首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Persimmon tree (Diospyros kaki L.f.) is a deciduous fruit tree included in the so-called group of minor fruit tree species. Worldwide, it is not widely grown but, nowadays, Kaki culture is of some importance in the south-east of Spain because of the high fruit commercial value. Currently, neither it is known about Kaki trees water needs, nor crop responses to the irrigation regime. The objective of the present research was to assess the feasibility of using maximum diurnal trunk shrinkage (MDS) as a plant water stress indicator for Kaki trees. During two drought cycles, in trees under either full or deficit irrigation, the MDS obtained by means of LVDT sensors was compared with a reference indicator of fruit trees water status, the midday stem water potential (Ψstem). In addition, stomatal conductance and fruit diameter variations were also followed. As water restrictions began, there was an immediate increase in MDS, in correspondence with a decrease in Ψstem. Pooling data from both drought cycles and irrigation regimes, MDS and Ψstem were linearly correlated (r2 = 0.77***). The magnitude of differences between well watered and deficit irrigated trees was much larger in the case of MDS than for Ψstem. However, the tree-to-tree variability of the MDS readings was three times higher than for Ψstem; average coefficient of variation of 14% and 38% for Ψstem and MDS, respectively. Overall, results reported indicated that MDS is a sensitive indicator of Kaki water status and it can be further used as an irrigation scheduling indicator for optimum irrigation management of this crop. However, the large MDS tree-to-tree variability should be taken into account when selecting the number of trees to monitor within an orchard.  相似文献   

2.
Pomegranate (Punica granatum L.) is a deciduous fruit tree native of central Asia included in the so-called group of minor fruit tree species, not widely grown but of some importance in the south east of Spain. Fruit consumption interest is due to the organoleptic characteristics and to the beneficial effects on health. Pomegranate tree are considered as a culture tolerant to soil water deficit. However, very little is known about pomegranate orchard water management. The objective of this work was to characterize, for the first time in P. granatum, water relations aspects of applied significance for irrigation scheduling. Trees under different irrigation regimes were used and midday stem water potential (Ψstem) and midday leaf gas exchange were periodically measured over the course of an entire season. During spring and autumn, Ψstem did not show significant differences between irrigation treatments while there were considerable differences in leaf photosynthesis and stomatal conductance, suggesting a near-isohydric behaviour of pomegranate trees. This might explain why the signal intensity of Ψstem was lower than those of gas exchange indicators during the experimental period. Thus, leaf photosynthesis rates and stomatal conductance might have a greater potential for irrigation scheduling of pomegranate trees than Ψstem measured at solar noon.  相似文献   

3.
The effects of high crop load (unthinned trees, 22-23 fruits cm−2 of trunk cross-sectional area (TCSA)), commercial crop load (3-4 fruits cm−2 of TCSA), and no crop load (all fruitlets removed) on maximum daily trunk shrinkage (MDS), trunk growth rate (TGR) and stem water potential (Ψstem) were studied during the fruit growth period and 20 days following harvest in fully irrigated early maturing peach trees, Prunus persica (L.) Batsch, cv. Flordastar. Even though crop load did not affect plant water status, the MDS and TGR values increased and decreased, respectively, as a result of the crop load effect. In this sense, for the same Ψstem value, there was a linear increase in MDS with crop load, with a slope of 6.6 μm MPa−1 per unit of crop load increment. The effects of environmental conditions on daily MDS values were also dependent on crop load, suggesting that MDS reference values should be obtained by representing the relations between MDS and the climatic variables (daily mean air temperature, daily mean vapour pressure deficit and daily crop reference evapotranspiration) for a given crop load. The constancy of the relation between MDS and Ψstem across crop load underlined the constancy of the elastic properties of the bark tissues.  相似文献   

4.
Irrigation techniques that reduce water applications are increasingly applied in areas with scarce water resources. In this study, the effect of two regulated deficit irrigation (RDI) strategies on peach [Prunus persica (L.) Batsch cv. “Catherine”] performance was studied over three growing seasons. The experimental site was located in Murcia (SE Spain), a Mediterranean region. Two RDI strategies (restricting water applications at stage II of fruit development and postharvest) based on stem water potential (Ψs) thresholds (?1.5 and ?1.8 MPa during fruit growth and ?1.5 and ?2.0 MPa during postharvest) were compared to a fully irrigated control. Soil water content (θv), Ψs, gas exchange parameters, vegetative growth, crop load, yield and fruit quality were determined. RDI treatments showed significantly lower values of θv and Ψs than control trees when irrigation water was restricted, causing reductions in stomatal conductance and photosynthesis rates. Vegetative growth was reduced by RDI, as lower shoot lengths and pruning weights were observed under those treatments when compared to control. However, fruit size and yield were unaffected, and fruit quality was slightly improved by RDI. Water savings from 43 to 65 % were achieved depending on the year and the RDI strategy, and no negative carryover effect was detected during the study period. In conclusion, RDI strategies using Ψs thresholds for scheduling irrigation in mid–late maturing peach trees under Mediterranean conditions are viable options to save water without compromising yield and even improving fruit quality.  相似文献   

5.
The feasibility of scheduling deficit irrigation using maximum daily trunk shrinkage (MDS) was evaluated during two consecutive seasons in a citrus orchard planted with mature ‘Clementina de Nules’ trees, in Valencia, Spain. Results showed that MDS in well irrigated trees varied largely according to the environmental conditions (higher correlation was obtained with global radiation), and therefore, the absolute values of MDS cannot be employed as the only variable to schedule irrigation. To avoid the effects of the climatic conditions we scheduled deficit irrigation using the MDS ratio, which is the MDS of any treatment related to the MDS of a control, well irrigated, treatment located in the same plot. We explored the feasibility of scheduling irrigation based on the MDS ratio in a deficit irrigated treatment, where water was applied as necessary, from July until mid October, in order to maintain the MDS values at 125% of that of the control treatment. Despite the large variability observed in the MDS measurements in both years no significant reduction in yield and fruit weight was observed in the deficit irrigated treatment compared with the control, allowing seasonal water saving between 18 and 12%.  相似文献   

6.
The effects of mid-summer regulated deficit irrigation (RDI) treatments were investigated on Navel Lane Late citrus trees over four seasons. Water restrictions applied from July until mid-September were compared with irrigation at full crop evapotranspiration (ETc). Two degrees of water restrictions were imposed: (1) RDI-1, irrigated at around 50% ETc and, (2) RDI-2, irrigated at 30–40% ETc. In addition, threshold values of midday stem water potential (Ψs) of ?1.3 to ?1.5 MPa for RDI-1 and of ?1.5 to ?1.7 MPa for RDI-2 were also taken into account. Results showed that Navel Lane Late is a citrus cultivar sensitive to water deficit since both RDI strategies reduced fruit size every year and water use efficiency in RDI trees was similar to control trees. However, the RDI-1 strategy allowed water savings up to 19% without reduction in yield when the water stress integral did not surpass 70 MPa day. RDI improved fruit quality, increasing total soluble solids and titratable acidity, while the fruit maturity was delayed. In conclusion, we suggest that RDI-1 strategy since it did not significantly impair the economic return can be applied in commercial orchards in case of water scarcity. Nevertheless, Navel Lane Late fruit is sensitive to water deficit and the fruit weight can be detrimentally affected.  相似文献   

7.
The effects of sustained and regulated deficit irrigation (SDI and RDI) on “Mollar de Elche” pomegranate tree performance were investigated in a field trial conducted over three consecutive seasons. In the RDI regimes, severe water restrictions were applied during one of three phases: flowering and fruit set, fruit growth, or the final phase of fruit growth and ripening. In another approach, SDI was applied by watering trees at 50 % of the estimated crop water needs (ETc) during the entire season. Results showed that even after three consecutive seasons of water restrictions, similar yield levels were obtained in SDI and Control trees watered at 100 % ETc. This was because a 22 % reduction in average fresh fruit weight recorded in the SDI treatment was compensated by an increase in 28 % in the quantity of fruit collected per tree. This was most likely due to a reduction in the fall of the reproductive organs. However, the SDI strategy led to a reduction in 28 % in the yield value when fruits are sold for fresh fruit markets. Water restrictions applied only during flowering and fruit set also resulted in an increase in the quantity of fruit collected per tree, with only a slight reduction in fruit weight and without affecting the yield value. On the other hand, severe water restrictions applied during the summer (i.e., mid-phase of fruit growth) led to 24 % water savings with only a 7 % reduction in fruit weight. Fruit cracking was very low in all treatments and seasons (2–6 % over the total quantity fruit collected per tree). Only the RDI regime with restrictions during the summer increased cracking in one out of the three seasons. It is concluded that RDI can be used as a measure to cope with water scarcity and high water prices. Among all the RDI explored, the one with restrictions applied early in the season (during flowering and fruit set) was the most convenient strategy.  相似文献   

8.
Trunk diameter fluctuations (TDFs) have been suggested as an irrigation-scheduling tool for several fruit trees, but the works in olive trees has not obtained successful results with any of the indicators (maximum daily shrinkage (MDS) and trunk growth rate (TGR)) that are calculated from the daily TDF curves. No studies of olive trees have ever used reference trees to reduce the influence of the environment, as in work for other fruit trees. In this work, we compare different continuous and discrete water status measurements in a drought cycle. We suggest the calculation of a new and related indicator (DTGR), the difference between the TGR of stressed trees, and the TGR of reference trees. Negative DTGR values always indicate water stress conditions. The current work describes the variations of this new indicator (DTGR) in relation to water stress, and compares DTRG to the midday stem water potential, maximum leaf conductance and to the MDS. The midday stem water potential and the maximum leaf conductance describe the stress cycle clearer than the trunk diameter fluctuation indicators. No significant differences were found in the values of MDS between stressed and reference trees. On the other hand, the DTGR pattern values were near that of the stem water potential, though positive values were recorded in some dates during the water stress cycle. These variations indicate that DTGR is not a cumulative water stress indicators, as is water potential. Therefore, according to our data, water potential is a better indicator than the TDF parameters when no deficit irrigation scheduling is performed in olive trees. DTGR seems to be a good indicator of water stress from a threshold value around −1.4 MPa in olive trees. In addition, higher variability of DTGR than stem water potential may also be reduced with the increase in the number of sensors.  相似文献   

9.
The effects of mid-summer regulated deficit irrigation (RDI) treatments were investigated on Clementina de Nules citrus trees over three seasons. Water restrictions applied from July, once the June physiological fruit drop had finished, until mid September were compared with a Control treatment irrigated during all the season to match full crop evapotranspiration (ETc). Two degrees of water restrictions were imposed based on previous results also obtained in Clementina de Nules trees ( [Ginestar and Castel, 1996] and [González-Altozano and Castel, 1999]). During the RDI period, deficit irrigation was applied based on given reductions over the ETc, but also taking into account threshold values of midday stem water potential (Ψs) of −1.3 to −1.5 MPa for RDI-1 and of −1.5 to −1.7 MPa for RDI-2. Results showed that water savings achieved in the RDI-2 treatment impaired yield by reducing fruit size. On the contrary, the RDI-1 strategy allowed for 20% water savings, with a reduction in tree growth but without any significant reduction in yield, fruit size nor in the economic return when irrigation was resumed to normal dose about three months before harvest. Water use efficiency (WUE) in the RDI trees was similar or even higher than in Control trees. RDI improved fruit quality increasing total soluble solids (TSS) and titratable acidity (TA). In conclusion, we suggest that the RDI-1 strategy here evaluated can be applied in commercial orchards not only in case of water scarcity, but also as a tool to control vegetative growth improving fruit composition and reducing costs associated with the crop management.  相似文献   

10.
The sensitivity to water stress of different plant water status indicators was evaluated during two consecutive years in early nectarine trees grown in a semi-arid region. Measurements were made post-harvest and two irrigation treatments were applied: a control treatment (CTL), irrigated at 120 % of crop evapotranspiration demand to achieve non-limiting water conditions, and a deficit irrigation treatment, that applied around 37 % less water than CTL during late postharvest. The plant water status indicators evaluated were midday stem water potential (Ψ stem) and indices derived from trunk diameter fluctuations: maximum daily shrinkage (MDS), trunk daily growth rate, early daily shrinkage measured between 0900 and 1200 hours solar time (EDS), and late daily shrinkage that occurred between 1200 hours solar time and the moment that minimum trunk diameter was reached (typically 1600 hours solar time). The most sensitive [highest ratio of signal intensity (SI) to noise] indices to water stress were Ψ stem and EDS. The SI of EDS was greater than that of Ψ stem, although with greater variability. EDS was a better index than MDS, with higher SI and similar variability. Although MDS was linearly related to Ψ stem down to ?1.5 MPa, it decreased thereafter with increasing water stress. In contrast, EDS was linearly related to Ψ stem, although the slope of the regression decreased as the season progressed, as in the case of MDS. Further studies are needed to determine whether EDS is a sensitive index of water stress in a range of species.  相似文献   

11.
The use of plant water status indicators such as midday stem water potential (Ψstem) and maximum daily trunk shrinkage (MDS) in irrigation scheduling requires the definition of a reference or threshold value, beyond which irrigation is necessary. These reference values are generally obtained by comparing the seasonal variation of plant water status with the environmental conditions under non-limiting soil water availability. In the present study an alternative approach is presented based on the plant’s response to water deficit. A drought experiment was carried out on two apple cultivars (Malus domestica Borkh. ‘Mutsu’ and ‘Cox Orange’) in which both indicators (Ψstem and MDS) were related to several plant physiological responses. Sap flow rates, maximum net photosynthesis rates and daily radial stem growth (DRSG) (derived from continuous stem diameter variation measurements) were considered in the assessment of the approach. Depending on the chosen plant response in relationship with Ψstem or MDS, the obtained reference values varied between −1.04 and −1.46 MPa for Ψstem and between 0.17 and 0.28 mm for MDS. In both cultivars, the approach based on maximum photosynthesis rates resulted in less negative Ψstem values and smaller MDS values, compared to the approaches with sap flow and daily radial stem growth. In the well-irrigated apple trees, day-to-day variations in midday Ψstem and MDS were related to the evaporative demand. These variations were more substantial for MDS than for midday Ψstem.  相似文献   

12.
The use of trunk diameter fluctuations and their derived parameters for irrigation scheduling in woody crops is reviewed. The strengths and weaknesses of these continuously measured plant-based water stress indicators compared with other discretely measured indicators for diagnosing plant water status in young and mature trees are discussed. Aspects such as sensor reading variability, signal intensity and the relationship between trunk diameter fluctuations and plant water status are analyzed in order to assess their usefulness as water stress indicators. The physiological significance of maximum and minimum daily trunk diameter and maximum daily trunk shrinkage (MDS) are also considered. Current knowledge of irrigation protocols and baselines for obtaining maximum daily trunk shrinkage reference values is discussed and new research objectives are proposed. We analyze the response of woody crops to continuous deficit irrigation scheduled by maintaining MDS signal intensity at threshold values to generate mild, moderate and severe water stress and assess the possibility of using linear variable displacement transducer (LVDT) sensors in trunk as a precision tool for regulated deficit irrigation scheduling. Finally, the possibility of using MDS signal intensity as a tool to match the irrigation regime to tree water requirements is also reviewed.  相似文献   

13.
This study assesses the long-term suitability of regulated (RDI) and sustained deficit irrigation (SDI) implemented over the first six growing seasons of an almond [Prunus dulcis (Mill.) D.A. Webb] orchard grown in a semiarid area in SE Spain. Four irrigation treatments were assessed: (i) full irrigation (FI), irrigated to satisfy maximum crop evapotranspiration (100% ETc); (ii) RDI, as FI but receiving 40% ETc during kernel-filling; (iii) mild-to-moderate SDI (SDImm), irrigated at 75–60% ETc over the entire growing season; and (iv) moderate-to-severe SDI (SDIms), irrigated at 60–30% ETc over the whole season. Application of water stress from orchard establishment did not amplify the negative effects of deficit irrigation on almond yield. Irrigation water productivity (IWP) increased proportionally to the mean relative water shortage. SDIms increased IWP by 92.5%, reduced yield by 29% and applied 63% less irrigation water. RDI and SDImm showed similar productive performances, but RDI was more efficient than SDImm to increase fruiting density and production efficiency (PE). We conclude that SDIms appears to be a promising DI option for arid regions with severe water scarcity, whereas for less water-scarce areas RDI and SDImm behaved similarly, except for the ability of RDI to more severely restrict vegetative development while increasing PE.  相似文献   

14.
During four growing seasons, 10-year-old apricot trees (Prunus armeniaca L., cv. ‘Búlida’) were submitted to three different drip irrigation regimes: (1) a control treatment, irrigated at 100% of seasonal crop evapotranspiration (ETc), (2) a continuous deficit irrigation (DI) treatment, irrigated at 50% of the control treatment, and (3) a regulated deficit irrigation (RDI) treatment, irrigated at 100% of ETc during the critical periods, which correspond to stage III of fruit growth and 2 months after harvest (early postharvest), and at 25% of ETc during the rest of the non-critical periods in the first two growing seasons and at 40% of ETc in the third and fourth. Soil–plant–water relation parameters were sensitive to the water deficits applied, which caused reductions in leaf and soil water potentials. The longer and severer deficits of the RDI treatment decreased fruit yield in the first two seasons. The RDI treatment pointed to two threshold values that defined the level at which both plant growth and yield were negatively affected with respect to the control treatment: (1) a predawn leaf water potential of around −0.5 MPa during the critical periods, and (2) a 22% drop in irrigation water. The total yield obtained in the DI treatment was significantly reduced in all the years studied due to the lower number of fruits per tree. No changes in the physical characteristics of fruits were observed at harvest. RDI can be considered a useful strategy in semiarid areas with limited water resources.  相似文献   

15.
We used sap flow and trunk diameter measurements for assessing water stress in a high-density ‘Arbequina’ olive orchard with control trees irrigated to replace 100 % of the crop water needs, and 60RDI and 30RDI trees, in which irrigation replaced ca. 60 and 30 % of the control, respectively. We calculated the daily difference for both tree water consumption ( $ D_{{E_{\text{p}} }} $ ) and maximum trunk diameter (D MXTD) between RDI trees and control trees. The seasonal dynamics of $ D_{{E_{\text{p}} }} $ agreed reasonably well with that of the stem water potential. We identified peculiarities on the response $ D_{{E_{\text{p}} }} $ to changes in water stressing conditions, which must be taken into account when using the index. An analysis of the water stress variability in the orchard is required for choosing the instrumented trees. The reliability of the D MXTD index was poorer than that of $ D_{{E_{\text{p}} }} $ . The maximum daily shrinkage (MDS) was not a reliable water stress indicator.  相似文献   

16.
‘Chok Anan’ mangoes are mainly produced in the northern part of Thailand for the domestic fresh market and small scale processing. It is appreciated for its light to bright yellow color and its sweet taste. Most of the fruit development of on-season mango fruits takes place during the dry season and farmers have to irrigate mango trees to ensure high yields and good quality. Meanwhile, climate changes and expanding land use in horticulture have increased the pressure on water resources. Therefore research aims on the development of crop specific and water-saving irrigation techniques without detrimentally affecting crop productivity.The aim of this study was to assess the response of mango trees to varying amounts of available water. Influence of irrigation, rainfall, fruit set, retention rate and alternate bearing were considered as the fruit yield varies considerably during the growing seasons. Yield response and fruit size distribution were measured and WUE was determined for partial rootzone drying (PRD), regulated deficit irrigation (RDI) and irrigated control trees.One hundred ninety-six mango trees were organized in a randomized block design consisting of four repetitive blocks, subdivided into eight fields. Four irrigation treatments have been evaluated with respect to mango yield and fruit quality: (a) control (CO = 100% of ETc), (b) (RDI = 50% of ETc), (c) (PRD = 50% of ETc, applied to alternating sides of the root system) and (d) no irrigation (NI).Over four years, the average yield in the different irrigation treatments was 83.35 kg/tree (CO), 80.16 kg/tree (RDI), 80.85 kg/tree (PRD) and 66.1 kg/tree (NI). Water use efficiency (WUE) calculated as yield per volume of irrigation water was always significantly higher in the deficit irrigation treatments as compared to the control. It turned out that in normal years the yields of the two deficit irrigation treatments (RDI and PRD) do not differ significantly, while in a dry year yield under PRD is higher than under RDI and in a year with early rainfall, RDI yields more than PRD. In all years PRD irrigated mangoes had a bigger average fruit size and a more favorable fruit size distribution.It was concluded that deficit irrigation strategies can save considerable amounts of water without affecting the yield to a large extend, possibly increasing the average fruit weight, apparently without negative long term effects.  相似文献   

17.
Using a correlation between trunk diameter fluctuation (TDF) and stem water potential (SWP) it appears possible to determine water deficit threshold values (WDTV) for young cherry trees. This correlation must be based on a significant effect between SWP and at least one variable associated with the vegetative or reproductive growth of the trees. The objectives of this study are: (1) to determine the effect of several irrigation treatments on vegetative and reproductive growth and the SWP of young cherry trees; (2) to determine the correlation between TDF and SWP, and; (3) to propose a first approximation of SWP and TDF water deficit threshold values for young cherry tree plants. The experiment was carried out between September and April of the 2005-2006 and 2006-2007 seasons, in Quillota, in the Valparaiso region, central Chile. The irrigation treatments consisted of applications of 50% (T50), 100% (T100) and 150% (T150) of potential evapotranspiration (ET0) over the two growing seasons, using a randomized complete block design (RCB). The effect of irrigation scheduling was observed on: apical shoot growth rate (GRAS), branch cross-sectional area (BCSA), canopy volume (CV), annual length of accumulated growth (ALAG) and productivity. This effect showed that the T50 treatment caused lower SWP (measured pre-dawn), vegetative growth and productivity. The fruit quality variables (cracking and size) were not affected by the different treatments. Combining the vegetative growth, productivity and SWP results shows that the water deficit threshold value, as a first approximation, is between 50% and 100% of ET0, and therefore the critical SWP for defining irrigation frequency should be close to −0.5 MPa. Upon applying a post-harvest drought period (14 days without irrigation), a linear correlation was determined both between SWP and maximum daily trunk shrinkage, MDS (R2 = 0.69) and between SWP and trunk growth rate, TGR (R2 = 0.57). Using these correlations and the SWP reference value, reference values were obtained for MDS (165 μm) and TGR (83 μm day−1), which would permit automated control of water status in young cherry trees.  相似文献   

18.
We evaluated the usefulness of short-term trunk diameter variations (TDV) as water stress indicator in field-grown grapevines cv. Tempranillo. Two indices were calculated from TDV, maximum daily trunk shrinkage (MDS), and trunk growth rate (TGR). The seasonal evolution of both indicators was compared with occasional determinations of pre-dawn leaf water potential and stem water potential, measured at early morning (Ψsem) and at midday (Ψsmd) in irrigated and non-irrigated vines. In the second season, the effect of crop load on the vine water status indicators was also studied. Crop load did not affect either the vine water relations or the TDV. All water potential determinations had much lower variability and were more sensitive than both MDS and TGR to water restrictions. The ability of both indices to detect plant water stress varied largely depending upon the phenological period. In fact, MDS and TGR were only able to detect vine water stress during a short period of time before veraison. During this period, TGR was linearly related to both Ψsem and Ψsmd, while for MDS a curvilinear, quadratic equation, better described the relationship with plant water status. After veraison no apparent relationship existed between plant water status and MDS or TGR. Hence, our results question the practical use of both MDS and TGR as variables to automate irrigation scheduling for grapevine.  相似文献   

19.
Measurements of maximum daily trunk shrinkage (MDS) were performed on adult olive (Olea europaea L. cv. Manzanillo) trees in an experimental farm in Seville (Spain). The objective was to study the feasibility of obtaining maximum daily trunk shrinkage baselines or reference values for use in irrigation scheduling. The trees were irrigated daily above their water requirements in order to obtain non-limiting soil water conditions. The results indicated it is possible to obtain baselines for MDS, despite a certain scattering of the data points representing the relations between MDS and the climatic variables (reference evapotranspiration, solar radiation, vapour pressure deficit and temperature). MDS behaviour was best correlated with midday vapour pressure deficit and midday air temperature (r2 = 0.83 and 0.79, respectively).  相似文献   

20.
The response of adult Fino lemon trees (Citrus limon L. Burm. fil.) on sour orange (Citrus aurantium L.) to an irrigation schedule based exclusively on maximum daily trunk shrinkage (MDS) measurements was studied during the 2005-2006 and 2006-2007 seasons. Plants irrigated above their crop water requirements (T0 treatment) were compared with plants under deficit irrigation, whereby the MDS signal intensity (actual MDS/reference MDS) threshold values were maintained at around 1.15 (T1 treatment), 1.25 (T2 treatment) and 1.35 (T3 treatment). Cumulative crop evapotranspiration (ETc) values reached 536.9 and 719.4 mm during the first and the second season, respectively, and the cumulative amounts of applied water in the deficit irrigation treatments were 662.4 mm (T1, 2006-2007 season), 396.3 mm (T2, 2005-2006 season), 554.0 mm (T2, 2006-2007 season) and 220.3 mm (T3, 2005-2006 season), which generated mild, moderate and severe water stress in T1, T2 and T3 plants, respectively. Results indicated that measurements of MDS are suitable for scheduling irrigation, except for rainy periods of low evaporative demand. Therefore, to improve the precision of irrigation management, some changes in the irrigation protocol should be introduced, for instance, using higher MDS signal intensity threshold values and/or a lower irrigation frequency. According to market demand, lemon fruits were harvested on two occasions, showing no effect of irrigation treatment on total yield and total number of fruits per tree. T2 and T3 treatments resulted in a lower yield and number of fruits per tree at the first harvest and modified fruit characteristics. In contrast, the yield at first harvest and number of fruits per tree was not affected in T1 (92% ETc) plants and fruit characteristics were hardly impaired.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号