首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
石羊河流域生态系统的气候变化脆弱性评估   总被引:1,自引:0,他引:1  
选取石羊河流域生态系统作为研究对象,简要分析影响其生态系统气候变化脆弱性的主要因子。在此基础上,选取4类共13项指标,构建了生态系统脆弱性评价指标体系。通过层次分析法确定了指标权重,最后采用综合指标分析方法,对石羊河流域生态系统气候脆弱性现状进行了定量评价;结合气候变化情景,定量分析了未来该流域的脆弱性变化趋势,并给出减缓不利影响的对策和建议。  相似文献   

2.
全球气候变化背景下中国黄河流域的响应   总被引:2,自引:0,他引:2  
黄河流域地处干旱、半干旱地区,水资源系统对气候变化十分敏感。最近几十年黄河流域气温和降水发生了明显变化。20世纪80年代中期以来,黄河流域气温明显升高,且以冬季增温为主,流域北部增温尤其显著;20世纪90年代,黄河流域降水明显减少;进入21世纪,降水略有增加。气温升高和降水减少是黄河流域径流锐减的重要原因。根据气候模式...  相似文献   

3.
In recent years, climate change has been aggravated in many regions of the world. The Hexi Corridor is located in the semiarid climate zone of Northwest China, which is particularly affected by climate change. Climate change has led to the spatial and temporal variations of temperature and precipitation, which may result in hydrological drought and water shortage. Thus, it is necessary to explore and assess the drought characteristics of river systems in this area. The patterns of hydrological drought in the Hexi Corridor were identified using the streamflow drought index(SDI) and standardized precipitation index at 12-month timescale(SPI12) from 1960 to 2013. The evolution of drought was obtained by the Mann–Kendall test and wavelet transform method. The results showed that both the mean annual SDI and SPI12 series in the Hexi Corridor exhibited an increasing trend during the study period. According to the results of wavelet analysis, we divided the study period into two segments, i.e. before and after 1990. Before 1990, the occurrence of droughts showing decreased SDI and SPI12 was concentrated in the northern part of the corridor and shifted to the eastern part of the corridor after 1990. The probability of drought after 1990 in Shule River basin decreased while increased in Shiyang River basin. The wavelet analysis results showed that Shiyang River basin will be the first area to go through the next drought period. Additionally, the relationships between drought pattern and climate indices were analyzed. The enhanced westerly winds and increased precipitation and glacier runoff were the main reasons of wet trend in the Hexi Corridor. However, the uneven spatial variations of precipitation, temperature and glacier runoff led to the difference of hydrological drought variations between the Shule, Heihe and Shiyang River basins.  相似文献   

4.
Existing δ2H and δ18O values for precipitation and surface water in the Nile Basin were used to analyze precipitation inputs and the influence of evaporation on the isotopic signal of the Nile River and its tributaries. The goal of the data analysis was to better understand basin processes that influence seasonal streamflow for the source waters of the Nile River, because climate and hydrologic models have continued to produce high uncertainty in the prediction of precipitation and streamflow in the Nile Basin. An evaluation of differences in precipitation δ2H and δ18O values through linear regression and distribution analysis indicate variation by region and season in the isotopic signal of precipitation across the Nile Basin. The White Nile Basin receives precipitation with a more depleted isotopic signal compared to the Blue Nile Basin. The hot temperatures of the Sahelian spring produce a greater evaporation signal in the precipitation isotope distribution compared to precipitation in the Sahara/Mediterranean region, which can be influenced by storms moving in from the Mediterranean Sea. The larger evaporative effect is reversed for the two regions in summer because of the cooling of the Sahel from inflow of Indian Ocean monsoon moisture that predominantly influences the climate of the Blue Nile Basin. The regional precipitation isotopic signals convey to each region's streamflow, which is further modified by additional evaporation according to the local climate. Isotope ratios for White Nile streamflow are significantly altered by evaporation in the Sudd, but this isotopic signal is minimized for streamflow in the Nile River during the winter, spring and summer seasons because of the flow dominance of the Blue Nile. During fall, the contribution from the White Nile may exceed that of the Blue Nile, and the heavier isotopic signal of the White Nile becomes apparent. The variation in climatic conditions of the Nile River Basin provides a means of identifying mechanistic processes through changes in isotope ratios of hydrogen and oxygen, which have utility for separating precipitation origin and the effect of evaporation during seasonal periods. The existing isotope record for precipitation and streamflow in the Nile Basin can be used to evaluate predicted streamflow in the Nile River from a changing climate that is expected to induce further changes in precipitation patterns across the Nile Basin.  相似文献   

5.
干旱地区的流域规划与绿洲建设——以石羊河流域为例   总被引:3,自引:0,他引:3  
本文从中国西北干旱地区内陆河流域不同地段自然环境和生态经济特征的地域分异特点入手,以石羊河流域为例,探讨干旱地区流域农业生态经济区划的原则与方法、流域不同地段生态经济区及农业生态地域类型的协调发展与绿洲建设问题。  相似文献   

6.
近50a西北干旱区气候变化对农业的影响   总被引:23,自引:8,他引:15  
本文选取了西北干旱区21个代表站点1951-2000年逐日气温和逐日降水量资料。用趋势法和百分位阈值法分析年平均气温、年降水量、极端年最低温度、年最高温度和极端降水量变化特征及其各分区极端气候变化趋势。研究结果表明:(1)近50a西北干旱区气温呈上升趋势(0.22℃/10a),1986年后气温明显升高,柴达木盆地和北疆升温较大。近50a西北干旱区年降水量变化和趋势分布,降水变化有增加的趋势(3.2mm/10a),其中北疆降水增加最多。(2)西北干旱区近40a年极端最低温度的天数有减少趋势,平均最低温度天数的减少率为7-8天/40a。而极端年最高温度的天数略有增加趋势,平均增加率为0.5天/40a左右。年最高温度略有减少趋势,平均变率为-0.5℃/40a,年最低温度也有增加趋势,平均变率为1.0℃/40a。西北干旱区近40a极端降水的天数增加了2天/40a。(3)气候变暖对西北干旱区农业既有有利影响,又有不利影响,降水量增加,极端气候事件减少对农业有有利影响。  相似文献   

7.
In this study,we analyzed the hydrological and meteorological data from the Syr Darya River Basin during the period of 1930–2015 to investigate variations in river runoff and the impacts of climate change and human activities on river runoff.The Syr Darya River,which is supplied by snow and glacier meltwater upstream,is an important freshwater source for Central Asia,as nearly half of the population is concentrated in this area.River runoff in this arid region is sensitive to climate change and human activities.Therefore,estimation of the climatic and hydrological changes and the quantification of the impacts of climate change and human activities on river runoff are of great concern and important for regional water resources management.The long-term trends of hydrological time series from the selected 11 hydrological stations in the Syr Darya River Basin were examined by non-parametric methods,including the Pettitt change point test and Mann-Kendall trend tests.It was found that 8 out of 11 hydrological stations showed significant downward trends in river runof f.Change of river runoff variations occurred in the year around 1960.Moreover,during the study period(1930–2015),annual mean temperature,annual precipitation,and annual potential evapotranspiration in the river basin increased substantially.We employed hydrological sensitivity method to evaluate the impacts of climate change and human activities on river runoff based on precipitation and potential evapotranspiration.It was estimated that human activities accounted for over 82.6%–98.7%of the reduction in river runoff,mainly owing to water withdrawal for irrigation purpose.The observed variations in river runoff can subsequently lead to adverse ecological consequences from an ecological and regional water resources management perspective.  相似文献   

8.
利用水热平衡模型,并结合实地考察和历史文献分析,恢复了石羊河流域全新世四个特征时期的降水量。结果表明:在6.5~5.8kaB.P、5.5~5.2kaB.P、3.6kaB.P、1.5kaB.P四个特征时期石羊河流域的降水量分别为167mm、157mm、152mm、147mm,分别比现在多30%、21%、15%和10%。降水量的这种变化趋势说明自全新世中期以来,石羊河流域的气候是趋于向干旱化的方向发展的。这一结论为研究本区土地退化、荒漠化等环境问题提供了自然背景。  相似文献   

9.
Analysis of spatial-temporal variations of desert vegetation under the background of climate changes can provide references for ecological restoration in arid and semi-arid areas.In this study,we used the Global Inventory Modeling and Mapping Studies(GIMMS)NDVI data from 1982 to 2006 and Moderate Resolution Imaging Spectroradiometer(MODIS)NDVI data from 2000 to 2013 to reveal the dynamics of desert vegetation in Hexi region of Northwest China over the past three decades.We also used the annual temperature and precipitation data acquired from the Chinese meteorological stations to analyze the response of desert vegetation to climatic variations.The average value of NDVImax(the maximum NDVI during the growing season)for desert vegetation in Hexi region increased at the rate of 0.65×10–3/a(P0.05)from 1982 to 2013,and the significant increases of NDVImax mainly appeared in the typical desert vegetation areas.Vegetation was significantly improved in the lower reaches of Shule and Shiyang river basins,and the weighted mean center of desert vegetation mainly shifted toward the lower reaches of the two basins.Almost 95.32% of the total desert vegetation area showed positive correlation between NDVImax and annual precipitation,indicating that precipitation is the key factor for desert vegetation growth in the entire study area.Moreover,the areas with non-significant positive correlation between NDVImax and annual precipitation mainly located in the lower reaches of Shiyang and Shule river basins,this may be due to human activities.Only 7.64% of the desert vegetation showed significant positive correlation between NDVImax and annual precipitation in the Shule River Basin(an extremely arid area),indicating that precipitation is not the most important factor for vegetation growth in this basin,and further studies are needed to investigate the mechanism for this phenomenon.  相似文献   

10.
Wulong BA 《干旱区科学》2018,10(6):905-920
Climate change may affect water resources by altering various processes in natural ecosystems. Dynamic and statistical downscaling methods are commonly used to assess the impacts of climate change on water resources. Objectively, both methods have their own advantages and disadvantages. In the present study, we assessed the impacts of climate change on water resources during the future periods (2020-2029 and 2040-2049) in the upper reaches of the Kaidu River Basin, Xinjiang, China, and discussed the uncertainties in the research processes by integrating dynamic and statistical downscaling methods (regional climate models (RCMs) and general circulation modes (GCMs)) and utilizing these outputs. The reference period for this study is 1990-1999. The climate change trend is represented by three bias-corrected RCMs (i.e., Hadley Centre Global Environmental Model version 3 regional climate model (HadGEM3-RA), Regional Climate Model version 4 (RegCM4), and Seoul National University Meso-scale Model version 5 (SUN-MM5)) and an ensemble of GCMs on the basis of delta change method under two future scenarios (RCP4.5 and RCP8.5). We applied the hydrological SWAT (Soil and Water Assessment Tool) model which uses the RCMs/GCMs outputs as input to analyze the impacts of climate change on the stream flow and peak flow of the upper reaches of the Kaidu River Basin. The simulation of climate factors under future scenarios indicates that both temperature and precipitation in the study area will increase in the future compared with the reference period, with the largest increase of annual mean temperature and largest percentage increase of mean annual precipitation being of 2.4°C and 38.4%, respectively. Based on the results from bias correction of climate model outputs, we conclude that the accuracy of RCM (regional climate model) simulation is much better for temperature than for precipitation. The percentage increase in precipitation simulated by the three RCMs is generally higher than that simulated by the ensemble of GCMs. As for the changes in seasonal precipitation, RCMs exhibit a large percentage increase in seasonal precipitation in the wet season, while the ensemble of GCMs shows a large percentage increase in the dry season. Most of the hydrological simulations indicate that the total stream flow will decrease in the future due to the increase of evaporation, and the maximum percentage decrease can reach up to 22.3%. The possibility of peak flow increasing in the future is expected to higher than 99%. These results indicate that less water is likely to be available in the upper reaches of the Kaidu River Basin in the future, and that the temporal distribution of flow may become more concentrated.  相似文献   

11.
The relationship between climate change and water resources in the Tarim River was analyzed by combining the temperature,precipitation and streamflow data from 1957 to 2007 from the four headstreams of the Tarim River (Aksu,Hotan,Yarkant and Kaidu rivers) in the study area.The long-term trend of the hydrological time series including temperature,precipitation and streamflow were studied using correlation analysis and partial correlations analysis.Holt double exponential smoothing was used to fit the trends between streamflow and the two climatic factors of Aksu River,Hotan River and Yarkant River.The streamflow of the main stream was forecasted by Autoregressive Integrated Moving Average Model (ARIMA) modeling by the method of time series analysis.The results show that the temperature experienced a trend of monotonic rising.The precipitation and runoff of the four headstreams of the Tarim River increased,while the inflow to the headstreams increased and the inflow into the Tarim River decreased.Changes of temperature and precipitation had a significant impact on runoff into the four headstreams of the Tarim River: the precipitation had a positive impact on water flow in the Aksu River,Hotan River and Kaidu River,while the temperature had a positive impact on water flow in the Yarkant River.The results of Holt double exponential smoothing showed that the correlation between the independent variable and dependent variable was relatively close after the model was fitted to the headstreams,of which only the runoff and temperature values of Hotan River showed a significant negative correlation.The forecasts by the ARIMA model for 50 years of annual runoff at the Allar station followed the pattern of the measured data for the same years.The short-term forecasts beyond the observed series adequately captured the pattern in the data and showed a decreasing tendency in the Tarim River flow of 3.07% every ten years.The results showed that global warming accelerated the water recharge process of the headstreams.The special hydrological characteristics of the arid area determined the significant association between streamflow and the two climatic factors studied.Strong glacier retreat is likely to bring a series of flood disasters within the study area.  相似文献   

12.
Catchments dominated by meltwater runoff are sensitive to climate change as changes in precipitation and temperature inevitably affect the characteristics of glaciermelt/snowmelt, hydrologic circle and water resources. This study simulated the impact of climate change on the runoff generation and streamflow of Chu River Basin(CRB), a glacierized basin in Central Asia using the enhanced Soil and Water Assessment Tool(SWAT). The model was calibrated and validated using the measured monthly streamflow data from three discharge gauge stations in CRB for the period 1961–1985 and was subsequently driven by downscaled future climate projections of five Global Circulation Models(GCMs) in Coupled Model Inter-comparison Project Phase 5(CMIP5) under three radiative forcing scenarios(RCP2.6, RCP4.5 and RCP8.5). In this study, the period 1966–1995 was used as the baseline period, while 2016–2045 and 2066–2095 as the near-future and far-future period, respectively. As projected, the climate would become warmer and drier under all scenarios in the future, and the future climate would be characterized by larger seasonal and annual variations under higher RCP. A general decreasing trend was identified in the average annual runoff in glacier(–26.6% to –1.0%), snow(–21.4% to +1.1%) and streamflow(–27.7% to –6.6%) for most of the future scenario periods. The projected maximum streamflow in each of the two future scenarios occurred one month earlier than that in the baseline period because of the reduced streamflow in summer months. Results of this study are expected to arouse the serious concern about water resource availability in the headwater region of CRB under the continuously warming climate. Changes in simulated hydrologic outputs underscored the significance of lowering the uncertainties in temperature and precipitation projection.  相似文献   

13.
基于VB的甘肃石羊河流域水资源管理信息系统设计   总被引:2,自引:1,他引:1  
介绍了石羊河流域水资源管理信息系统建立的必要性和初步设计方案,包括系统目标设计、系统结构设计、系统概念设计等。该系统的建立可提高流域管理工作效率和水平,使该流域水资源管理工作进一步规范化。  相似文献   

14.
石羊河中下游河岸带植被对地下水位变化的响应   总被引:1,自引:0,他引:1  
通过对石羊河中下游河岸带的地下水位定位观测及植被和土壤水盐含量调查发现:河岸带地下水位与河床横向间距呈正相关;在长流水河段的河岸带,以植被类型、物种丰富度和植被盖度与河床间距的关系,判断河流影响地下水位距河床的范围约为130 m,但对于河岸带植被作用距河床横向间距可达500 m。在断流河段,距古河床0~200 m区间内分布河岸植物种。虽然石羊河下游断流,但河流地貌影响地下水位,有利于植物生长。调查区域内有5个植被型,12个群系和29个群丛,河岸带发育隐域植被类型。当地下水位≤2 m时,沼泽草甸发育;当地下水位3~6 m时,以芦苇、赖草和骆驼蓬为建群种的盐化草甸发育;地下水位≤14 m时,则柽柳灌丛繁茂。石羊河的径流量丰欠影响河岸带地下水位变化,河岸带植被组成、结构和分布响应地下水位埋深。
  相似文献   

15.
石羊河流域的水资源及其公众的水意识   总被引:1,自引:1,他引:0  
在石羊河流域属资源性缺水地区,相比较而言其上下游的耕地数量与其产流量成反比。农民普遍采取有水就灌的灌水方式,存在水资源浪费现象。大多数公众对水资源的认识仅凭自己的用水情况来判断。若农民灌溉河水,水资源严格受到水利部门的控制,大多数人认为水资源不够用,若利用井水灌溉,灌水者基本自己决定用水的数量和灌水时间,灌水者感觉水资源并未受到限制,水是充足的。在石羊河流域中下游地区,因有井水的支持而导致51.97%-64.06%的人认为水资源够用,也就使人认为有井即有水。在这种思想引导下,人们便疯狂的打井,无节制的抽取地下水。石羊河流域水资源管理部门在指导和保护水资源行为的同时,应加强流域水资源现状、利用和管理的宣传,使流域内绝大多数人懂得区域水资源的现状、利用方式、开发潜力,自觉形成节约用水、科学用水、持续用水的意识。  相似文献   

16.
甘肃省近43年降水资源变化对农业的影响   总被引:16,自引:8,他引:8  
选取甘肃省63个地面测站降水量资料,利用对比分析方法,研究了甘肃省降水资源变化特征及其对农业的影响.结果表明:年降水量,越冬作物生育期、春小麦生育期和秋作物生育期的降水量1987-2003年与1961-1986年相比,时空分布发生了明显变化,河西中东部为增多趋势,河东为减少趋势,分界线与黄河走向基本一致;河东年降水量减少的幅度和速率比河西增加的幅度和速率都大,河东气候向暖干化发展的趋势加快;旱作区降水量减少,极端干旱事件频繁发生,可利用降水资源更加紧缺,对农业可持续发展的负面影响明显增大.  相似文献   

17.
Glaciers are known as natural 'solid reservoirs', and they play a dual role between the composition of water resources and the river runoff regulation in arid and semi-arid areas of China. In this study, we used in situ observation data from Urumqi Glacier No. 1, Xinjiang Uygur Autonomous Region, in combination with meteorological data from stations and a digital elevation model, to develop a distributed degree-day model for glaciers in the Urumqi River Basin to simulate glacier mass balance processes and quantify their effect on streamflow during 1980-2020. The results indicate that the mass loss and the equilibrium line altitude (ELA) of glaciers in the last 41 years had an increasing trend, with the average mass balance and ELA being -0.85 (±0.32) m w.e./a (meter water-equivalent per year) and 4188 m a.s.l., respectively. The glacier mass loss has increased significantly during 1999-2020, mostly due to the increase in temperature and the extension of ablation season. During 1980-2011, the average annual glacier meltwater runoff in the Urumqi River Basin was 0.48×108 m3, accounting for 18.56% of the total streamflow. We found that the annual streamflow in different catchments in the Urumqi River Basin had a strong response to the changes in glacier mass balance, especially from July to August, and the glacier meltwater runoff increased significantly. In summary, it is quite possible that the results of this research can provide a reference for the study of glacier water resources in glacier-recharged basins in arid and semi-arid areas.  相似文献   

18.
对黑河上游山区1956—2004a祁连站气温与降水数据、莺落峡水文站出山径流进行各季年均值变化分析、基于MathCAD对气温和降水分别与出山径流的关系进行相关分析,发现近50a黑河流域气温与降水的变化没有显著的相关性,降水变化与径流的变化表现出正相关,而气温与径流则没有相关性。近50a降水各季变化没有一致性,却出现一定的规律,即春季持平,夏秋下降,而冬季增加。相对于降水而言,气温变化则表现出各季之间的一致性趋势,即近10a表现出明显的增温趋势,而且增温幅度相似,都在2℃左右。另外对气温与降水对出山径流的影响做了量化,降水与径流的相关系数为0.557,而气温与径流的相关系数只有0.045左右;根据影响径流的气候因子所占权重,集成气候(无量纲)变化曲线,显示出与径流变化的一致性,即气候变化对径流变化有明显的影响;依据本文分析和总结,预计今后10—20a气温、降水都将有升高或增加趋势,届时出山径流将相应增加。  相似文献   

19.
新疆奎屯河流域平原区生态需水研究   总被引:3,自引:1,他引:2  
新疆奎屯河流域地处我国西北干旱区,随着人口增加和经济发展,国民经济需水与生态需水已成为流域水资源开发利用和生态环境保护的主要矛盾。因此,为了实现奎屯河流域水资源的可持续利用及国民经济的可持续发展,急需对生态需水进行研究。本文以流域社会经济与生态环境协调发展为目标,分析了奎屯河流域存在的主要生态环境问题,在干旱区生态需水概念与分类的基础上,给出了奎屯河流域生态需水的界定范围。在此前提下,从流域生态环境现状及未来需求出发,采用不同的计算方法,对流域生态需水进行了计算,可为流域水资源优化配置及生态环境建设提供科学的依据。结果表明:奎屯河流域生态需水达5.65×108m3,占流域水资源总量16.98×108m3的33.3%,占径流总量15.41×108m3的36.7%。其中天然绿洲生态需水为2.41×108m3,占生态需水的43%;人工绿洲生态需水达3.24×108m3,占生态需水的57%。  相似文献   

20.
应用模糊综合评判方法评价石羊河流域水资源承载力   总被引:12,自引:1,他引:11  
应用模糊综合评价方法对石羊河流域水资源承载力进行了定量评价。结果表明:石羊河流域综合评分值对z1的隶属度为0.618,综合评分值仅为0.232。这表明石羊河流域水资源开发利用已有相当的规模,进一步开发利用的潜力已相当小,今后要在充分利用自产水资源的前提下,需实施跨流域调水工程。在石羊河流域的5个评价子区中,天祝县的综合评分值最高,为0.57,说明其水资源开发利用有较大的空间;而其他4个子区分值都低于0.34,特别是凉州区、民勤县和金昌市对z3的隶属度接近于0,说明这些区域水资源开发程度已接近于饱和值,承载力相当脆弱。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号