首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Research on crop response to deficit irrigation is important to reduce agricultural water use in areas where water is a limited resource. Two field experiments were conducted on a loam soil in northeast Spain to characterize the response of maize (Zea mays L.) to deficit irrigation under surface irrigation. The growing season was divided into three phases: vegetative, flowering and grain filling. The irrigation treatments consisted of all possible combinations of full irrigation or limited irrigation in the three phases. Limited irrigation was applied by increasing the interval between irrigations. Soil water status, crop growth, above-ground biomass, yield and its components were measured. Results showed that flowering was the most sensitive stage to water deficit, with reductions in biomass, yield and harvest index. Average grain yield of treatments with deficit irrigation around flowering (691 g m−2) was significantly lower than that of the well-irrigated treatments (1069 g m(2). Yield reduction was mainly due to a lower number of grains per square metre. Deficit irrigation or higher interval between irrigations during the grain filling phase did not significantly affect crop growth and yield. It was possible to maintain relatively high yields in maize if small water deficits caused by increasing the interval between irrigations were limited to periods other than the flowering stage. Irrigation water use efficiency (IWUE) was higher in treatments fully irrigated around flowering.  相似文献   

2.
In the North China Plain (NCP), while irrigation using groundwater has maintained a high-level crop productivity of the wheat-maize double cropping systems, it has resulted in rapid depletion of groundwater table. For more efficient and sustainable utilization of the limited water resources, improved understanding of how crop productivity and water balance components respond to climate variations and irrigation is essential. This paper investigates such responses using a modelling approach. The farming systems model APSIM (Agricultural Production Systems Simulator) was first calibrated and validated using 3 years of experimental data. The validated model was then applied to simulate crop yield and field water balance of the wheat-maize rotation in the NCP. Simulated dryland crop yield ranged from 0 to 4.5 t ha−1 for wheat and 0 to 5.0 t ha−1 for maize. Increasing irrigation amount led to increased crop yield, but irrigation required to obtain maximum water productivity (WP) was much less than that required to obtain maximum crop yield. To meet crop water demand, a wide range of irrigation water supply would be needed due to the inter-annual climate variations. The range was simulated to be 140-420 mm for wheat, and 0-170 mm for maize. Such levels of irrigation applications could potentially lead to about 1.5 m year−1 decline in groundwater table when other sources of groundwater recharge were not considered. To achieve maximum WP, one, two and three irrigations (i.e., 70, 150 and 200 mm season−1) were recommended for wheat in wet, medium and dry seasons, respectively. For maize, one irrigation and two irrigations (i.e., 60 and 110 mm season−1) were recommended in medium and dry seasons, while no irrigation was needed in wet season.  相似文献   

3.
Field experiments were conducted in a deep Vertisol at the Indian Institute of Soil Science, Bhopal during the years 2001–2005 to assess the effect of five different irrigation strategies through combinations of sprinkler and flood irrigation and two N application methods on yield and water use efficiency of wheat (cv WH 147). The amount of irrigation applied each year differed according to the availability of water in the water harvesting pond to simulate the actual water crisis faced by the farmers in this region during these years due to monsoon failure. Results indicated that when wheat was grown only with 8-cm irrigation at sowing or 14 cm up to the crown root initiation stage, dry sowing of wheat immediately followed by sprinkler and subsequent irrigation through flooding produced the highest yield and water and nitrogen use efficiencies. However, when 20-cm irrigation was supplied up to the flowering stage or 14-cm irrigation was supplied up to tillering stage through sprinkler in 4 and 3 splits, respectively, at critical growth stages, maximized the grain yield and water and nitrogen use efficiencies. Across the years, the crop yield and water and nitrogen use efficiencies increased with increase in water supply.  相似文献   

4.
A field study was carried out to determine the effects of water stress imposed at different development stages on grain yield, seasonal evapotranspiration, crop-water relationships, yield response to water and water use efficiency of safflower (Carthamus tinctorius L.) for winter and summer sowing. The field trials were conducted on a loam Entisol soil in Thrace Region in Turkey, using Dincer, the most popular safflower variety in the research area. A randomised complete block design with three replications was used. Three known growth stages of the plant were considered and a total of 8 (including rainfed) irrigation treatments were applied. The effect of irrigation or water stress at any stage of development on grain yield per hectare and 1000 kernel weight, was evaluated. Results of this study showed that safflower was significantly affected by water shortage in the soil profile due to omitted irrigation during the sensitive vegetative stage. The highest yield was observed in the fully irrigated control and was higher for winter sowing than for summer sowing. Evapotranspiration calculated for non-stressed production was 728 and 673 mm for winter and summer sowing, respectively. Safflower grain yield of the fully irrigated treatments was 4.05 and 3.74 t ha−1 for winter and summer season, respectively. The seasonal yield response factor was 0.97 and 0.81 for winter and summer sowing, respectively. The highest total water use efficiency was obtained in the treatment irrigated only at vegetative stage while the lowest value was observed when the crop was irrigated only at yield stage. As conclusions: (i) winter sowing is suggested; (ii) if deficit irrigation is to apply at only one or two stages, Y stage or Y and F stages should be omitted, respectively.  相似文献   

5.
A field study was carried out in order to determine the effect of deficit irrigation regimes on grain yield and seasonal evapotranspiration of safflower (Carthamus tinctorius L.) in Thrace Region of Turkey. The field trials were conducted on a loam Entisol soil, on Dincer, the most popular variety in the research area. A randomised complete block design with three replications was used. Combination of four well-known growth stages of the plant, namely vegetative (Va), late vegetative (Vb), flowering (F) and yield formation (Y) were considered to form a total of 16 (including rain fed) irrigation treatments. The effect of irrigation and water stress at any stage of development on grain yield per hectare and 1000 kernels weight was evaluated. Results showed that safflower was significantly affected by water stress during the sensitive late vegetative stage. The highest yield was obtained in VaVbFY treatment. Seasonal irrigation water use and evapotranspiration were 501 and 721 mm, respectively, for the non-stressed treatment. Safflower grain yield of this treatment was 5.22 Mg ha−1 and weight of 1000 kernels was 55 g. The seasonal yield-water response factor value was 0.87. The total water use efficiency was 7.2 kg ha−1 mm−1. Irrigation schedule of the non-stressed treatment may be as follows: the first irrigation is at the vegetative stage, when after 40-50 days from sowing/elongation and branching stage, that is the end of May; the second irrigation is at the late vegetative stage, after 70-80 days from sowing/heading stage, that is in the middle of June; the third irrigation is at the flowering stage, approximately 50% level, that is the first half of July; and the fourth irrigation is at the yield formation stage, seed filling, that is the last week of July.  相似文献   

6.
Many wells in the US Central Plains can no longer meet full crop water requirements due to declines in Ogallala aquifer water levels. A study was conducted in Southwest Kansas to determine optimum limited irrigation strategies for grain sorghum. Objectives were to (1) calibrate and validate the AquaCrop model, (2) apply AquaCrop to assess the effect of varying climate, planting dates, and soil types on yield, and (3) evaluate water productivities and optimal irrigation needs. Experimental data of grain sorghum were used to calibrate and validate AquaCrop. Planting date was found to substantially affect biomass and grain yield, and hence, considerably affect water productivities. The highest grain water productivities were obtained with late planting in a wet season. Late planting was associated with lower irrigation requirements. Depending on local conditions, we recommend planting to occur between June 1st and June 10th. Grain sorghum yield was optimized on sandy soils of southwestern Kansas with irrigation of 100–275 mm for early, 150–275 mm for normal and 100–275 mm for late planting. The optimal irrigation on silt loam soils for the corresponding planting dates were 175–350, 175–250 and 125–250 mm, respectively, with the lowest and highest in the range being for the wet and dry climate season conditions. Fluctuations in grain sorghum prices had a substantial impact on economic water productivity. Overall planting grain sorghum under optimum conditions combined with deficit irrigation improved water productivity.  相似文献   

7.
This paper presents the findings of the effect of some selected deficit irrigation scheduling practices on irrigated maize crop in a sub-catchment in south western part of Tanzania. Field experiments, in which maize (TMV1-ST) variety was planted under total irrigation, were conducted during the dry seasons of 2004 and 2005. Surface irrigation method was used and the crop was planted in basins. The seasonal water applied ranged from 400 to 750 mm. Soil moisture content from both cropped and bare soils, leaf area index, dry matter, and grain yields were measured. The dry matter yield ranged between 6,966 and 12,672 kg/ha, and grain yields obtained were between 1,625 and 4,349 kg/ha. The results showed that deficit irrigation at any crop growth stage of the maize crop led to decrease in dry matter and grain yields, seasonal evapotranspiration and deep percolation. Deficit irrigation in any one growth stage of the maize crop only seems to affect grain production and no significant effect on biomass production, but deficit irrigation that spanned across two or more growth stages affect both biomass and grain production drastically. Crop water use efficiency (WUE) and Irrigation water use efficiency (IWUE) were strongly influenced by the number of growth stages in which deficit irrigations were applied and how critical the growth stages were to moisture stress rather than the amount of irrigation water applied. While maximum WUE was obtained under full irrigation, maximum IWUE was obtained in the deficit irrigation treatment at vegetative growth stage, which suggest that IWUE may be improved upon by practicing deficit irrigation at the vegetative growth stage of the maize crop.  相似文献   

8.
The DSSAT-CSM-CERES-Wheat V4.0 model was calibrated for yield and irrigation scheduling of wheat with 2004–2005 data and validated with 13 independent data sets from experiments conducted during 2002–2006 at the Punjab Agricultural University (PAU) farm, Ludhiana, and in a farmer's field near PAU at Phillaur, Punjab, India. Subsequently, the validated model was used to estimate long-term mean and variability of potential yield (Yp), drainage, runoff, evapo-transpiration (ET), crop water productivity (CWP), and irrigation water productivity (IWP) of wheat cv. PBW343 using 36 years (1970–1971 to 2005–2006) of historical weather data from Ludhiana. Seven sowing dates in fortnightly intervals, ranging from early October to early January, and three irrigation scheduling methods [soil water deficit (SWD)-based, growth stage-based, and ET-based] were evaluated. For the SWD-based scheduling, irrigation management depth was set to 75 cm with irrigation scheduled when SWD reached 50% to replace 100% of the deficit. For growth stage-based scheduling, irrigation was applied either only once at one of the key growth stages [crown root initiation (CRI), booting, flowering, and grain filling], twice (two stages in various combinations), thrice (three stages in various combinations), or four times (all four stages). For ET-driven irrigation, irrigations were scheduled based on cumulative net ETo (ETo-rain) since the previous irrigation, for a range of net ETo (25, 75, 125, 150, and 175 mm). Five main irrigation schedules (SWD-based, ET-driven with irrigation applied after accumulation of either 75 or 125 mm of ETo, i.e., ET75 or ET125, and growth stage-based with irrigation applied at CRI plus booting, or at CRI plus booting plus flowering stage) were chosen for detailed analysis of yield, water balance, and CWP and IWP. Nitrogen was non-limiting in all the simulations.Mean Yp across 36 years ranged from 5.2 t ha−1 (10 October sowing) to 6.4 t ha−1 (10 November sowing), with yield variations due to seasonal weather greater than variations across sowing dates. Yields under different irrigation scheduling, CWP and IWP were highest for 10 November sowing. Yields and CWP were higher for SWD and ET75-based irrigations on both soils, but IWP was higher for ET75-based irrigation on sandy loam and for ET150-based irrigation on loam. Simulation results suggest that yields, CWP, and IWP of PBW343 would be highest for sowing between late October and mid-November in the Indian Punjab. It is recommended that sowing be done within this planting period and that irrigation be applied based on the atmospheric demand and soil water status and not on the growth stage. Despite the potential limitations recognised with simulation results, we can conclude that DSSAT-CSM-CERES-Wheat V4.0 is a useful decision support system to help farmers to optimally schedule and manage irrigation in wheat grown in coarse-textured soils under declining groundwater table situations of the Indian Punjab. Further, the validated model and the simulation results can also be extrapolated to other areas with similar climatic and soil environments in Asia where crop, soil, weather, and management data are available.  相似文献   

9.
不同灌溉方式对冬小麦生长发育及水分利用效率的影响   总被引:3,自引:4,他引:3  
为了确定山西省晋南地区冬小麦高产高效的节水灌溉模式,采用田间小区试验,研究了微喷灌(MSI)、滴灌(SDI)和传统漫灌(CK)3种灌溉方式对冬小麦不同生育期的土壤水分变化、生长性状、产量和水分利用效率的影响。其中SDI处理和MSI处理生育期灌水3次,分别为越冬期(12月9日)、拔节期(4月1日)、灌浆期(5月20日),每次灌水量为600 m~3/hm~2;CK按当地灌水习惯,于越冬期和拔节期灌水,每次灌水量为2 250 m~3/hm~2。结果表明,各处理越冬期0~100 cm土层土壤含水率没有明显差异,灌浆期0~80 cm土层土壤含水率表现为SDI处理MSI处理CK,MSI处理、SDI处理灌浆期灌水,可满足灌浆期对水分需求,促进籽粒灌浆;与CK相比,SDI处理与MSI处理可以明显增加单株分蘖数和总茎数、促进群体生长,显著增加冬小麦成穗数、穗粒数和千粒质量,因而显著提高了籽粒产量。与CK相比,MSI处理穗粒数、千粒质量分别提高16.54%、5.21%,SDI处理穗粒数、千粒质量分别提高9.10%、11.78%,MSI、SDI处理籽粒产量分别增加了2.79%、3.35%;同时,SDI处理与MSI处理冬小麦生育期的耗水总量分别减少43.88%和41.64%,水分利用效率分别提高了83.15%和77.09%。因此,在山西临汾盆地采用微喷与滴灌可以取得明显的节水高产效果。  相似文献   

10.
In rainfed Mediterranean areas, early sowings which lead to early growth and maturity to escape terminal heat and drought usually give higher grain yield than late sowings in years when rains come early. We test the hypothesis that early sowing coupled with a small amount of irrigation to ensure earlier emergence increases grain yield significantly, while improving irrigation water productivity. Replicated field experiments were conducted for 4 years in the semi-arid central Bekaa Valley of Lebanon. Barley was sown early, and half of the plots were irrigated with 25-30 mm of water immediately after sowing (EI). Half of the plots also received irrigation around heading stage (LI). Besides yields, other agronomic data were collected throughout crop growth, and the supplemental irrigation water use efficiency (WUESI) was calculated. Our results confirm the hypothesis that in Mediterranean areas early sowing followed immediately with a small amount of irrigation increases barley grain yield significantly. Farmers in the region should seriously consider practicing this technique as it produces a higher WUESI than irrigation at the heading stage.  相似文献   

11.
With the current water shortage in East Africa improving crop water use is vital especially in the arid and semi-arid regions of Ethiopia. To understand the response of barley to water and to simulate the biomass and grain yield of barley under various water inputs and planting dates, we tested the FAO AquaCrop model versions 3.0 using independent data sets during the cropping seasons of 2006, 2008 and 2009 at Mekelle site in northern Ethiopia. We found that the model is valid to simulate the barley biomass and grain yield under various planting dates in the study site. AquaCrop model can be used in the evaluation of optimal planting time. Out of the tested planting dates, planting on July 4 (early sowing) was found to maximize barley biomass, grain and water use efficiency. The model can also be used in the evaluation of irrigation strategies. Barley showed slightly lower performance under mild water stress condition compared to full irrigation condition. However, the model has indicated the possibility of obtaining more biomass and grain yield from a relatively larger barley field under (deficit irrigation) mild stress condition.  相似文献   

12.
为探寻种植方式与灌水模式对糯玉米生长及产量的影响,选择试验区域玉米生产中常用的3种种植方式[DM(全膜双垄宽窄行沟播)、C(全膜双垄等行距沟播)、CK(裸地平作)]和两种灌水模式{I0[播种期(75%~85%)θf、苗期-拔节前期(65%~75%)θf、拔节后期-孕穗期(70%~80%)θf、孕穗期-开花期(70%~80%)θf]和I1[播种期(75%~85%)θf、拔节后期-孕穗期(75%~85%)θf]}进行组合,对不同处理下糯玉米的株高、叶面积指数、籽粒产量及水分利用效率差异进行了研究。结果表明:相同灌水水平下,全膜双垄沟播能够使糯玉米的株高、叶面积指数、籽粒产量及水分利用效率显著提高;宽窄行种植对株高的提高作用不明显,对叶面积指数、籽粒产量及水分利用效率提升效果显著;I0与I1相比对糯玉米株高和叶面积指数提高明显,对产量和水分利用效率提升不明显。因此,全膜双垄宽窄行沟播是本研究条件下最适宜糯玉米生长的种植模式。  相似文献   

13.
Shrinking water resources in northwest India calls for diversification from a rice–wheat cropping system to low-water-requiring crops and development of water-efficient technologies in Punjab state. Chickpea, because of its lower water demand (evapotranspiration) and irrigation requirement has been identified as a suitable alternate crop to wheat. Simulations, averaged over 18 years, using the CROPMAN model indicated that the yield of chickpea on coarse- to medium-textured soils was higher in a rice–chickpea cropping system compared with maize–chickpea and mung–chickpea systems because of increased availability of water. Yield response of chickpea to irrigation depended upon soil texture, the timings and number of irrigations. The optimum yield (2 t ha−1) on coarse- to medium-textured soils after rice can be obtained with one heavy pre-plant and two post-plant irrigations, i.e., one in mid-February and one in mid-March synchronizing irrigations with flowering and grain development stages. Grain yield with irrigation water followed a quadratic function and linear with evapotranspiration. Water use efficiency and evapotranspiration was curvilinear. Grain yield was significantly sensitive to water stress during the pod setting to grain development period irrespective of soil texture.  相似文献   

14.
Water regulations have decreased irrigation water supplies in Nebraska and some other areas of the USA Great Plains. When available water is not enough to meet crop water requirements during the entire growing cycle, it becomes critical to know the proper irrigation timing that would maximize yields and profits. This study evaluated the effect of timing of a deficit-irrigation allocation (150 mm) on crop evapotranspiration (ETc), yield, water use efficiency (WUE = yield/ETc), irrigation water use efficiency (IWUE = yield/irrigation), and dry mass (DM) of corn (Zea mays L.) irrigated with subsurface drip irrigation in the semiarid climate of North Platte, NE. During 2005 and 2006, a total of sixteen irrigation treatments (eight each year) were evaluated, which received different percentages of the water allocation during July, August, and September. During both years, all treatments resulted in no crop stress during the vegetative period and stress during the reproductive stages, which affected ETc, DM, yield, WUE and IWUE. Among treatments, ETc varied by 7.2 and 18.8%; yield by 17 and 33%; WUE by 12 and 22%, and IWUE by 18 and 33% in 2005 and 2006, respectively. Yield and WUE both increased linearly with ETc and with ETc/ETp (ETp = seasonal ETc with no water stress), and WUE increased linearly with yield. The yield response factor (ky) averaged 1.50 over the two seasons. Irrigation timing affected the DM of the plant, grain, and cob, but not that of the stover. It also affected the percent of DM partitioned to the grain (harvest index), which increased linearly with ETc and averaged 56.2% over the two seasons, but did not affect the percent allocated to the cob or stover. Irrigation applied in July had the highest positive coefficient of determination (R2) with yield. This high positive correlation decreased considerably for irrigation applied in August, and became negative for irrigation applied in September. The best positive correlation between the soil water deficit factor (Ks) and yield occurred during weeks 12-14 from crop emergence, during the “milk” and “dough” growth stages. Yield was poorly correlated to stress during weeks 15 and 16, and the correlation became negative after week 17. Dividing the 150 mm allocation about evenly among July, August and September was a good strategy resulting in the highest yields in 2005, but not in 2006. Applying a larger proportion of the allocation in July was a good strategy during both years, and the opposite resulted when applying a large proportion of the allocation in September. The different results obtained between years indicate that flexible irrigation scheduling techniques should be adopted, rather than relying on fixed timing strategies.  相似文献   

15.
Precision irrigation management and scheduling, as well as developing site- and cultivar-specific crop coefficient (Kc), and yield response factor to water deficit (ky) are very important parameters for efficient use of limited water resources. This study investigated the effect of deficit irrigation, applied at different growth stages of peanut with sprinkler irrigation in sandy soil, on field peanut evapotranspiration (ETc), yield and yield components, and water use efficiencies (IWUE and WUE). Also, yield response factor to water deficit (ky), and site- and cultivar-specific Kc were developed. Four treatments were imposed to deficit irrigation during late vegetative and early flowering, late flowering and early pegging, pegging, and pod formation growth stages of peanut, and compared with full irrigation in the course of the season (control). A soil water balance equation was used to estimate crop evapotranspiration (ETc). The results revealed that maximum seasonal ETc was 488 mm recorded with full irrigation treatment. The maximum value of Kc (0.96) occurred at the fifth week after sowing, this value was less than the generic values listed in FAO-33 and -56 (1.03 and 1.15), respectively. Dry kernels yield among treatments differed by 41.4%. Deficit irrigation significantly affected yields, where kernels yield decreased by 28, 39, 36, and 41% in deficit-irrigated late vegetative and early flowering, late flowering and early pegging, pegging, and pod formation growth stages, respectively, compared with full irrigation treatment. Peanut yields increased linearly with seasonal ETc (R2 = 0.94) and ETc/ETp (R2 = 0.92) (ETp = ETc with no water stress). The yield response factor (ky), which indicates the relative reduction in yield to relative reduction in ETc, averaged 2.9, was higher than the 0.7 value reported by Doorenbos and Kassam [Doorenbos, J., Kassam, A.H., 1979. Yield response to water. FAO Irrigation and Drainage Paper 33, Rome, Italy, 193 pp.], the high ky value reflects the great sensitivity of peanut (cv. Giza 5) to water deficit. WUE values varied considerably with deficit irrigation treatments, averaging 6.1 and 4.5 kg ha−1 mm−1 (dry-mass basis) for pods and kernels, respectively. Differences in WUE between the driest and wettest treatment were 31.3 and 31.3% for pods and kernels, respectively. Deficit irrigation treatments, however, impacted IWUE much more than WUE. Differences in IWUE between the driest and wettest treatment were 33.9 and 33.9% for pods and kernels, respectively. The results revealed that better management of available soil water in the root zone in the course of the season, as well as daily and seasonal accurate estimation of ETc can be an effective way for best irrigation scheduling and water allocation, maximizing yield, and optimizing economic return.  相似文献   

16.
Limited precipitation restricts yield of winter wheat (Triticum aestivum L.) grown in the North China Plain. Water stress effects on yield can be avoided or minimized by application of irrigation. We examined the multiseasonal irrigation experiments in four locations of the piedmont and lowland in the region, and developed crop water-stress sensitivity index, relationship between seasonal evapotranspiration (ET) and yield, and crop water production functions. By relating relative yield to relative ET deficit, we found that the crop was more sensitive to water stress from stem elongation to heading and from heading to milking. For limited irrigation, irrigation is recommended during the stages sensitive to water stress. Grain yield was 258–322 g m−2 in the piedmont and 260–280 g m−2 in the lowland under rainfed conditions. The corresponding seasonal ET was 242–264 mm in the piedmont and 247–281 mm in the lowland. Irrigation significantly increased seasonal ET and therefore grain yield as a result of increased kernel numbers per m−2 and kernels per ear. On average, one irrigation increased grain yield by 21–43% and two to four irrigations by 60–100%. Grain yield was linearly related to seasonal ET with a slope of 1.15 kg m−3 in the lowland and 1.73 kg m−3 in the piedmont. Water-use efficiency was 0.98–1.22 kg m−3 for rainfed wheat and 1.20–1.40 kg m−3 for the wheat irrigated 2–4 times. Grain yield response to the amount of irrigation (IRR) was developed using a quadratic function and used to analyze different irrigation scenarios. To achieve the maximum grain yield, IRR was 240 mm in the piedmont and 290 mm in the lowland. When the maximum net profit was achieved, IRR was 195 mm and 250 mm in the piedmont and lowland, respectively. The yield response curve to IRR showed a plateau over a large range of IRR, indicating a great potential in saving IRR while maintaining reasonable high levels of grain yield.  相似文献   

17.
Summary Irrigation at 35 and 70 mm of pan evaporation applied during the pre and/or post early podfilling stages increased pod yield of Spanish peanuts (100 day maturity) three fold compared to a dryland crop. There was no difference in pod yield in crops receiving 12 compared to 6 irrigations. Soil water sampling immediately after irrigations on selected treatments revealed that infiltration of irrigation water was probably restricted to less than ca. 20 cm, a response which resulted in poor soil water replenishment and low irrigation efficiency (Fig. 3). Even though roots extracted soil water below the compaction layer which was at 20 cm severe crop water deficits had developed by the end of irrigation cycles during later but not early stages of growth. The dryland crop, which received no rainfall during the season, presumably extracted significant amounts of soil water at depths to and below 1.2 m (Fig. 3). Despite producing ca. 2.9 t ha-1 of total dry matter yield, pod yield was extremely low (0.5 t ha-1) arising from low pod numbers and high percentage of empty pods.This research was funded by the Australian Centre for International Agricultural Research (ACIAR-Project 8419) in collaboration with the Agency for Agricultural Research and Development (AARD).  相似文献   

18.
微喷对冬小麦冠层微环境日变化及叶片水势的影响   总被引:1,自引:1,他引:0  
采用裂区试验,以矮抗58为试验材料,在前期滴灌控水处理下,探究了不同的微喷处理对冬小麦冠层微环境、叶片水势和产量的影响。结果表明,在冬小麦灌浆后期微喷10 mm能显著降低冠层温度、二氧化碳摩尔分数,提高相对湿度、旗叶叶片水势。MW2处理(滴灌底墒水、拔节水和开花水,并在灌浆后期微喷10 mm)的产量、千粒质量最高,分别为6 952.39 kg/hm~2、45.44 g,均显著高于其他处理(P0.05)。相关分析显示,产量与冠层温度呈极显著负相关、与旗叶叶片水势极显著正相关、与冠层相对湿度显著正相关。可见,滴灌底墒水、拔节水和开花水,并在灌浆后期微喷10 mm,能够改善冬小麦冠层微环境,缓解空气高温对小麦的胁迫,显著提高千粒质量,增加产量。  相似文献   

19.
To ensure sustainable agricultural water use in water shortage regions, practices of deficit irrigation should be adopted. This study investigated the performance of winter wheat (Triticum aestivum L.) under limited water supply from 2005 to 2011, a six-season field test on the North China Plain. The test was comprised of four treatments: rain-fed, single irrigation applied at sowing to obtain a good level of soil moisture at the start of crop growth (I1s), single irrigation applied during recovery to jointing (I1r), and full irrigation supplied as three irrigations (control, I3). The results showed that grain yield was significantly correlated with rainfall before heading and with evapotranspiration (ET) after heading (P < 0.01) under rain-fed conditions. The average contribution of soil water stored before sowing to seasonal ET was 90, 103, and 145 mm for rain-fed, I1s, and I1r, respectively, during the six seasons. A smaller root length density (RLD), which restricted utilization of deep soil water by the crop, was one of the reasons for the lower yield with rain-fed and I1s treatments compared with the I1r treatment in dry seasons. The results also showed that the limited irrigation applied from recovery to jointing stage (Treatment I1r) significantly promoted vegetative growth and more efficient soil water use during the reproductive (post-heading) stage, resulting in a 21.6 % yield increase compared with that of the I1s treatment. And although the average yield of the I1r treatment was 14 % lower than that of the full irrigation treatment, seasonal irrigation was reduced by 120–140 mm. With smaller penalties in yield and a larger reduction in applied irrigation, I1r could be considered a feasible irrigation practice that could be used in the NCP for conservation of groundwater resources.  相似文献   

20.
Water use efficiency of irrigated wheat in the Tarai region of India   总被引:1,自引:0,他引:1  
Experiments were conducted during the winter seasons of 1983–1984 and 1984–1985 to identify suitable irrigation regimes s for wheat grown after rice in soils with naturally fluctuating shallow water table (SWT) at a depth of 0.4 to 0.9 m and medium water table (MWT) at a depth of 0.8 to 1.3 m. Based on physiological stages, the crop was subjected to six irrigation regimes viz., rainfed (I0); irrigation only at crown root initiation (I1); at only crown root initiation and milk (I2); at crown root initiation, maximum tillering and milk (I3); at crown root initiation, maximum tillering, flowering and milk (I4); and at crown root initiation, maximum tillering, flowering milk and dough (I5). Tube-well water with an EC <0.4 dsm–1 was used for irrigation. Based on 166 mm effective precipitation during the cropping season, 1983–1984 was designated as a wet year and 1984–1985 with 51 mm as a dry year. The change in profile soil water content W (depletion) in the wet year was less (23%) under SWT and 10% under MWT as compared to the dry year. The ground water contribution (GWC) to evapotranspiration (ET) was 58% under SWT and 42% under MWT conditions in both the years. The GWC in the wet year was 20% under SWT and 23% under MWT. Of the total net water use (NWU), about 85% was ET and 15% drainage losses. The NWU was highest (641 and 586 mm) in I5 under SWT and MWT conditions, respectively, but not the yield (5069 kg ha–1). Compared to I5, NWU in I2 treatment decreased by 10% in the wet and 25% in the dry year. A similar trend was observed in the I3 treatment under MWT condition. However, there was no statistically significant difference between yields of the I1 to I5 treatments of either water table depth during the wet year. This was also true during the dry year for the I2 to I5 treatments. Under SWT, in I2, the grain yield was 5130 kg ha–1 and under I3 regime, 5200 kg ha–1. Under MWT in I3, the yield was 5188 kg ha–1 and under I4 regime, 5218 kg ha–1. Thus it appears that in the Tarai region where the water table remains shallow (<0.9 m) and medium (<1.3 m) for most of the wheat growing season applications of more than 120 and 180 mm irrigation under SWT and MWT conditions, respectively were not necessary. Irrigation given only at crown root initiation and milk stages under shallow water table conditions, and at crown root initiation, maximum tillering and milk stages under medium water table conditions, appears to be as effective as frequent irrigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号