首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study,we analyzed the hydrological and meteorological data from the Syr Darya River Basin during the period of 1930–2015 to investigate variations in river runoff and the impacts of climate change and human activities on river runoff.The Syr Darya River,which is supplied by snow and glacier meltwater upstream,is an important freshwater source for Central Asia,as nearly half of the population is concentrated in this area.River runoff in this arid region is sensitive to climate change and human activities.Therefore,estimation of the climatic and hydrological changes and the quantification of the impacts of climate change and human activities on river runoff are of great concern and important for regional water resources management.The long-term trends of hydrological time series from the selected 11 hydrological stations in the Syr Darya River Basin were examined by non-parametric methods,including the Pettitt change point test and Mann-Kendall trend tests.It was found that 8 out of 11 hydrological stations showed significant downward trends in river runof f.Change of river runoff variations occurred in the year around 1960.Moreover,during the study period(1930–2015),annual mean temperature,annual precipitation,and annual potential evapotranspiration in the river basin increased substantially.We employed hydrological sensitivity method to evaluate the impacts of climate change and human activities on river runoff based on precipitation and potential evapotranspiration.It was estimated that human activities accounted for over 82.6%–98.7%of the reduction in river runoff,mainly owing to water withdrawal for irrigation purpose.The observed variations in river runoff can subsequently lead to adverse ecological consequences from an ecological and regional water resources management perspective.  相似文献   

2.
Hydrological models are often linked with other models in cognate sciences to understand the interactions among climate, earth, water, ecosystem, and human society. This paper presents the development and implementation of a decision support system(DSS) that links the outputs of hydrological models with real-time decision making on social-economic assessments and land use management. Discharge and glacier geometry changes were simulated with hydrological model, water availability in semiarid environments. Irrigation and ecological water were simulated by a new commercial software MIKE HYDRO. Groundwater was simulated by MODFLOW. All the outputs of theses hydrological models were taken as inputs into the DSS in three types of links: regression equations, stationary data inputs, or dynamic data inputs as the models running parallel in the simulation periods. The DSS integrates the hydrological data, geographic data, social and economic statistical data, and establishes the relationships with equations, conditional statements and fuzzy logics. The programming is realized in C++. The DSS has four remarkable features:(1) editable land use maps to assist decision-making;(2) conjunctive use of surface and groundwater resources;(3) interactions among water, earth, ecosystem, and humans; and(4) links with hydrological models. The overall goal of the DSS is to combine the outputs of scientific models, knowledge of experts, and perspectives of stakeholders, into a computer-based system, which allows sustainability impact assessment within regional planning; and to understand ecosystem services and integrate them into land and water management.  相似文献   

3.
Land use/land cover (LULC) change and climate change are two major factors affecting the provision of ecosystem services which are closely related to human well-being. However, a clear understanding of the relationships between these two factors and ecosystem services in Central Asia is still lacking. This study aimed to comprehensively assess ecosystem services in Central Asia and analyze how they are impacted by changes in LULC and climate. The spatiotemporal patterns of three ecosystem services during the period of 2000-2015, namely the net primary productivity (NPP), water yield, and soil retention, were quantified and mapped by the Carnegie-Ames-Stanford Approach (CASA) model, Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model, and Revised Universal Soil Loss Equation (RUSLE). Scenarios were used to determine the relative importance and combined effect of LULC change and climate change on ecosystem services. Then, the relationships between climate factors (precipitation and temperature) and ecosystem services, as well as between LULC change and ecosystem services, were further discussed. The results showed that the high values of ecosystem services appeared in the southeast of Central Asia. Among the six biomes (alpine forest region (AFR), alpine meadow region (AMR), typical steppe region (TSR), desert steppe region (DSR), desert region (DR), and lake region (LR)), the values of ecosystem services followed the order of AFR>AMR>TSR>DSR> DR>LR. In addition, the values of ecosystem services fluctuated during the period of 2000-2015, with the most significant decreases observed in the southeast mountainous area and northwest of Central Asia. LULC change had a greater impact on the NPP, while climate change had a stronger influence on the water yield and soil retention. The combined LULC change and climate change exhibited a significant synergistic effect on ecosystem services in most of Central Asia. Moreover, ecosystem services were more strongly and positively correlated with precipitation than with temperature. The greening of desert areas and forest land expansion could improve ecosystem services, but unreasonable development of cropland and urbanization have had an adverse impact on ecosystem services. According to the results, ecological stability in Central Asia can be achieved through the natural vegetation protection, reasonable urbanization, and ecological agriculture development.  相似文献   

4.
Qinghai Lake is the largest saline lake in China.The change in the lake volume is an indicator of the variation in water resources and their response to climate change on the Qinghai-Tibetan Plateau(QTP)in China.The present study quantitatively evaluated the effects of climate change and land use/cover change(LUCC)on the lake volume of the Qinghai Lake in China from 1958 to 2018,which is crucial for water resources management in the Qinghai Lake Basin.To explore the effects of climate change and LUCC on the Qinghai Lake volume,we analyzed the lake level observation data and multi-period land use/land cover(LULC)data by using an improved lake volume estimation method and Integrated Valuation of Ecosystem Services and Trade-offs(InVEST)model.Our results showed that the lake level decreased at the rate of 0.08 m/a from 1958 to 2004 and increased at the rate of 0.16 m/a from 2004 to 2018.The lake volume decreased by 105.40×108 m3 from 1958 to 2004,with the rate of 2.24×108 m3/a,whereas it increased by 74.02×108 m3 from 2004 to 2018,with the rate of 4.66×108 m3/a.Further,the climate of the Qinghai Lake Basin changed from warm-dry to warm-humid.From 1958 to 2018,the increase in precipitation and the decrease in evaporation controlled the change of the lake volume,which were the main climatic factors affecting the lake volume change.From 1977 to 2018,the measured water yield showed an"increase-decrease-increase"fluctuation in the Qinghai Lake Basin.The effects of climate change and LUCC on the measured water yield were obviously different.From 1977 to 2018,the contribution rate of LUCC was -0.76% and that of climate change was 100.76%;the corresponding rates were 8.57% and 91.43% from 1977 to 2004,respectively,and -4.25% and 104.25% from 2004 to 2018,respectively.Quantitative analysis of the effects and contribution rates of climate change and LUCC on the Qinghai Lake volume revealed the scientific significance of climate change and LUCC,as well as their individual and combined effects in the Qinghai Lake Basin and on the QTP.This study can contribute to the water resources management and regional sustainable development of the Qinghai Lake Basin.  相似文献   

5.
In 1999, the Grain for Green Project was implemented by the Chinese government. Since then, the vegetation of Zuli River Basin, a semi-arid river basin of the Chinese Loess Plateau, has been greatly changed. Clearly understanding the impact of natural and artificial factors on vegetation change is important for policy making and ecosystem management. In this study, spatio-temporal variations in vegetation cover in Chinese Zuli River Basin during 1999–2016 were investigated using Landsat normalized difference vegetation index (NDVI) data. Analyses of several indicators, including changes in NDVI in different slopes and land use changes and the relationships between climatic factors and NDVI change, were presented to quantitatively evaluate the effects of agriculture, climate, and policy on NDVI change. The NDVI in the Zuli River Basin increased during the study period, and the main contributors to this change were forest in 1999–2011, cropland, abandoned farmland, and grassland in 2009–2016, and land with slopes ≤ 15°. Land with slope > 15°, where the “Project” was implemented, slightly contributed to the increase in regional NDVI. In 1999–2011, the project (?98.16%) combined with climate change (?68.18%) showed negative effects on the increase in NDVI in the Zuli River Basin, but agriculture (22.28%) played a positive role in increasing this index. In 2009–2016 and 1999–2016, the project (38.45% and 35.25%, respectively), the project combined with climate change (49.83% and 46.30%, respectively), agriculture (18.61% and 23.30%, respectively), promoted increases in NDVI in the basin.  相似文献   

6.
LUO Jing 《干旱区科学》2022,14(4):411-425
Land use/land cover (LULC) is an important part of exploring the interaction between natural environment and human activities and achieving regional sustainable development. Based on the data of LULC types (cropland, forest land, grassland, built-up land, and unused land) from 1990 to 2015, we analysed the intensity and driving factors of land use/cover change (LUCC) in the Yarlung Zangbo River, Nyang Qu River, and Lhasa River (YNL) region, Qinghai-Tibet Plateau of China, using intensity analysis method, cross-linking table method, and spatial econometric model. The results showed that LUCC in the YNL region was nonstationary from 1990 to 2015, showing a change pattern with "fast-slow-fast" and "U-shaped". Built-up land showed a steady increase pattern, while cropland showed a steady decrease pattern. The gain of built-up land mainly came from the loss of cropland. The transition pattern of LUCC in the YNL region was relatively single and stable during 1990-2015. The transition pattern from cropland and forest land to built-up land was a systematic change process of tendency and the transition pattern from grassland and unused land to cropland was a systematic change process of avoidance. The transition process of LUCC was the result of the combined effect of natural environment and social economic development in the YNL region. This study reveals the impact of ecological environment problems caused by human activities on the land resource system and provides scientific support for the study of ecological environment change and sustainable development of the Qinghai-Tibet Plateau.  相似文献   

7.
HE Guohua 《干旱区科学》2019,11(6):939-953
Land evapotranspiration (ET) is an important process connecting soil, vegetation and the atmosphere, especially in regions that experience shortage in precipitation. Since 1999, the implementation of a large-scale vegetation restoration project has significantly improved the ecological environment of the Loess Plateau in China. However, the quantitative assessment of the contribution of vegetation restoration projects to long-term ET is still in its infancy. In this study, we investigated changes in land ET and associated driving factors from 1982to 2014 in the Loess Plateau using Budyko-based partial differential methods. Overall, annual ET slightly increased by 0.28 mm/a and there were no large fluctuations after project implementation. An attribution analysis showed that precipitation was the driving factor of inter-annual variability of land ET throughout the study period; the average impacts of precipitation, potential evapotranspiration, and vegetation restoration on ET change were 61.5%, 11.5% and 26.9%, respectively. These results provide an improved understanding of the relationship between vegetation condition change and climate variation on terrestrial ET in the study area and can support future decision-making regarding water resource availability.  相似文献   

8.
The cultivated area in artificial oases is deeply influenced by global climate change and human activities. Thus, forecasting cultivated area in artificial oases under climate change and human activities is of great significance. In this study, an approach named GD-HM-PSWROAM, consisting of general circulation model downscaling(GD), hydrological model(HM), and planting structure and water resource optimal allocation model(PSWROAM), was developed and applied in the irrigation district of the Manas River Basin in Xinjiang Uygur Autonomous Region of China to forecast the cultivated area tendency. Furthermore, the catchment export of the MIKE11 HD/NAM model was set to the Kensiwate hydrological station. The results show that the downscaling effects of temperature can be fairly satisfying, while those of precipitation may be not satisfying but acceptable. Simulation capacity of the MIKE11 HD/NAM model on the discharge in the Kensiwate hydrological station can meet the requirements of running the PSWROAM. The accuracy of the PSWROAM indicated that this model can perform well in predicting the change of cultivated area at the decadal scale. The cultivated area in the Manas River Basin under current human activities may be generally decreasing due to the climate change. But the adverse effects of climate change can be weakened or even eliminated through positive human activities. The cultivated area in the Manas River Basin may even be increasing under assumed human activities and future climate scenarios. The effects of human activities in the future can be generally predicted and quantified according to the cultivated area trends under current human activities and the situations in the study area. Overall, it is rational and acceptable to forecast the cultivated area tendency in artificial oases under future climate change and human activities through the GD-HM-PSWROAM approach.  相似文献   

9.
Homogeneity analysis of the streamflow time series is essential to hydrological modeling, water resources management and climate change studies. In this study, five absolute homogeneity tests and one clustering approach were used to determine the homogeneity status of the streamflow time series(over the period 1960–2010) in 14 hydrometric stations of three important basins(i.e., Aras River Basin, Urmia Lake Basin and Sefid-Roud Basin) in northwestern Iran. Results of the Buishand range test, von Neumann ratio test, cumulative deviation test, standard normal homogeneity test and Pettitt test for monthly streamflow time series detected that about 42.26%, 38.09%, 33.33%, 39.28% and 68.45% of the streamflow time series were inhomogeneous at the 0.01 significance level, respectively. Streamflow time series of the stations located in the eastern parts of the study area or within the Urmia Lake Basin were mostly homogeneous. In contrast, streamflow time series in the stations of the Aras River Basin and Sefied-Roud Basin showed inhomogeneity at annual scales. Based on the overall classification for the monthly and annual streamflow series, we determined that about 45.60%, 11.53% and 42.85% of the time series were categorized into the 'useful', 'doubtful' and 'suspect' classes according to the five absolute homogeneity tests. We also found the homogeneity patterns of the streamflow time series by using the clustering approach. The results suggested the effectiveness of the clustering approach for homogeneity analysis of the streamflow time series in addition to the absolute homogeneity tests. Moreover, results of the absolute homogeneity tests and clustering approach indicated obvious decreasing change points of the streamflow time series in the 1990 s over the three basins, which were mostly related to the hydrological droughts.  相似文献   

10.
Climate change and Land Use/Cover Change(LUCC) have been identified as two primary factors affecting watershed hydrological regime. This study analyzed the trends of streamflow, precipitation, air temperature and potential evapotranspiration(PET) from 1962 to 2008 in the Jihe watershed in northwestern Loess Plateau of China using the Mann-Kendall test. The streamflow responses to climate change and LUCC were quantified independently by the elasticity method. The results show that the streamflow presented a dramatic decline with a turning point occurred in 1971, while the precipitation and PET did not change significantly. The results also show that the temperature rose markedly especially since 1990 s with an approximate increase of 1.74°C over the entire research period(1962–2008). Using land use transition matrix, we found that slope cropland was significantly converted to terrace between 1970 s and 1990 s and that forest cover increased relatively significantly because of the Grain for Green Project after 2000. The streamflow reduction was predominantly caused by LUCC and its contribution reached up to 90.2%, while the contribution of climate change to streamflow decline was only 9.8%. Although the analytical results between the elasticity method and linear regression model were not satisfactorily consistent, they both indicated that LUCC(human activity) was the major factor causing streamflow decline in the Jihe watershed from 1962 to 2008.  相似文献   

11.
近25a新疆LUCC对气候变化及人类活动的响应   总被引:3,自引:0,他引:3  
根据新疆1981-2005年气象数据及两期土地利用/土地覆盖数据,运用改进的Holdridge植被生态分区模型、土地利用程度模型以及重心模型,分析了新疆LUCC对气候变化和人类活动的响应程度及变化趋势。研究表明:25年间新疆温度升高,降水增多,气候变化使得区域内植被群落格局发生变化,北部地区的未利用地向草地、灌木等生态类型转化;同时人类活动的加剧使得区域西北地区农用地和建设用地增加,生态环境也得到一定程度的改善。在气候变化和人类活动共同作用下,研究区土地利用程度重心由北偏西48度移动了3.87km,其中气候影响使土地利用程度重心由北偏东33度移动了1.25km,人为影响使其由北偏西66度移动了3.88km。  相似文献   

12.
The west part of Ganga River Basin (WGRB) has experienced continuous land transformation since the Indus Valley Civilisation shifted from the Indus basin to the Ganga basin. Particularly in the last few decades the land transformation has increased many-folds due to the changing climate and rapid increase in population. In this paper, we assessed land transformation and associated degradation in the WGRB based on the forest cover land use (FCLU) mapping and residual trend analysis (RTA). The FCLU maps for 1975 and 2010 were generated using 216 Landsat satellite images and validated using 1509 ground points. We mapped 29 forest and 18 non-forest types and estimated a total loss of 5571 km2 forest cover and expansion in settlement areas (5396 km2). Other major changes mapped include a decrease in wetlands and water bodies, while an increase in agriculture and barren lands with an overall mapping accuracy of 85.3% (kappa, 0.82) and 88.43% (kappa, 0.84) for 1975 and 2010, respectively. We also performed the RTA analysis using GIMMS-NDVI3g to identify areas of significant negative vegetative photosynthetic change as an indicator for land degradation. All the RTA models showed monotonic nature of the residual trends and resulted as moderately positive but highly significant (P<0.001). Land degradation in the form of barren land accompanied by a decline in vegetation quality and coverage was found prominent in the basin with a possibility of an accelerated rate of land degradation in future due to the rapid loss of permanent forest cover.  相似文献   

13.
为评估植被恢复以及土地利用变化对生态脆弱地区的影响,文中选取准格尔旗为研究区,基于1990、2000、2009年三期美国陆地卫星遥感影像提取各时期的土地利用类型,在30m栅格尺度上定量评价并分析其动态变化。变化的驱动因素主要有自然因素、人口增长和城市化、过度矿产资源开发等负面因素和生态恢复政策的正面因素。结果表明:过去20年间,人类活动及资源开采对生态环境的干扰增加,植被恢复的过程是有效而缓慢的。  相似文献   

14.
Catchments dominated by meltwater runoff are sensitive to climate change as changes in precipitation and temperature inevitably affect the characteristics of glaciermelt/snowmelt, hydrologic circle and water resources. This study simulated the impact of climate change on the runoff generation and streamflow of Chu River Basin(CRB), a glacierized basin in Central Asia using the enhanced Soil and Water Assessment Tool(SWAT). The model was calibrated and validated using the measured monthly streamflow data from three discharge gauge stations in CRB for the period 1961–1985 and was subsequently driven by downscaled future climate projections of five Global Circulation Models(GCMs) in Coupled Model Inter-comparison Project Phase 5(CMIP5) under three radiative forcing scenarios(RCP2.6, RCP4.5 and RCP8.5). In this study, the period 1966–1995 was used as the baseline period, while 2016–2045 and 2066–2095 as the near-future and far-future period, respectively. As projected, the climate would become warmer and drier under all scenarios in the future, and the future climate would be characterized by larger seasonal and annual variations under higher RCP. A general decreasing trend was identified in the average annual runoff in glacier(–26.6% to –1.0%), snow(–21.4% to +1.1%) and streamflow(–27.7% to –6.6%) for most of the future scenario periods. The projected maximum streamflow in each of the two future scenarios occurred one month earlier than that in the baseline period because of the reduced streamflow in summer months. Results of this study are expected to arouse the serious concern about water resource availability in the headwater region of CRB under the continuously warming climate. Changes in simulated hydrologic outputs underscored the significance of lowering the uncertainties in temperature and precipitation projection.  相似文献   

15.
蒸散发估算方法及其驱动力研究进展   总被引:2,自引:0,他引:2  
蒸散发是水文循环的重要组成部分,也是度量土壤-植被-大气耦合系统中水文与能量传输的关键指标。因此,准确估算蒸散发,充分理解蒸散发的驱动力对干旱半干旱区水资源高效利用具有重要意义。本文对区域蒸散发估算方法进行了总结与归纳,并从气候变化和人类活动两个角度总结了干旱半干旱地区蒸散发变化的驱动力。最后,评论了当前蒸散发估算方法及其驱动力研究存在的问题,提出未来应加强蒸散发估算模型的改进与完善,合理规划土地利用,提高水资源利用效率,从而促进区域的可持续发展。  相似文献   

16.
利用新疆疏勒县三期遥感影像解译得到的数据,对疏勒县土地利用空间格局变化进行深入分析。分析结果表明:(1)研究区内耕地、林地、草地和建设用地四者之和面积占该区总面积的52.97%,盐碱地和沙地等未利用地占44.35%。1990~2006年间,林地、草地、建设用地面积大幅度增加;盐碱地和沙地面积大幅度减少。其充分说明人类活动对土地利用/覆被类型变化影响越来越强烈。(2)研究区土地利用/覆被类型转移的主要方向是耕地转化为林地和草地,草地和沙地转化为耕地,耕地和草地转化为建设用地,草地转化为沙地。土地利用变化经历了"显著变化-缓慢变化-显著变化"的过程。(3)景观格局分析表明,在人类活动的影响下,研究区景观破碎度、多样性增大,优势度减小。驱动力分析表明,人口增长和经济发展因素是研究区土地利用/覆被变化的最直接驱动力,同时还受产业结构和政策因素及人类干扰强度的影响。  相似文献   

17.
蒸散发估算方法及其驱动力研究进展   总被引:1,自引:0,他引:1  
蒸散发是水文循环的重要组成部分,也是度量土壤-植被-大气耦合系统中水文与能量传输的关键指标。因此,准确估算蒸散发,充分理解蒸散发的驱动力对干旱半干旱区水资源高效利用具有重要意义。本文对区域蒸散发估算方法进行了总结与归纳,并从气候变化和人类活动两个角度总结了干旱半干旱地区蒸散发变化的驱动力。最后,评论了当前蒸散发估算方法及其驱动力研究存在的问题,提出未来应加强蒸散发估算模型的改进与完善,合理规划土地利用,提高水资源利用效率,从而促进区域的可持续发展。  相似文献   

18.
Relative roles of climate change and human activities in desertification are the hotspot of research on desertification dynamic and its driving mechanism.To overcome the shortcomings of existing studies,this paper selected net primary productivity(NPP) as an indicator to analyze desertification dynamic and its impact factors.In addition,the change trends of actual NPP,potential NPP and HNPP(human appropriation of NPP,the difference between potential NPP and actual NPP) were used to analyze the desertification dynamic and calculate the relative roles of climate change,human activities and a combination of the two factors in desertification.In this study,the Moderate Resolution Imaging Spectroradiometer(MODIS)-Normalised Difference Vegetation Index(NDVI) and meteorological data were utilized to drive the Carnegie-Ames-Stanford Approach(CASA) model to calculate the actual NPP from 2001 to 2010 in the Heihe River Basin.Potential NPP was estimated using the Thornthwaite Memorial model.Results showed that 61% of the whole basin area underwent land degradation,of which 90.5% was caused by human activities,8.6% by climate change,and 0.9% by a combination of the two factors.On the contrary,1.5% of desertification reversion area was caused by human activities and 90.7% by climate change,the rest 7.8% by a combination of the two factors.Moreover,it was demonstrated that 95.9% of the total actual NPP decrease was induced by human activities,while 69.3% of the total actual NPP increase was caused by climate change.The results revealed that climate change dominated desertification reversion,while human activities dominated desertification expansion.Moreover,the relative roles of both climate change and human activities in desertification possessed great spatial heterogeneity.Additionally,ecological protection policies should be enhanced in the Heihe River Basin to prevent desertification expansion under the condition of climate change.  相似文献   

19.
Wulong BA 《干旱区科学》2018,10(6):905-920
Climate change may affect water resources by altering various processes in natural ecosystems. Dynamic and statistical downscaling methods are commonly used to assess the impacts of climate change on water resources. Objectively, both methods have their own advantages and disadvantages. In the present study, we assessed the impacts of climate change on water resources during the future periods (2020-2029 and 2040-2049) in the upper reaches of the Kaidu River Basin, Xinjiang, China, and discussed the uncertainties in the research processes by integrating dynamic and statistical downscaling methods (regional climate models (RCMs) and general circulation modes (GCMs)) and utilizing these outputs. The reference period for this study is 1990-1999. The climate change trend is represented by three bias-corrected RCMs (i.e., Hadley Centre Global Environmental Model version 3 regional climate model (HadGEM3-RA), Regional Climate Model version 4 (RegCM4), and Seoul National University Meso-scale Model version 5 (SUN-MM5)) and an ensemble of GCMs on the basis of delta change method under two future scenarios (RCP4.5 and RCP8.5). We applied the hydrological SWAT (Soil and Water Assessment Tool) model which uses the RCMs/GCMs outputs as input to analyze the impacts of climate change on the stream flow and peak flow of the upper reaches of the Kaidu River Basin. The simulation of climate factors under future scenarios indicates that both temperature and precipitation in the study area will increase in the future compared with the reference period, with the largest increase of annual mean temperature and largest percentage increase of mean annual precipitation being of 2.4°C and 38.4%, respectively. Based on the results from bias correction of climate model outputs, we conclude that the accuracy of RCM (regional climate model) simulation is much better for temperature than for precipitation. The percentage increase in precipitation simulated by the three RCMs is generally higher than that simulated by the ensemble of GCMs. As for the changes in seasonal precipitation, RCMs exhibit a large percentage increase in seasonal precipitation in the wet season, while the ensemble of GCMs shows a large percentage increase in the dry season. Most of the hydrological simulations indicate that the total stream flow will decrease in the future due to the increase of evaporation, and the maximum percentage decrease can reach up to 22.3%. The possibility of peak flow increasing in the future is expected to higher than 99%. These results indicate that less water is likely to be available in the upper reaches of the Kaidu River Basin in the future, and that the temporal distribution of flow may become more concentrated.  相似文献   

20.
A large-scale afforestation project has been carried out since 1999 in the Loess Plateau of China. However, vegetation-induced changes in land surface temperature (LST) through the changing land surface energy balance have not been well documented. Using satellite measurements, this study quantified the contribution of vegetation restoration to the changes in summer LST and analyzed the effects of different vegetation restoration patterns on LST during both daytime and nighttime. The results show that the average daytime LST decreased by 4.3°C in the vegetation restoration area while the average nighttime LST increased by 1.4°C. The contributions of the vegetation restoration project to the changes in daytime LST and nighttime LST are 58% and 60%, respectively, which are far greater than the impact of climate change. The vegetation restoration pattern of cropland (CR) converting into artificial forest (AF) has a cooling effect during daytime and a warming effect at nighttime, while the conversion of CR to grassland has an opposite effect compared with the conversion of CR to AF. Our results indicate that increasing evapotranspiration caused by the vegetation restoration on the Loess Plateau is the controlling factor of daytime LST change, while the nighttime LST change is affected by soil humidity and air humidity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号