共查询到20条相似文献,搜索用时 15 毫秒
1.
Pedroza Hector Quiones Helene Unland Waldo Ojeda Ernesto Sifuentes 《Agricultural Water Management》1999,40(2-3):333-339
In Mexico most of the agricultural production originates from large irrigation districts in the northern part of the country. This region is characterized by its semiarid desert climate with a winter rainy season dominated by frontal storms, and a summer monsoon season dominated by highly localized convective storms, yielding most of the annual precipitation. Essentially all irrigation needs must be met by surface water stored in various reservoirs. Precipitation is, therefore, the most important limiting factor in Mexico's agricultural production. Traditionally, long-time averages of statistical climate data from few and widely-spaced weather stations were used to determine frequency and amount of water applied, and the algorithms employed usually did not consider the effects of great spatial climate variability and plant physiology. In the past five years, great parts of Mexico, especially in the North, have been affected by severe water shortages resulting from insufficient precipitation (perhaps related to the ‘El Niño' phenomenon), combined with inefficient water resources management. Irrigation districts increasingly have to deal with the considerable uncertainty in water resources availability as a limiting factor in the decision making process. In order to address these irrigation water shortages, the Mexican National Water Commission and the Mexican Water Resources Institute are introducing new technologies using agrometeorological networks for more efficient, real-time irrigation scheduling in the main irrigation districts of Mexico. Validation plots established in one particular irrigation district (Carrizo Valley, Sinaloa), demonstrate water savings in the order of at least 20% without any appreciable decrease in crop yields. 相似文献
2.
The effects of high crop load (unthinned trees, 22-23 fruits cm−2 of trunk cross-sectional area (TCSA)), commercial crop load (3-4 fruits cm−2 of TCSA), and no crop load (all fruitlets removed) on maximum daily trunk shrinkage (MDS), trunk growth rate (TGR) and stem water potential (Ψstem) were studied during the fruit growth period and 20 days following harvest in fully irrigated early maturing peach trees, Prunus persica (L.) Batsch, cv. Flordastar. Even though crop load did not affect plant water status, the MDS and TGR values increased and decreased, respectively, as a result of the crop load effect. In this sense, for the same Ψstem value, there was a linear increase in MDS with crop load, with a slope of 6.6 μm MPa−1 per unit of crop load increment. The effects of environmental conditions on daily MDS values were also dependent on crop load, suggesting that MDS reference values should be obtained by representing the relations between MDS and the climatic variables (daily mean air temperature, daily mean vapour pressure deficit and daily crop reference evapotranspiration) for a given crop load. The constancy of the relation between MDS and Ψstem across crop load underlined the constancy of the elastic properties of the bark tissues. 相似文献
3.
Irrigation scheduling results from the irrigator's integration of meteorological, environmental and crop information. In this paper, the irrigation scheduling patterns of a group of irrigators in the Candasnos Water Users Association (WUA), located in north-eastern Spain, were analysed. Scheduling sprinkler and drip irrigation in this WUA shows additional complications due to the sharing of a collective pressurized irrigation network and to the need to file water orders two days in advance of its foreseen use. The database created by a remote surveillance and control system was mined to obtain the time evolution of hydrant operation time during the 2004–2008 irrigation seasons. Records were selected for clearly identified crops and irrigation systems, and for verified water allocations. Hydrant operation showed a relationship with meteorology (precipitation, wind speed, relative humidity and air temperature), although this relationship was often not evident when hydrants were individually analysed. Statistical analyses were run to classify irrigator's scheduling practices, leading to the establishment of ten different groups. The adopted classification criteria included the average number of weekly irrigations, the SD of the number of weekly irrigations and the modal range of the irrigation starting time. The irrigation pattern was determined by the irrigator (56%), the irrigation system (33%), and the crop (11%). Only in a fraction of the cases (22%) the time change in the scheduling pattern responded to a clear time trend; in 39% of the cases, changes in time appeared random. Further, 45% of the irrigators used the same irrigation pattern in at least half of their hydrant-years, independently of the crop. Only 14% of the irrigators applied different irrigation scheduling patterns to different crops. Our results suggest that irrigators do not find value or do not have the capacity to develop irrigation patterns more consistent and adapted to the local environment, the crops and the irrigation systems. 相似文献
4.
Higher performance through combined improvements in irrigation methods and scheduling: a discussion 总被引:2,自引:0,他引:2
Luis S. Pereira 《Agricultural Water Management》1999,40(2-3):153-169
Prior to the discussion on approaches to combine irrigation scheduling and water application practices, several farm irrigation performance indicators are defined and analysed. These indicators concern the uniformity of water distribution along an irrigated field and the efficiency of on-farm water application. Then, the analysis focus is on three main irrigation systems: surface, sprinkler and microirrigation. For each of these systems, the analysis concerns the main characteristics and constraints of the systems, more relevant aspects influencing irrigation performances, and approaches which could lead to a more appropriate coupling of irrigation scheduling and water application methods. Conclusions point out on the need for combined improvements in irrigation scheduling and methods, for expanding field evaluation of irrigation in farmers fields, for improved design of on-farm systems, and for quality control of irrigation equipments and design. 相似文献
5.
Yasar Emekli Ruhi Bastug Dursun Buyuktas Nefise Yasemin Emekli 《Agricultural Water Management》2007,90(3):205-212
This study was conducted to assess crop water stress index (CWSI) of bermudagrass used widely on the recreational sites of the Mediterranean Region and to study the possibilities of utilization of infrared thermometry to schedule irrigation of bermudagrass. Four different irrigation treatments were examined: 100% (I1), 75% (I2), 50% (I3), and 25% (I4) of the evaporation measured in a Class A pan. In addition, a non-irrigated treatment was set up to determine CWSI values. The status of soil water content and pressure was monitored using a neutron probe and tensiometers. Meanwhile the canopy temperature of bermudagrass was measured with the infrared thermometry. The empirical method was used to compute the CWSI values. In this study, the visual quality of bermudagrass was monitored seasonally using a color scale. The best visual quality was obtained from I1 and I2 treatments. Average seasonal CWSI values were determined as 0.086, 0.102, 0.165, and 0.394 for I1, I2, I3, and I4 irrigation treatments, respectively, and 0.899 for non-irrigated plot. An empirical non-linear equation, Qave=1+⌊6[1+(4.853 CWSIave)2.27]−0.559⌋, was deduced by fitting to measured data to find a relation between quality and average seasonal CWSI values. It was concluded that the CWSI could be used as a criterion for irrigation timing of bermudagrass. An acceptable color quality could be sustained seasonally if the CWSI value can be kept about 0.10. 相似文献
6.
A method for spatial prediction of daily soil water status for precise irrigation scheduling 总被引:1,自引:0,他引:1
Available water holding capacity (AWC) and field capacity (FC) maps have been produced using regression models of high resolution apparent electrical conductivity (ECa) data against AWC (adj. R2 = 0.76) and FC (adj. R2 = 0.77). A daily time step has been added to field capacity maps to spatially predict soil water status on any day using data obtained from a wireless soil moisture sensing network which transmitted hourly logged data from embedded time domain transmission (TDT) sensors in ECa-defined management zones. In addition, regular time domain reflectometry (TDR) monitoring of 50 positions in the study area was used to assess spatial variability within each zone and overall temporal stability of soil moisture patterns. Spatial variability of soil moisture within each zone at any one time was significant (coefficient of variation [% CV] of volumetric soil moisture content (θ) = 3-16%), while temporal stability of this pattern was moderate to strong (bivariate correlation, R = 0.52-0.95), suggesting an intrinsic soil and topographic control. Therefore, predictive ability of this method for spatial characterisation of soil water status, at this site, was limited by the ability of the sensor network to account for the spatial variability of the soil moisture pattern within each zone. Significant variability of soil moisture within each ECa-defined zone is thought to be due to the variable nature of the young alluvial soils at this site, as well as micro-topographic effects on water movement, such as low-lying ponding areas. In summary, this paper develops a method for predicting daily soil water status in ECa-defined zones; digital information available for uploading to a software-controlled automated variable rate irrigation system with the aim of improved water use efficiency. Accuracy of prediction is determined by the extent to which spatial variability is predicted within as well as between ECa-defined zones. 相似文献
7.
The effects of irrigation methods with effluent and irrigation scheduling on water use efficiency and corn yields in an arid region 总被引:4,自引:0,他引:4
A great challenge for the agricultural sector is to produce more food from less water, particularly in arid and semi-arid regions which suffer from water scarcity. A study was conducted to evaluate the effect of three irrigation methods, using effluent versus fresh water, on water savings, yields and irrigation water use efficiency (IWUE). The irrigation scheduling was based on soil moisture and rooting depth monitoring. The experimental design was a split plot with three main treatments, namely subsurface drip (SSD), surface drip (SD) and furrow irrigation (FI) and two sub-treatments effluent and fresh water, which were applied with three replications. The experiment was conducted at the Marvdasht city (Southern Iran) wastewater treatment plant during 2005 and 2006. The experimental results indicated that the average water applied in the irrigation treatments with monitoring was much less than that using the conventional irrigation method (using furrows but based on a constant irrigation interval, without moisture monitoring). The maximum water saving was obtained using SSD with 5907 m3 ha−1 water applied, and the minimum water saving was obtained using FI with 6822 m3 ha−1. The predicted irrigation water requirements using the Penman-Monteith equation (considering 85% irrigation efficiency for the FI method) was 10,743 m3 ha−1. The pressure irrigation systems (SSD and SD) led to a greater yield compared to the surface method (FI). The highest yield (12.11 × 103 kg ha−1) was obtained with SSD and the lowest was obtained with the FI method (9.75 × 103 kg ha−1). The irrigation methods indicated a highly significant difference in irrigation water use efficiency. The maximum IWUE was obtained with the SSD (2.12 kg m−3) and the minimum was obtained with the FI method (1.43 kg m−3). Irrigation with effluent led to a greater IWUE compared to fresh water, but the difference was not statistically significant. 相似文献
8.
A new decision-making software tool for sprinkler or drip irrigation scheduling and monitoring, was developed at the request of small scale sugarcane (Saccharum spp.) farmers in Reunion Island (France) facing variable climate and soil conditions. Based on a simple water balance simulation model coupled with a comprehensive set of decisions rules, OSIRI was designed to provide farmers with targeted advices on discrete units of irrigation and for simulating scenarios of irrigation systems to optimize their performance. An optional procedure of direct adjustment by farmers and a system of controlled irrigation rationing are proposed. To meet the producer needs, the number of input parameters is adapted to the rather limited data availability, and the recommendation sheet is user-friendly oriented. Field data confirmed that OSIRI simulates very reasonably well actual evapotranspiration and drainage below the sugarcane root zone. Also, OSIRI allowed to save about 30% of irrigation delivery on a 140-day period as compared to the currently used crop water requirement method (respectively, 165 and 240 mm of water), without significant decrease in yield (respectively, 102 and 101 T ha−1). 相似文献
9.
Optimal on-farm irrigation scheduling with a seasonal water limit using simulated annealing 总被引:1,自引:0,他引:1
As water resources are limited and the demand for agricultural products increases, it becomes increasingly important to use irrigation water optimally. At a farm scale, farmer's have a particularly strong incentive to optimize their irrigation water use when the volume of water available over a season is production limiting. In this situation, a farmer's goal is to maximize farm profit, by adjusting when and where irrigation water is used. However, making the very best decisions about when and where to irrigate is not easy, since these daily decisions require consideration of the entire remaining irrigation season. Future rainfall uncertainty further complicates decisions on when and which crops should be subjected to water stress. This paper presents an innovative on-farm irrigation scheduling decision support method called the Canterbury irrigation scheduler (CIS) that is suitable when seasonal water availability is limited. Previous optimal scheduling methods generally use stochastic dynamic programming, which requires over-simplistic plant models, limiting their practical usefulness. The CIS method improves on previous methods because it accommodates realistic plant models. Future farm profit (the objective function) is calculated using a time-series simulation model of the farm. Different irrigation management strategies are tested using the farm simulation model. The irrigation strategies are defined by a set of decision variables, and the decision variables are optimized using simulated annealing. The result of this optimization is an irrigation strategy that maximizes the expected future farm profit. This process is repeated several times during the irrigation season using the CIS method, and the optimal irrigation strategy is modified and improved using updated climate and soil moisture information. The ability of the CIS method to produce near optimal decisions was demonstrated by a comparison to previous stochastic dynamic programming schedulers. A second case study shows the CIS method can incorporate more realistic farm models than is possible when using stochastic dynamic programming. This case study used the FarmWi$e/APSIM model developed by CSIRO, Australia. Results show that when seasonal water limit is the primary constraint on water availability, the CIS could increase pasture yield revenue in Canterbury (New Zealand) in the order of 10%, compared with scheduling irrigation using current state of the art scheduling practice. 相似文献
10.
《Agricultural Water Management》1998,38(1):77-83
Irrigation scheduling based on soil water balance is a simple procedure that can be operated either manually or using computer programs. Adoption of the procedure is still low due to lack of soil water parameters and availability of climatic information. Furthermore, potential users are deterred by both the time and paper work required to carry out the calculations. In this study a visual device in the form of a plastic container was designed and tested to schedule sugarcane (Saccharum spp.) irrigation. The calibrated plastic bucket was field tested and proved to be an effective way to program sugarcane irrigation. It works simultaneously as a pluviometer and as an evaporimeter and, once it is marked, there is no need for human intervention beyond checking the position of the water level in relation to the irrigation control marks. It could be used with other crops and is useful for regions where meteorological data is scarce or difficult to obtain. 相似文献
11.
Gunter Wriedt Marijn van der Velde Alberto Aloe Fayçal Bouraoui 《Agricultural Water Management》2009,96(5):771-789
We present a pan-European irrigation map based on regional European statistics, a European land use map and a global irrigation map. The map provides spatial information on the distribution of irrigated areas per crop type which allows determining irrigated areas at the level of spatial modelling units. The map is a requirement for a European scale assessment of the impacts of irrigated agriculture on water resources based on spatially distributed modelling of crop growth and water balance. The irrigation map was compiled in a two step procedure. First, irrigated areas were distributed to potentially irrigated crops at a regional level (European statistical regions NUTS3), combining Farm Structure Survey (FSS) data on irrigated area, crop-specific irrigated area for crops whenever available, and total crop area. Second, crop-specific irrigated area was distributed within each statistical region based on the crop distribution given in our land use map. A global map of irrigated areas with a 5′ resolution was used to further constrain the distribution within each NUTS3 based on the density of irrigated areas. The constrained distribution of irrigated areas as taken from statistics to a high resolution dataset enables us to estimate irrigated areas for various spatial entities, including administrative, natural and artificial units, providing a reasonable input scenario for large-scale distributed modelling applications. The dataset bridges a gap between global datasets and detailed regional data on the distribution of irrigated areas and provides information for various assessments and modelling applications. 相似文献
12.
Development of crop water stress index of wheat crop for scheduling irrigation using infrared thermometry 总被引:2,自引:0,他引:2
N.K. Gontia 《Agricultural Water Management》2008,95(10):1144-1152
This study was conducted to develop the relationship between canopy-air temperature difference and vapour pressure deficit for no stress condition of wheat crop (baseline equations), which was used to quantify crop water stress index (CWSI) to schedule irrigation in winter wheat crop (Triticum aestivum L.). The randomized block design (RBD) was used to design the experimental layout with five levels of irrigation treatments based on the percentage depletion of available soil water (ASW) in the root zone. The maximum allowable depletion (MAD) of the available soil water (ASW) of 10, 40 and 60 per cent, fully wetted (no stress) and no irrigation (fully stressed) were maintained in the crop experiments. The lower (non-stressed) and upper (fully stressed) baselines were determined empirically from the canopy and ambient air temperature data obtained using infrared thermometry and vapour pressure deficit (VPD) under fully watered and maximum water stress crop, respectively. The canopy-air temperature difference and VPD resulted linear relationships and the slope (m) and intercept (c) for lower baseline of pre-heading and post-heading stages of wheat crop were found m = −1.7466, c = −1.2646 and m = −1.1141, c = −2.0827, respectively. The CWSI was determined by using the developed empirical equations for three irrigation schedules of different MAD of ASW. The established CWSI values can be used for monitoring plant water status and planning irrigation scheduling for wheat crop. 相似文献
13.
Assessing basin irrigation and scheduling strategies for saving irrigation water and controlling salinity in the upper Yellow River Basin, China 总被引:5,自引:0,他引:5
Water saving in irrigation is a key concern in the Yellow River basin. Excessive water diversions for irrigation waste water and produce waterlogging problems during the crop season and soil salinization in low lands. Supply control and inadequate functionality of the drainage system were identified as main factors for poor water management at farm level. Their improvement condition the adoption of water saving and salinity control practices. Focusing on the farm scale, studies to assess the potential for water savings included: (a) field evaluation of current basin irrigation practices and further use of the simulation models SRFR and SIRMOD to generate alternative improvements for the surface irrigation systems and (b) the use of the ISAREG model to simulate the present and improved irrigation scheduling alternatives taking into consideration salinity control. Models were used interactively to define alternatives for the irrigation systems and scheduling that would minimize percolation and produce water savings. Foreseen improvements refer to basin inflow discharges, land leveling and irrigation scheduling that could result in water savings of 33% relative to actual demand. These improvements would also reduce percolation and maintain water table depths below 1 m thereby reducing soil salinization. 相似文献
14.
The actual irrigation water demand in a district in Sicily (Italy) was assessed by the spatially distributed agro-hydrological model SIMODIS (SImulation and Management of On-Demand Irrigation Systems). For each element with homogeneous crop and soil conditions, in which the considered area can be divided, the model numerically solves the one-dimensional water flow equation with vegetation parameters derived from Earth Observation data. In SIMODIS, the irrigation scheduling is set by means of two parameters: the threshold value of soil water pressure head in the root zone, hm, and the fraction of soil water deficit to be re-filled, Δ. This study investigated the possibility of identifying a couple of irrigation parameters (hm, Δ) which allowed to reproduce the actual irrigation water demand, given that the study area was adequately characterized with regard to the spatial distribution of the soil hydraulic properties and the vegetation conditions throughout the irrigation season. The spatial distribution of the soil and vegetation properties of the study area, covering an irrigation district of approximately 800 ha, was accurately characterized during the summer of 2002. The soil hydraulic properties were identified by an intensive undisturbed soil sampling, while the vegetation cover was characterized in terms of leaf area index, surface albedo and fractional soil cover by analysing multispectral LandSat TM imageries. Irrigation volumes were monitored at parcel scale.A reference scenario with hm = −700 cm and Δ = 50% (corresponding to a mean actual to potential transpiration ratio of 0.95) allowed to reproduce the spatial and temporal distribution of the actual irrigation demand at the district scale. The spatial variability of the crop conditions in the considered area had much more influence to assess the irrigation water demand than the soil hydraulic spatial variability. The proposed approach showed that, under the agro-climatic conditions typical for the Mediterranean region, SIMODIS may be a valuable tool in managing irrigation to increase water productivity. 相似文献
15.
Using a correlation between trunk diameter fluctuation (TDF) and stem water potential (SWP) it appears possible to determine water deficit threshold values (WDTV) for young cherry trees. This correlation must be based on a significant effect between SWP and at least one variable associated with the vegetative or reproductive growth of the trees. The objectives of this study are: (1) to determine the effect of several irrigation treatments on vegetative and reproductive growth and the SWP of young cherry trees; (2) to determine the correlation between TDF and SWP, and; (3) to propose a first approximation of SWP and TDF water deficit threshold values for young cherry tree plants. The experiment was carried out between September and April of the 2005-2006 and 2006-2007 seasons, in Quillota, in the Valparaiso region, central Chile. The irrigation treatments consisted of applications of 50% (T50), 100% (T100) and 150% (T150) of potential evapotranspiration (ET0) over the two growing seasons, using a randomized complete block design (RCB). The effect of irrigation scheduling was observed on: apical shoot growth rate (GRAS), branch cross-sectional area (BCSA), canopy volume (CV), annual length of accumulated growth (ALAG) and productivity. This effect showed that the T50 treatment caused lower SWP (measured pre-dawn), vegetative growth and productivity. The fruit quality variables (cracking and size) were not affected by the different treatments. Combining the vegetative growth, productivity and SWP results shows that the water deficit threshold value, as a first approximation, is between 50% and 100% of ET0, and therefore the critical SWP for defining irrigation frequency should be close to −0.5 MPa. Upon applying a post-harvest drought period (14 days without irrigation), a linear correlation was determined both between SWP and maximum daily trunk shrinkage, MDS (R2 = 0.69) and between SWP and trunk growth rate, TGR (R2 = 0.57). Using these correlations and the SWP reference value, reference values were obtained for MDS (165 μm) and TGR (83 μm day−1), which would permit automated control of water status in young cherry trees. 相似文献
16.
Trunk diameter fluctuations (TDFs) have been suggested as an irrigation-scheduling tool for several fruit trees, but the works in olive trees has not obtained successful results with any of the indicators (maximum daily shrinkage (MDS) and trunk growth rate (TGR)) that are calculated from the daily TDF curves. No studies of olive trees have ever used reference trees to reduce the influence of the environment, as in work for other fruit trees. In this work, we compare different continuous and discrete water status measurements in a drought cycle. We suggest the calculation of a new and related indicator (DTGR), the difference between the TGR of stressed trees, and the TGR of reference trees. Negative DTGR values always indicate water stress conditions. The current work describes the variations of this new indicator (DTGR) in relation to water stress, and compares DTRG to the midday stem water potential, maximum leaf conductance and to the MDS. The midday stem water potential and the maximum leaf conductance describe the stress cycle clearer than the trunk diameter fluctuation indicators. No significant differences were found in the values of MDS between stressed and reference trees. On the other hand, the DTGR pattern values were near that of the stem water potential, though positive values were recorded in some dates during the water stress cycle. These variations indicate that DTGR is not a cumulative water stress indicators, as is water potential. Therefore, according to our data, water potential is a better indicator than the TDF parameters when no deficit irrigation scheduling is performed in olive trees. DTGR seems to be a good indicator of water stress from a threshold value around −1.4 MPa in olive trees. In addition, higher variability of DTGR than stem water potential may also be reduced with the increase in the number of sensors. 相似文献
17.
Jesús Causapé Valenzuela 《Agricultural Water Management》2009,96(2):179-187
Non-point agrarian contamination makes its allocation to a specific territory difficult. This first part of the study seeks to analyze contamination resulting from water use in 54,438 ha of Bardenas irrigation district included in the Arba basin (BID-Arba). To this end, water balances were carried out in BID-Arba by means of measuring or estimating the main inputs, outputs and water storage between 1 April 2004 and 30 September 2006. Also, the spatial-temporal variability in water use was analyzed.The semester error balances were acceptable (between 11% and −6%), which permits the attribution of the mass of pollutants exported in drainage to the irrigation area evaluated, the objective of the second part of the study. Irrigation efficiency (IE) in BID-Arba was high (90%) despite the fact that Irrigation Sub-District VII (ISD-VII), with considerable flood irrigation drainage (27%), and ISD-XI with considerable losses due to evaporation and wind drift in sprinkler irrigation systems (15%), brought down the average (IEVII = 73%; IEXI = 83%). Irrigation management was inadequate as there was a water deficit (WD) of 9%, partly affected by the 2005 drought (WDApr-05/Sep-05 = 21%) and the low irrigation doses applied in ISD-XI (WDXI = 12%).To sum up, intense re-use of water caused a water use index (percentage of water used by the crops) of 85% which surpassed 90% in periods of drought. Nevertheless, irrigation management should be improved in order to annul the water deficit and to maximize the productivity of the agrarian system. 相似文献
18.
A research has been carried out to determine the effects of nutrition systems and irrigation programs on soilless grown tomato plants under polyethylene covered unheated greenhouse conditions. Two nutrition systems (open and closed) and three irrigation programs (high, medium and low) based on integrated indoor solar radiation triggering thresholds (1 MJ m−2 [0.4 mm], 2 MJ m−2 [0.8 mm] and 4 MJ m−2 [1.6 mm]) in both nutrition systems have been tested. Applied and discharged nutrient solution, evapotranspiration, total and marketable yield have been measured and water use efficiency has been calculated. The highest total yield has been obtained from the open system with respectively 11% and 7.2% increases in autumn and spring. Applied nutrient solution volume and seasonal ET have been modified between 47.8-180.4 l plant−1 and 41.7-145.5 l plant−1 respectively during both growing seasons. As average of two growing seasons, respectively 826.5 and 330.6 m3 ha−1 nutrient solutions have been discharged from the greenhouse in the open and closed systems. WUE of treatments varied between 33-55 kg m−3 in autumn and 26-35 kg m−3 in spring. Highest WUE values have been determined in 4 MJ m−2 and in the closed system in both growing seasons. Results showed that the closed system and infrequent irrigations increased water use efficiency while decreasing yield and discharged nutrient solution. 相似文献
19.
Miguel Ángel Jiménez-Bello Fernando Martínez Alzamora Juan Ramón Castel Diego S. Intrigliolo 《Agricultural Water Management》2011,102(1):46
A methodology to optimise the amount of energy consumed in pressurized irrigation systems was presented by Jimenez-Bello et al. (2010a). These authors proposed grouping pressurized irrigation network intakes, each of the water turnouts resulting from a shared hydrant, into sectors via a genetic algorithm. In the present research, the methodology was applied and validated in a water users association. Several energy efficiency indicators were calculated and compared during five consecutive seasons (2006–2010). The first two seasons, when the methodology was not employed, were used as reference for the results obtained from 2008 onwards, when the methodology was applied to the management of irrigation network. Results obtained in seasons 2008–2010 showed that the average energy savings were 16% in comparisons to the 2006 season. However, it should be noted that the potential, theoretical savings, could have been as high as 22.3% if the modelled grouping networks would have been accurately followed. There was in fact some discrepancy between the theoretical model outputs and the final groupings due to some intake restrictions. In addition, during the irrigation campaigns, the number of irrigation intakes that operated within each sector was not always equal to the modelled sectoring, a fact that reduced the overall water users association energy efficiency. This occurred particularly during rainy periods, when some users deliberately decided to close their manual irrigation intakes valves. Overall, results showed the potential of the validated methodology for optimising energy use. However, the final overall system efficiency might depend on specific constraints that need to be taken into account when attempting to use model output predictions. 相似文献
20.
Crop-water production functions (CWPFs) are a useful tool for irrigation planning, but derivation of CWPFs by field experimentation is expensive, and traditional analytical techniques are not well suited to derivation of CWPFs. Physiologically based crop models provide a useful tool for simulation of agricultural experiments, but they have not been extensively applied to the task of CWPF determination. A new algorithm type based upon differential crop yield response to irrigation (“yield–irrigation gradients” [YIG]) is presented that uses these crop models to determine planning-level irrigation schedules and CWPFs. Three specific algorithms are developed within this type, varying in complexity, performance, and computational costs. Performance of the YIG methods is compared against a standard reference evapotranspiration method. In particular, the randomized iterative YIG (RIYIG) algorithm provides near-optimal results but at the highest computational costs of all the methods specified. All of the techniques presented have general applicability and are not limited to any one crop or location. 相似文献