抗旱耐盐性评价分析。结果显示,正常生长条件下野生型(WT)与转基因株系的主根长度无差异,NaCl与甘露醇处理下WT和转基因株系根的生长受到抑制,转基因株系根长度均大于同等胁迫条件下(WT)的根长;正常生长条件下WT与转基因株系表型无显著差异,但在NaCl与甘露醇处理下WT表现出叶片萎缩和植株枯黄,转基因株系仅部分植株表现出叶片萎缩,同一胁迫条件下转基因株系的植株存活率皆高于WT。硝基氮蓝四唑(NBT)与二氨基联苯胺(DAB)染色结果显示,正常生长条件下WT与转基因株系叶片染色相对较浅,随着NaCl与甘露醇浓度提高,所有叶片染色程度逐渐加深且同等胁迫下WT染色程度高于转基因株系。以正常生长条件下基因的表达量为对照,随着NaCl浓度的增加,AtSOS1基因在WT和转基因植株中逐渐上调且在转基因中的表达量高于WT;AtNHX1基因在NaCl处理下上调表达且转基因植株中表达量低于WT,除转基因株系L5外并未检测到WT和转基因株系自身因NaCl浓度的提高AtNHX1基因表达量发生改变;在甘露醇处理下,AtRD29BAtP5CS1基因均上调表达且转基因植株中表达量高于WT。综上所述,EeHKT1;4过表达降低了逆境胁迫下拟南芥中超氧阴离子和H2O2的积累,诱导抗逆基因上调表达,增强拟南芥抗旱耐盐性。  相似文献   

4.
Na+/H+逆向转运蛋白基因SOS1(salt overly sensitive 1)是植物在抵御盐胁迫过程中一个重要的必需基因之一。本研究在紫花苜蓿(Medicago sativa)叶片中克隆得到一个MsSOS1基因,编码859个氨基酸,具有一个CAP-ED superfamily结构域、一个Crp superfamily结构域和一个Na+/H+ Exchanger superfamily结构域。与鹰嘴豆、大豆、羽扇豆、花生和葡萄的一致性分别是91%,87%,85%,84%和77%。实时荧光定量PCR分析表明,MsSOS1基因在根、茎、叶和花中均有表达,其中在根中的表达量最高,花中最低。此外,MsSOS1基因在4℃、PEG和ABA的胁迫中的表达均受到调控,推测该基因的表达与紫花苜蓿的抗逆性有关。  相似文献   

5.
李莹  柳参奎 《草业学报》2015,24(1):99-106
从碱茅酵母cDNA文库中经过NaCl、NaHCO3筛选,均得到长为1153 bp碱茅6-磷酸海藻糖合成酶基因(PutTPS)片段。通过3'End cDNA amplification方法获得基因缺失的3'序列,该基因全长3358 bp,编码882个氨基酸。氨基酸序列比较结果表明,PutTPS氨基酸序列与水稻、拟南芥、玉米等多种高等植物的TPS蛋白的同源性高达60%90%。利用Northern blot技术,研究该基因的组织表达模式及NaCl、NaHCO3胁迫处理下基因的表达模式变化;同时对转pYES2- PutTPS基因酵母菌株进行盐、碱、氧化胁迫、渗透胁迫处理,观察其在逆境下的生存表现。结果表明,PutTPS具有组织表达特异性,其中在根和花中表达量最大;NaCl、NaHCO3会诱导PutTPS 基因在根和叶中的上调表达;同时重组酵母菌株对盐碱、氧化、渗透胁迫及干旱等逆境的适应能力显著增强。以上研究结果表明,碱茅PutTPS基因与逆境之间具有一定的应答关系,并在植物适应环境逆境过程中起着重要的作用。  相似文献   

6.
长叶红砂是一种强旱生泌盐盐生植物,对盐渍荒漠环境具有极强的适应性。超氧化物歧化酶(superoxide dismutase, SOD)在植物抵御逆境胁迫过程中发挥着重要作用。本研究利用已有长叶红砂转录组数据库中SOD基因的已知序列设计引物,采用PCR方法克隆得到大小为663 bp、编码220个氨基酸的SOD基因的开放阅读框,并将其定名为RtSOD。预测该基因编码蛋白分子量为55.90 kDa,理论等电点5.11。多重序列比对分析结果显示该蛋白属于Cu/Zn SOD家族,与其他植物中SOD蛋白同源性较高。系统进化分析结果显示RtSOD基因与刚毛柽柳的SOD基因亲缘关系较近。实时荧光定量PCR(qRT-PCR)分析结果显示NaCl、4 ℃、PEG、H2O2及ABA处理均能诱导该基因表达。构建RtSOD真核表达载体,将其转化到拟南芥中,结果发现:盐、干旱胁迫条件下,转RtSOD基因拟南芥的生长状况明显优于野生型,转基因株系抗氧化酶活性(SOD、POD、CAT)和脯氨酸含量较野生型显著升高,H2O2及MDA含量较野生型显著降低。qRT-PCR检测发现转基因拟南芥中响应逆境胁迫相关基因的表达量均显著高于野生型。上述结果说明RtSOD基因的过表达可提高转基因植物的抗逆性,进一步说明RtSOD参与长叶红砂对非生物胁迫的响应,是该植物抗氧化系统中的重要元件。  相似文献   

7.
MsLEA2基因是从紫花苜蓿中克隆到的胚胎晚期富集蛋白基因,属于LEA_2家族。以转基因拟南芥T_3代植株的3个株系为材料,从表型、生理和分子生物学三个方面研究铝胁迫下转MsLEA2基因拟南芥的耐铝毒性能。结果表明:铝胁迫下转基因株系的脯氨酸含量高于对照(野生型),丙二醛含量和电导率则低于对照且差异显著(P0.05),CAT、POD和SOD活性显著高于对照。初步证明转MsLEA2基因拟南芥的耐铝毒性能明显高于对照,紫花苜蓿的MsLEA2基因具有提高植物耐铝毒胁迫的能力。  相似文献   

8.
本研究首次以盐生草(Halogeton glomeratus)为材料,模拟盐胁迫(100 mmol·L-1 NaCl)环境,探讨不同浓度重金属Cu2+,Zn2+,Ni2+,Cd2+,Pb2+处理对其萌发特性的影响。结果表明:随处理浓度的升高,发芽率和发芽势均表现为先升高后下降趋势,表明低浓度重金属离子可促进植物的萌发,幼苗鲜重、干重、株高均呈现逐渐下降趋势。测定离子含量得出,Cd2+和Pb2+离子含量随着胁迫加重呈先升高后下降的趋势,Cu2+,Zn2+和Ni2+离子含量逐渐增加。测定根系活力发现,Cu2+,Zn2+根系活力随浓度的升高呈先上升后下降趋势,Ni2+,Cd2+,Pb2+根系活力逐渐降低。综合聚类及主成分分析得出:盐生草耐Cu2+,Zn2+,Ni2+,Cd2+,Pb2+的临界浓度分别为:1.00 mmol·L-1,10.00 mmol·L-1,0.30 mmol·L-1,0.20 mmol·L-1和0.50 mmol·L-1,在胁迫浓度达临界值时贡献率最大的指标分别为:萌发指标、干重、发芽势、干重和发芽势。  相似文献   

9.
4CL(4-coumarate:coenzyme A ligase)是木质素合成途径关键酶,已被证明在生物和非生物胁迫、机械损伤抗性等生物过程中具有重要作用,但与柠檬酸分泌相关的耐铝功能还没有报道。本研究选择丹波黑大豆Gm4CL2,利用RT-PCR技术克隆其全长编码序列,蛋白质序列多重序列比对和进化树分析不同物种间的亲缘关系,农杆菌介导浸花法和叶盘法分别遗传转化拟南芥和紫花苜蓿,q RT-PCR技术检测基因的表达水平。序列分析结果发现,Gm4CL2全长编码序列为1668 bp,该基因编码555个氨基酸,为双子叶植物Ⅰ类4CL。Real-time PCR结果显示,50μmol·L-1Al Cl3(p H 4.5)特异诱导Gm4CL2在丹波黑大豆幼苗0~2 cm的根尖组织表达;过表达Gm4CL2拟南芥,在铝处理条件下其根尖At MATE、At STAR1和At STAR2表达量显著上调(P<0.05)。Al3+胁迫条件下,过表达Gm4CL2拟南芥根相对伸长量、根尖SOD、POD活性和柠檬酸分泌量显著高于野生型,根尖伊文...  相似文献   

10.
紫花苜蓿是世界最重要的豆科牧草之一,干旱是影响其产量和地理分布的关键瓶颈。在紫花苜蓿响应干旱胁迫过程中,转录因子发挥着重要的调控作用。TCP(teosinte branchesd 1/cycloidea/pro-liferating cell factors)为植物特有的转录因子,在植物生长、发育、响应逆境胁迫中都具有重要的生物学功能。截至目前,该基因家族在紫花苜蓿中的分布以及响应干旱胁迫的生物学功能仍未见报道。因此,为进一步挖掘紫花苜蓿中响应干旱胁迫功能基因,本研究利用生物信息学方法在全基因组水平对TCP基因家族进行了鉴定,并对其系统进化、基因结构、染色体定位、共线性分析以及干旱胁迫下的表达模式进行了分析。结果表明,紫花苜蓿基因组中共鉴定出40个MsTCP基因,不均匀地分布于20条染色体上,其中包括17对旁系同源基因对,且都是基因片段复制事件。系统发育和保守结构域分析发现,MsTCP基因可以分为2个大分支和3个亚家族(PCF, CIN与CYC/TB1),同一分支中的成员具有相同氨基酸数目的TCP结构域,同亚家族中的成员具有相似的保守基序与基因结构。此外,通过分析紫花苜蓿响应干旱转录组数据共鉴定出4个可能与紫花苜蓿响应干旱胁迫有关的MsTCP基因(MsTCP23MsTCP27MsTCP29MsTCP33)。qRT-PCR结果进一步表明PEG模拟干旱胁迫处理后,这4个基因的表达量在根和叶中均显著上调,进一步确定了这些基因的确响应紫花苜蓿干旱胁迫。该研究为后期深入解析紫花苜蓿响应干旱胁迫理论以及通过基因工程技术创制高抗旱紫花苜蓿新种质奠定基础。  相似文献   

11.
WRKY转录因子是植物特有的转录因子,广泛参与植物对多种逆境胁迫的反应。但是对紫花苜蓿中WRKY转录因子的研究还较少。本研究从紫花苜蓿中克隆了一个WRKY I类转录因子MsWRKY33。该基因CDS全长1536 bp,编码512个氨基酸,结构分析显示MsWRKY33包括两个WRKY结构域和一个C2H2锌指结构(C-X4-C-X23-H-X-H),表明其属于WRKY I 族WRKY转录因子。亚细胞定位预测MsWRKY33蛋白定位在细胞核。MsWRKY33基因受盐、干旱和冷胁迫诱导,暗示基因可能参与了这些逆境胁迫的调控。构建原核表达载体pET-MsWRKY33, SDS-PAGE分析表明在大肠杆菌中表达了MsWRKY33蛋白。扩增MsWRKY33编码区cDNA,以pBI121为基础载体,构建植物超表达载体pBI121-MsWRKY33。采用农杆菌介导的愈伤组织培养法转化紫花苜蓿。利用nptⅡ基因引物和载体特异引物检测抗性苗呈阳性,表明目的基因已成功导入紫花苜蓿基因组中。qRT-PCR检测发现,MsWRKY33基因在转基因株系中得到增强表达。本研究为进一步探索WRKY转录因子基因在紫花苜蓿抗逆性调控中的作用奠定了基础。  相似文献   

12.
根据已经克隆得到的MsZIP基因(GenBank序列号:HQ911778),扩增编码区cDNA,构建植物超表达载体PBI-MsZIP。酶切鉴定表明,目的基因已经正确的插入到载体中,超表达载体构建成功。采用CaCl2冻融法将其转入农杆菌菌株中,然后采用农杆菌介导的方法,转化紫花苜蓿,共得到11株抗性苗,对其中的4株进行卡那霉素基因PCR检测,均得到了目的条带。同时对这4株抗性苗进行目的基因的RT-PCR检测,均得到了目的条带。说明MsZIP基因已经成功在苜蓿中超表达。为了进一步验证该基因的功能,分别用200 mmol/L NaCl和25 μmol/L PEG-6000处理转基因苜蓿,3 d后进行生理指标的测定。结果表明,MsZIP基因在苜蓿中超表达可以提高苜蓿的耐盐性和耐旱性。  相似文献   

13.
C2H2型锌指蛋白ZAT10在植物应对外界非生物胁迫中具有重要的作用。克隆得到紫花苜蓿C2H2型锌指蛋白MsZAT10基因。该基因开放阅读框全长762 bp,编码253个氨基酸。ZAT10蛋白含有2个单C2H2型保守结构域,有典型的QALGGH保守基序,属于C2H2型锌指蛋白。氨基酸序列比对和进化树分析表明,紫花苜蓿MsZAT10与蒺藜苜蓿MtZAT10亲缘关系最近,其氨基酸的相似性为76%。构建植物表达载体pCBM-MsZAT10,通过农杆菌介导法转化到烟草,经过草丁膦(PPT)抗性筛选和聚合酶链式反应(PCR)鉴定,获得25株阳性植株。荧光定量PCR(qRT-PCR)检测表明,MsZAT10基因在转基因株系中得到表达。选取3个转基因株系进行抗逆性分析,在-4 ℃条件下处理2 h,转MsZAT10基因烟草叶片的萎蔫程度和相对电导率均低于野生型烟草。在0 ℃条件下处理5 h,转MsZAT10基因烟草与野生型烟草相比积累更多的脯氨酸和可溶性蛋白,但丙二醛(MDA)含量要低于野生型烟草。另外,在300 mmol·L-1 NaCl溶液中处理4 d,转MsZAT10基因烟草的打孔叶圆片仍保持绿色而野生型烟草明显失绿。以上结果表明MsZAT10基因在提高烟草对低温和盐胁迫的抗性方面具有重要的作用。  相似文献   

14.
刘莹  才华  刘晶  柏锡  纪巍  朱延明 《草业学报》2013,22(2):150-157
GsCRCK基因是参与胁迫早期应答的钙/钙调素调控的受体类蛋白激酶基因,研究发现GsCRCK正向调控拟南芥对NaCl和ABA胁迫的耐性,将耐盐蛋白激酶基因GsCRCK转化苜蓿,对于增强苜蓿的耐盐性具有重要的现实意义。本研究采用农杆菌介导法将其转入农菁1号苜蓿,获得大量抗性植株。经 PCR和RT-PCR检测证明GsCRCK基因已整合到农菁1号苜蓿基因组中并在转基因植株中转录表达。对获得的2个转基因株系进行耐盐性分析,在300 mmol/L NaCl条件下进行胁迫处理,测定处理0,3,6,9,12,15 d后的质膜透性、丙二醛(MDA)和叶绿素(Chl)含量,以及胁迫15 d时的SOD活性;并统计400 mmol/L NaCl处理15 d时各株系的死亡率。结果显示,300 mmol/L 高盐胁迫15 d后转基因苜蓿仍能正常生长,而野生型苜蓿则遭受盐害严重;转基因苜蓿的相对电导率极显著低于野生型,MDA含量也显著低于野生型,而Chl含量和SOD活性都显著高于野生型;在400 mmol/L NaCl处理下,2个转基因株系的死亡率分别为13.33%和10.00%,明显低于野生型植株(63.33%)。表明GsCRCK基因的导入提高了转基因苜蓿的耐盐性。  相似文献   

15.
为获得MsMYB2基因过量表达的转基因拟南芥(Arabidopsis thaliana)植株,利用PCR技术在紫花苜蓿(Medicago sativa)中克隆出MYB2基因并命名为MsMYB2,MsMYB2基因编码区全长834 bp,编码1条长度为278个氨基酸的多肽链。通过DNA重组技术将其与pBI121连接,成功构建了植物表达载体pBI-MsMYB2。通过花序侵染法获得具有卡那霉素抗性的转基因拟南芥植株,并通过PCR和RT-PCR对目的基因进行检测,结果证明目的基因已整合到拟南芥基因组中并且可以表达,成功获得了MsMYB2基因表达的拟南芥转基因植株。  相似文献   

16.
以细叶百合LpWRKY20基因为研究对象,通过荧光定量(qRT-PCR)分析该基因在不同非生物胁迫中的表达,结果表明,在不同非生物胁迫中该基因表达量存在差异。利用叶盘法将pBI121-LpWRKY20-GFP植物表达载体转入烟草并获得转基因株系。在干旱胁迫条件下,转基因植株的表型优于野生型;转基因植株超氧化物歧化酶(SOD)、过氧化氢酶(CAT)活性均高于野生型,且随着时间的延长这种清除体内自由基的能力在显著升高,而丙二醛(MDA)含量均低于野生型,说明转基因植株细胞膜受损程度较低,具有较强的自我修复能力。干旱条件下表型及生理指标的变化均表明转基因植株具有较强的抗旱性,初步推断LpWRKY20具有抗旱的功能。  相似文献   

17.
为研究日本结缕草ZjADH基因是否与植物耐寒有关,通过DNA重组技术将ZjADH基因插入3302Y质粒中,成功构建了植物表达载体3302Y-ZjADH,通过农杆菌介导的花序侵染法获得具有草铵膦抗性的转基因植株。PCR和qRT-PCR鉴定表明,目的基因已整合入拟南芥基因组中并能够成功表达。对野生型和转基因拟南芥进行低温(4 ℃)处理和耐寒分析,结果表明,转基因拟南芥对低温胁迫的抵抗能力明显高于未转基因植株。在低温胁迫下,转基因拟南芥中脯氨酸的含量显著高于野生型植株,而活性氧的积累明显低于野生型植株;对转基因植物抗性相关基因的表达分析显示:转基因植物体内SOD、APX及LEA基因的表达水平明显高于未转基因植株,说明ZjADH基因可能通过提高转基因植物体内SOD、APX及LEA的表达活性来增强植物的抗寒性。综上所述,日本结缕草ZjADH基因的表达能够提高转基因植株的耐寒性,对ZjADH基因的研究也为进一步获得抗寒转基因日本结缕草植株奠定理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号