首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以白皮洋葱为试材,利用称量式蒸渗仪灌水试验,研究了不同灌水量及土壤含盐量对洋葱的耗水规律、产量和水分利用效率的影响。供试土壤分别为低盐土和高盐土,低盐土在鳞茎膨大期设置3种灌水处理,其对应的灌水下限分别为0~30 cm土层土壤含水率达到田持的80%、70%和60%,其他生长期和高盐土的全生育期灌水下限均为田持的80%。研究结果表明,鳞茎膨大期是洋葱的关键需水期;洋葱作物系数立苗期为0.50,发叶期为1.00,鳞茎膨大期为1.50,成熟期为1.25。低盐土的中水处理洋葱可获得最大产量、水分利用效率和较大的灌溉水利用效率;水分和盐分胁迫对洋葱的产量和耗水具有明显的影响。在石羊河流域洋葱鳞茎膨大期,0~30 cm土层土壤灌水下限为田持的70%左右是较适宜的灌水方案。  相似文献   

2.
The primary objective of an agriculture water management system is to provide crop needs to sustain high yields. Another objective of equal or greater importance in some regions is to reduce agriculture impacts on surface and groundwater quality. Kandil et al. (1992) modified the water management model DRAINMOD to predict soil salinity as affected by irrigation water quality and drainage system design. The objectives of this study are to incorporate an algorithm to quantify the effects of stresses due to soil salinity on crop yields and to demonstrate the applications of the model. DRAINMOD-S, is capable of predicting the long-term effects of different irrigation and drainage practices on crop yields. The overall crop function in the model includes the effects of stresses caused by excessive soil water conditions (waterlogging), soil water-deficits, salinity, and planting delays. Three irrigation strategies and six drain spacings were considered for all crops. In the first irrigation strategy, the irrigation amounts were equal to evapotranspiration requirements by the crops, with the addition of a 10 cm depth of water for leaching applied during each growing season. In the second strategy, the leaching depth (10 cm) was applied before the growing season. In the third strategy, a leaching depth of 15 cm was applied before the growing season for each crop. Another strategy (4th) with more leaching was considered for bean which is the crop most sensitive to salinity. In the fourth strategy, 14 days intervals were used instead of 7 and leaching irrigations were applied: 15 cm before the growing season and 10 cm at the middle of the growing season for bean. The objective function for these simulations was crop yield. Soil water conditions and soil salinity were continuously simulated for a crop rotation of bean, cotton, maize, soybean, and wheat over a 19 years period. Yields of individual crops were predicted for each growing season. Results showed that the third irrigation strategy resulted in the highest yields for cotton, maize, soybean and wheat. Highest yields for bean were obtained by the fourth irrigation strategy. Results are also presented on the effects of drain depth and spacing on yields. DRAINMOD-S is written in Fortran and requires a PC with math-coprocessor. It was concluded that DRAINMOD-S is a useful tool for design and evaluation of irrigation and drainage systems in irrigated arid lands.  相似文献   

3.
Accurate crop development models are important tools in evaluating the effects of water deficits on crop yield or productivity and predicting yields to optimize irrigation under limited available water for enhanced sustainability and profitable production. Food and Agricultural Organization (FAO) of United Nations addresses this need by providing a yield response to water simulation model (AquaCrop) with limited sophistication. The objectives of this study were to evaluate the AquaCrop model for its ability to simulate wheat (Triticum aestivum L.) performance under full and deficit water conditions in a hot dry environment in south of Iran, to study the effect of different scenarios of irrigation (crop growth stages and depth of water applied) on wheat yield. The AquaCrop model was evaluated with experimental data collected during the three field experiments conducted in Ahvaz. The AquaCrop model was able to accurately simulate soil water content of root zone, crop biomass and grain yield, with normalized root mean square error (RMSE) less than 10%. The analysis of irrigation scenarios showed that the highest grain yield could be obtained by applying four irrigations (200 mm) at sowing, tillering, stem elongation and flowering or grain filing stages for wet years, four irrigations (200 mm) at sowing, stem elongation and flowering stages for normal years and six irrigations (300 mm) at sowing, emergence, tillering, stem elongation, flowering and grain filing stages for dry years. The least amount of irrigation water to provide enough water to response to evaporative demand of environment and to obtain high WUE for wet, normal and dry years were 100, 200 and 250 mm, respectively.  相似文献   

4.
In arid and semi-arid regions, effluent from sub-surface drainage systems is often saline and during the dry season its disposal poses an environmental problem. A field experiment was conducted from 1989 to 1992 using saline drainage water (EC=10.5–15.0 dS/m) together with fresh canal water (EC=0.4 dS/m) for irrigation during the dry winter season. The aim was to find if crop production would still be feasible and soil salinity would not be increased unacceptably by this practice. The experimental crops were a winter crop, wheat, and pearl-millet and sorghum, the rainy season crops, grown on a sandy loam soil. All crops were given a pre-plant irrigation with fresh canal water. Subsequently, the wheat crop was irrigated four times with different sequences of saline drainage water and canal water. The rainy season crops received no further irrigation as they were rainfed. Taking the wheat yield obtained with fresh canal water as the potential value (100%), the mean relative yield of wheat irrigated with only saline drainage water was 74%. Substitution of canal water at first post-plant irrigation and applying thereafter only saline drainage water, increased the yield to 84%. Cyclic irrigations with canal and drainage water in different treatments resulted in yields of 88% to 94% of the potential. Pearl-millet and sorghum yields decreased significantly where 3 or 4 post-plant irrigations were applied with saline drainage water to previous wheat crop, but cyclic irrigations did not cause yield reduction. The high salinity and sodicity of the drainage water increased the soil salinity and sodicity in the soil profile during the winter season, but these hazards were eliminated by the sub-surface drainage system during the ensuing monsoon periods. The results obtained provide a promising option for the use of poor quality drainage water in conjunction with fresh canal water without undue yield reduction and soil degradation. This will save the scarce canal water, reduce the drainage water disposal needs and associated environmental problems.  相似文献   

5.
Farming in Serbia is traditionally rainfed. Analyses show that drought events of varying severity are frequent in this region, although there is no specific pattern. There is a distinct need for an objective assessment of the impact of drought on strategic field crops, to solve the dilemma whether irrigation is required or not. For this reason, and based on available field data, the FAO AquaCrop water driven model was selected to simulate yield and irrigation water use efficiency (IWUE) for three major field crops (maize, sunflower, and sugar beet), under two scenarios: (1) natural water supply and adequate supply of nutrients, and (2) supplementary irrigation and adequate supply of nutrients. The experiments presented here were conducted between 2000 and 2007 in northern Serbia, where chernozem soil is prevalent. Data of 2003 cropping seasons were used for local calibration, whereas the remaining years for validation. Results were such that local calibration resulted in very minor changes of AquaCrop coefficients (e.g., maize basal crop coefficient, sunflower harvest index, etc.). Simulated maize yield levels exhibited the greatest departure from measured data under irrigation conditions (−3.6 and 3.3% during an extremely dry and an extremely wet year, respectively). Simulated sunflower yield levels varied by less than 10% in 8 out of 10 comparisons. The most extreme variation was noted during the extremely wet year. The difference between simulated and measured values in the case of sugar beet was from −10.2 to 12.2%. Large differences were noted only in two or three cases, under extreme climatic conditions. Statistical indicators - root mean square error (RMSE) and index of agreement (d) - for all three crops suggested that the model can be used to highly reliably assess yield and IWUE. This conclusion was derived based on low values of RMSE and high values of d (in the case of maize and sugar beet 0.999 for both yield and IWUE, and in the case of sunflower 0.999 for yield and 0.884 for IWUE). It is noteworthy that under wet conditions, the model suggested that sunflower and sugar beet do not require irrigation, as confirmed by experimental research. These data are significant because they show that the AquaCrop model can be used in impartial decision-making and in the selection of crops to be given irrigation priority in areas where water resources are limited.  相似文献   

6.
The growing demand for maize (Zea mays L.) in intensive livestock and other industries has opened up fresh opportunities for further expansion of the maize industry in Australia, which could be targeted in relatively water rich semi-arid tropical (SAT) regions of the country. This crop simulation study assessed the potential productivity and water requirements of maize peanut (Arachis hypogaea L.) rotations for the SAT climatic zone of Australia using the Agricultural Production Systems Simulator (APSIM) model. APSIM was configured to simulate maize (Pioneer hybrid 3153) either in the dry (May-October) or wet season (November-April) and peanut (cv. Conder) in the following season for three soils found at Katherine (14.48°S, 132.25°E) from 1957 to 2008. The simulated mean total yield potential of the dry season maize and wet season peanut (DMWP) rotation (15-19.2 t/ha) was about 28% greater than the wet season maize-dry season peanut (WMDP) rotation because of the higher yield potential of maize in the dry season compared to in the wet season. These high yields in the DMWP rotation have been achieved commercially. The overall simulated irrigation water requirement for both rotations, which varied from 11.5 to 13.8 ML/ha on different soils, was similar. The DMWP rotation had 21% higher water use efficiency. Similar yield and water use efficiency advantages of the DMWP rotation were apparent for eight other agriculturally important locations in the Northern Territory, Western Australia and Queensland. The simulations for Katherine also suggested that the irrigation requirement of the two rotations could increase by 17.5% in El-Nino years compared to La-Nina years for only a small gain in yield, which has implications for climate change scenarios.  相似文献   

7.
Summary Large quantities of saline water frequently exist in irrigated areas of the world. Various strategies have been proposed to use these saline waters. Blending involves mixing saline water with good quality water to an acceptable salinity and then using this water to irrigate crops. The cyclic strategy uses waters of various salinities separately either during one season or in a crop rotation as a function of the crop's salt tolerance. A multi-seasonal transient state model, known as the modified van Genuchten-Hanks model, was used to investigate the effects of cyclic or blending application of irrigation waters of two salinity levels on alfalfa (Medicago sativa L.), and on a corn (Zea mays L.) and cotton (Gossypium hirsutum L.) crop rotation. Simulated alfalfa yields were similar for the cyclic and blending strategies that applied the same amount of salt and water. The cyclic strategy produced higher simulated yields of salt-sensitive corn than the blending strategy, whereas the simulated salt-tolerant cotton yield was not affected by the two strategies. The beneficial effects of the cyclic strategy on corn production decreased under deficit irrigation.  相似文献   

8.
Water demand for irrigation is increasing in olive orchards due to enhanced yields and profits. Because olive trees are considered moderately tolerant to salinity, irrigation water with salt concentrations that can be harmful for many of fruit tree crops is often used without considering the possible negative effects on olive tree growth and yield. We studied salt effects in mature olive trees in a long term field experiment (1998-2006). Eighteen-year-old olive trees (Olea europaea L.) cv. Picual were cultivated under drip irrigation with saline water composed of a mixture of NaCl and CaCl2. Three irrigation regimes (i. no irrigation; ii. water application considering soil water reserves, short irrigation; iii. water application without considering soil water reserves and adding a 20% more as a leaching fraction, long irrigation) and three salt concentrations (0.5, 5 or 10 dS m−1) were applied. Treatments were the result of the combination of three salt concentrations with two irrigation regimes, plus the non-irrigated treatment. Growth parameters, leaf and fruit nutrition, yield, oil content and fruit characteristics were annually studied. Annual leaf nutrient analyses indicate that all nutrients were within the adequate levels. After 8 years of treatment, salinity did not affect any growth measurement and leaf Na+ and Cl concentration were always below the toxicity threshold of 0.2 and 0.5%, respectively. Annual and accumulated yield, fruit size and pulp:stone ratio were also not affected by salts. However, oil content increased linearly with salinity, in most of the years studied. Soil salinity measurements showed that there was no accumulation of salts in the upper 30 cm of the soil (where most of the roots are present) because of leaching by rainfall at the end of the irrigation period. Results suggest that a proper management of saline water, supplying Ca2+ to the irrigation water, using drip irrigation until winter rest and seasonal rainfall typical of the Mediterranean climate leach the salts from the first 0-60 cm depth, and growing a tolerant cultivar, can allow using high saline irrigation water (up to 10 dS m−1) for a long time without affecting growth and yield in olive trees.  相似文献   

9.
AquaCrop模型的适用性及应用初探   总被引:3,自引:2,他引:3  
AquaCrop模型是FAO新推出的以水分为驱动的作物生长模型。为了评价其在华北地区的适用性,于2009-2010年在中国水利水电科学研究院大兴试验站进行了夏玉米水分处理试验,其中2010年的试验数据用于参数率定,2009年的试验教据用于模型验证,并在此基础上对模型参数进行敏感性分析。结果表明,AquaCrop模型能够...  相似文献   

10.
Artificial subsurface drainage is not an option for addressing the saline, shallow ground water conditions along the west side of the San Joaquin Valley because of the lack of drainage water disposal facilities. Thus, the salinity/drainage problem of the valley must be addressed through improved irrigation practices. One option is to use drip irrigation in the salt affected soil.A study evaluated the response of processing tomato and cotton to drip irrigation under shallow, saline ground water at depths less than 1 m. A randomized block experiment with four irrigation treatments of different water applications was used for both crops. Measurements included crop yield and quality, soil salinity, soil water content, soil water potential, and canopy coverage. Results showed drip irrigation of processing tomato to be highly profitable under these conditions due to the yield obtained for the highest water application. Water applications for drip-irrigated tomato should be about equal to seasonal crop evapotranspiration because yield decreased as applied water decreased. No yield response of cotton to applied water occurred indicating that as applied water decreased, cotton uptake of the shallow ground water increased. While a water balance showed no field-wide leaching, salinity data clearly showed salt leaching around the drip lines.  相似文献   

11.
CropSyst, a management-oriented crop growth model, was modified to assess crop response to salinity. The effect of salinity was included in the existing water uptake module by adding an osmotic component to the soil water potential and developing a function to account for salinity effects on root permeability. The effect of salinity on water uptake is the link to simulate crop growth reduction. A qualitative analysis showed that the model simulated expected trends of crop response to salinity as affected by cultivar tolerance, atmospheric vapor pressure deficit, and soil water availability. Comparisons with data from sprinkler line experiments were performed for barley grown at Zaragoza (Spain) in 1986 and 1989, and corn at Davis, Calif. and Fort Collins, Colo. in 1975. These experiments included different salinity and irrigation levels. At Davis, the model simulated well the effect of salinity/irrigation treatments on water use, biomass, and crop yield, with values for the Willmot index of agreement (d) generally better than 0.94 (a value of 1.0 implying perfect agreement). At Fort Collins, simulation of grain yield was less satisfactory (d fluctuated between 0.83 and 0.90), but the agreement was good for crop water use and biomass (d generally better than 0.96). The lower performance for grain yield was attributed to large and erratic variations in the observed harvest index. The agreement between simulated and observed values tended to be lower at Zaragoza, with d values fluctuating between 0.84 and 0.91 for biomass and yield in the 2 years included in this evaluation. Unusually high measured yields in 1989 and erratic variation in 1986 were attributed to small sample size. The small size (increased measurement error) of samples typically obtained in sprinkler line source experiments tends to limit their use for evaluation of simulation models.  相似文献   

12.
冬小麦生物量和产量的AquaCrop模型预测   总被引:6,自引:0,他引:6  
以华北地区冬小麦为研究对象,将AquaCrop作物生长模型应用到滴灌、喷灌、漫灌中,对模型主要参数如气象、土壤、作物特性等进行调整,并对作物产量和生物量模拟的有效方法进行了研究。模拟结果表明,产量和收获时地上部分生物量的模拟值与实测值较为接近且略高于实测值,模型性能指数均高于0.95。产量模拟效果优于生物量,滴灌模拟效果最好。  相似文献   

13.
The coastal region of northern Chile is a desert and the salinity and boron levels in the soils can be high. The irrigation water is also saline (3–9 dS/m), with high concentrations of sodium, chloride, and boron. Despite these conditions, the irrigation of alfalfa, winter grains, and vegetables has been practiced on the alluvial soils near the rivers, since before the arrival of the Spanish in the 16th century. A field experiment was conducted in 1989 and 1990 to document the effects of irrigation on the growth and yield of 42 crop species near the city of Calama. The EC of the Loa river water used in the study was 8.2 dS/m and the boron content was 17 mg/l. This EC level exceeds the threshold salinity of most crops, and the boron level exceeds the threshold level for all crops. The crops were planted in December of 1989 and harvested the following May. Drip irrigation was used. The plant growth and crop yields of artichoke, asparagus, broad bean, red and sugar beets, Swiss chard, carrot, celery, a local variety of sweet corn, potato, prickly pear cactus, onion, shallot, spinach, were greater than expected based on published information. If separate effects of salinity and boron were additive, little or no growth would be expected for all 12 of these crops. Interactions likely occur which increase the individual tolerance coefficients for boron and salinity when a crop is exposed to both sources of stress at the same time. Foliar levels of boron may be reduced because high soil salinity levels reduce plant water uptake. The milder climate in Chile compared to that in Riverside, CA, where much of the salt and boron tolerance data has been obtained, could be partially responsible for the better crop response to salinity and boron than expected. Finally, the productivity of the local variety of sweet corn suggests that it is a more salt-tolerant variety, which has arisen as a consequence of seed selection practiced since the time irrigation began in the region which predates the 16th century.  相似文献   

14.
Using AquaCrop to derive deficit irrigation schedules   总被引:2,自引:0,他引:2  
Straightforward guidelines for deficit irrigation (DI) can help in increasing crop water productivity in agriculture. To elaborate such guidelines, crop models assist in assessing the conjunctive effect of different environmental stresses on crop yield. We use the AquaCrop model to simulate crop development for long series of historical climate data. Subsequently we carry out a frequency analysis on the simulated intermediate biomass levels at the start of the critical growth stage, during which irrigation will be applied. From the start of the critical growth stage onwards, we simulate dry weather conditions and derive optimal frequencies (time interval of a fixed net application depth) of irrigation to avoid drought stress during the sensitive growth stages and to guarantee maximum water productivity. By summarizing these results in easy readable charts, they become appropriate for policy, extension and farmer level use. We illustrate the procedure to derive DI schedules with an example of quinoa in Bolivia. If applied to other crops and regions, the presented methodology can be an illustrative decision support tool for sustainable agriculture based on DI.  相似文献   

15.
Many wells in the US Central Plains can no longer meet full crop water requirements due to declines in Ogallala aquifer water levels. A study was conducted in Southwest Kansas to determine optimum limited irrigation strategies for grain sorghum. Objectives were to (1) calibrate and validate the AquaCrop model, (2) apply AquaCrop to assess the effect of varying climate, planting dates, and soil types on yield, and (3) evaluate water productivities and optimal irrigation needs. Experimental data of grain sorghum were used to calibrate and validate AquaCrop. Planting date was found to substantially affect biomass and grain yield, and hence, considerably affect water productivities. The highest grain water productivities were obtained with late planting in a wet season. Late planting was associated with lower irrigation requirements. Depending on local conditions, we recommend planting to occur between June 1st and June 10th. Grain sorghum yield was optimized on sandy soils of southwestern Kansas with irrigation of 100–275 mm for early, 150–275 mm for normal and 100–275 mm for late planting. The optimal irrigation on silt loam soils for the corresponding planting dates were 175–350, 175–250 and 125–250 mm, respectively, with the lowest and highest in the range being for the wet and dry climate season conditions. Fluctuations in grain sorghum prices had a substantial impact on economic water productivity. Overall planting grain sorghum under optimum conditions combined with deficit irrigation improved water productivity.  相似文献   

16.
Agricultural practice in the semi-arid region of Brazil is highly dependant on irrigation. As access to water is limited in the region, there is a need to guarantee its efficient use, especially in small-scale farming schemes. Models adequately calibrated for semi-arid conditions and for typical crops are useful tools for analysis of on-farm strategies to improve water use efficiency. A physically based agrohydrological model, SALTMED, is calibrated and validated for carrots (Daucus carota L., Brasília variety) and cabbage (Brassica oleracea var. capitata), two of the main crops in small-scale irrigated agriculture in the northeast of Brazil. SALTMED is also calibrated for castor beans (Ricinus communis L.) under rainfed conditions. The results demonstrated the suitability of the SALTMED model for simulating soil water dynamics and crop yield in the area. Predicted time series of soil water content and matric potential of root zone showed good agreement with observed values, as shown graphically and statistically. Using the calibrated and validated model, management scenarios were analysed in terms of applied irrigation water, irrigation frequency, soil and crop types. Impact of climate change on the irrigation water requirements was also briefly analysed for possible changes in annual temperature using two different emission scenarios. Analysis of possible impact of climate change on temperature related to two emission scenarios on the area showed an increase around 11% of the crop water requirement for carrots and cabbage, for the low emission scenario, and around 17% for the high emission scenario. The analysis of management scenarios indicated possible over-irrigation in the area. The simulation showed that the deficit irrigation was a useful water-saving strategy for the region. The simulations also indicated that irrigation frequency affected crop water use and differed according to the soil type.  相似文献   

17.
以河套灌区沙壕渠灌域为例,采用SaltMod模型探讨了不同灌溉制度对作物根层土壤盐分的影响.利用2008-2010年基础资料对模型进行率定和验证并对研究区的根层土壤盐分进行模拟和预测.结果表明:在现有灌排条件下,沙壕渠灌域的盐渍化程度基本达到较为稳定的水平,且有轻微脱盐趋势,未来10 a后作物根层土壤盐分降低3%.生育期土壤水盐垂直交换运动强烈,对于控制土壤盐分而言,灌水量越小越好;作物根层土壤盐分随冬灌灌溉定额的增大而减小,不同冬灌灌溉定额对应的根层土壤盐分最初的增加量均较大,但增加的趋势随时间逐渐降低.根据当地作物种植结构,综合考虑节水灌溉、作物产量和根层土壤水盐环境,建议研究区较优的作物生育期综合净灌溉定额为2 700~3 500 m3/hm2,冬灌净灌溉定额为2 700 m3/hm2.  相似文献   

18.
The purpose of optimal water and nutrient management is to maximize water and fertilizer use efficiency and crop production, and to minimize groundwater pollution. In this study, field experiments were conducted to investigate the effect of soil salinity and N fertigation strategy on plant growth, N uptake, as well as plant and soil 15N recovery. The experimental design was a 3 × 3 factorial with three soil salinity levels (2.5, 6.3, and 10.8 dS m−1) and three N fertigation strategies (N applied at the beginning, end, and in the middle of an irrigation cycle). Seed cotton yield, dry matter, N uptake, and plant 15N recovery significantly increased as soil salinity level increased from 2.5 to 6.3 dS m−1, but they decreased markedly at higher soil salinity of 10.8 dS m−1. Soil 15N recovery was higher under soil salinity of 10.8 dS m−1 than those under soil salinity of 6.3 dS m−1, but was not significantly different from that under soil salinity of 2.5 dS m−1. The fertigation strategy that nitrogen applied at the beginning of an irrigation cycle had the highest seed cotton yield and plant 15N recovery, but showed higher potential loss of fertilizer N from the root zone. While the fertigation strategy of applying N at the end of an irrigation cycle tended to avoid potential N loss from the root zone, it had the lowest cotton yield and nitrogen use efficiency. Total 15N recovery was not significantly affected by soil salinity, fertigation strategy, and their interaction. These results suggest that applying nitrogen at the beginning of an irrigation cycle has an advantage on promoting yield and fertilizer use efficiency, therefore, is an agronomically efficient way to provide cotton with fertilizer N under the given production conditions.  相似文献   

19.
The influences of water quantity and quality on young lemon trees (Eureka) were studied at the University of Jordan Research Station at the Jordan Valley for 5 years (1996–2000). Five water levels and three water qualities were imposed via trickle irrigation system on clay loam soil. The primary effect of excess salinity is that it renders less water available to plants although some is still present in the root zone. Lemon trees water requirements should be modified year by year since planting according to the percentage shaded area, and this will lead into substantial water saving. Both evaporation from class A pan and the percentage shaded area can be used to give a satisfactory estimate of the lemon trees water requirement at the different growth stages. The highest lemon fruit yield was at irrigation water depth equal to evaporation depth from class A pan when corrected for tree canopy percentage area. Increasing irrigation water salinity 3.7 times increased average crop root zone salinity by about 3.8–4.1 times.The high salt concentration at the soil surface is due to high evaporation rate from wetted areas and the nature of soil water distribution associated with drip irrigation system. Then, the salt concentration decreased until the second depth, thereafter, salt concentration followed the bulb shape of the wetted soil volume under trickle irrigation. Irrigation water salinity is very important factor that should be managed with limited (deficit) irrigation. But increasing amount of applied saline water could result in a negative effect on crop yield and environment such as increasing average crop root zone salinity, nutrient leaching, water logging, increasing the drainage water load of salinity which might pollute ground water and other water sources.  相似文献   

20.
Summary Irrigation at 35 and 70 mm of pan evaporation applied during the pre and/or post early podfilling stages increased pod yield of Spanish peanuts (100 day maturity) three fold compared to a dryland crop. There was no difference in pod yield in crops receiving 12 compared to 6 irrigations. Soil water sampling immediately after irrigations on selected treatments revealed that infiltration of irrigation water was probably restricted to less than ca. 20 cm, a response which resulted in poor soil water replenishment and low irrigation efficiency (Fig. 3). Even though roots extracted soil water below the compaction layer which was at 20 cm severe crop water deficits had developed by the end of irrigation cycles during later but not early stages of growth. The dryland crop, which received no rainfall during the season, presumably extracted significant amounts of soil water at depths to and below 1.2 m (Fig. 3). Despite producing ca. 2.9 t ha-1 of total dry matter yield, pod yield was extremely low (0.5 t ha-1) arising from low pod numbers and high percentage of empty pods.This research was funded by the Australian Centre for International Agricultural Research (ACIAR-Project 8419) in collaboration with the Agency for Agricultural Research and Development (AARD).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号