共查询到20条相似文献,搜索用时 35 毫秒
1.
A field study on cotton ( Gossypium hirsutum L., cv.) was carried out from 2005 to 2008 in the Çukurova Region, Eastern Mediterranean, Turkey. Treatments were designated as I100 full irrigation; DI 70, DI 50 and DI 00 which received 70, 50, and 0% of the irrigation water amount applied in the I100 treatment. The irrigation water amount to be applied to the plots was calculated using cumulative pan evaporation that occurred during the irrigation intervals. The effect of water deficit or water stress on crop yield and some plant growth parameters such as yield response, water use efficiencies, dry matter yield (DM), leaf area index (LAI) as well as on lint quality components was evaluated. The average seasonal evapotranspiration ranged from 287 ± 15 (DI 00) to 584 ± 80 mm ( I100). Deficit irrigation significantly affected crop yield and all yield components considered in this study. The average seed cotton yield varied from 1369 ± 197 (DI 00) to 3397 ± 508 kg ha −1 ( I100). The average water use efficiency (WUE ET) ranged from 6.0 ± 1.6 ( I100) to 4.8 ± 0.9 kg ha −1 mm −1 (DI 00), while average irrigation water use efficiency (WUE I) was between 9.4 ± 3.0 ( I100) and 14.4 ± 4.8 kg ha −1 mm −1 (DI 50). Deficit irrigation increased the harvest index (HI) values from 0.26 ± 0.054 ( I100) to 0.32 ± 0.052 kg kg −1 (DI 50). Yield response factor (Ky) was determined to be 0.98 based on four-year average. Leaf area index (LAI) and dry matter yields (DM) increased with increasing water use. This study demonstrated that the full irrigated treatment ( I100) should be used for semiarid conditions with no water shortage. However, DI 70 treatment needs to be considered as a viable alternative for the development of reduced irrigation strategies in semiarid regions where irrigation water supplies are limited. 相似文献
2.
With the current water shortage in East Africa improving crop water use is vital especially in the arid and semi-arid regions of Ethiopia. To understand the response of barley to water and to simulate the biomass and grain yield of barley under various water inputs and planting dates, we tested the FAO AquaCrop model versions 3.0 using independent data sets during the cropping seasons of 2006, 2008 and 2009 at Mekelle site in northern Ethiopia. We found that the model is valid to simulate the barley biomass and grain yield under various planting dates in the study site. AquaCrop model can be used in the evaluation of optimal planting time. Out of the tested planting dates, planting on July 4 (early sowing) was found to maximize barley biomass, grain and water use efficiency. The model can also be used in the evaluation of irrigation strategies. Barley showed slightly lower performance under mild water stress condition compared to full irrigation condition. However, the model has indicated the possibility of obtaining more biomass and grain yield from a relatively larger barley field under (deficit irrigation) mild stress condition. 相似文献
3.
Evapotranspiration (ET) is an important component of the water cycle at field, regional and global scales. This study used measured data from a 30-year irrigation experiment (1979-2009) in the North China Plain (NCP) on winter wheat ( Triticum aestivum L.) and summer maize ( Zea mays L.) to analyze the impacts of climatic factors and crop yield on ET. The results showed that grass reference evapotranspiration (ET o, calculated by FAO Penmen-Monteith method) was relatively constant from 1979 to 2009. However, the actual seasonal ET of winter wheat and maize under well-watered condition gradually increased from the 1980s to the 2000s. The mean seasonal ET was 401.4 mm, 417.3 mm and 458.6 mm for winter wheat, and 375.7 mm, 381.1 mm and 396.2 mm for maize in 1980s, 1990s and 2000s, respectively. The crop coefficient ( Kc) was not constant and changed with the yield of the crops. The seasonal average Kc of winter wheat was 0.75 in the 1980s, 0.81 in the 1990s and 0.85 in the 2000s, and the corresponding average grain yield (GY) was 4790 kg ha −1, 5501 kg ha −1 and 6685 kg ha −1. The average Kc of maize was 0.88 in the 1980s, 0.88 in the 1990s and 0.94 in the 2000s, with a GY of 5054 kg ha −1, 7041 kg ha −1 and 7874 kg ha −1, respectively, for the three decades. The increase in ET was not in proportion to the increase in GY, resulting improved water use efficiency (WUE). The increase in ET was possibly related to the increase in leaf stomatal conductance with renewing in cultivars. The less increase in water use with more increase in grain production could be partly attributed to the significant increase in harvest index. The results showed that with new cultivars and improved management practices it was possible to further increase grain production without much increase in water use. 相似文献
4.
Field studies were done in 2003 and 2006 to evaluate the performance of water pillow (WP) irrigation as an alternative to furrow irrigation (FI) for soybean growth in semi-arid climatic conditions. There were four irrigation treatments: two of which (FI and WP 1.0) were full irrigation, in that the water deficit in the soil profile (0.9 m) was brought to field capacity in 10-day intervals. The other two treatments (WP 0.75 and WP 0.50) were deficit irrigation treatments, and received 75% and 50% of WP 1.0 irrigation amount. The highest seed yield was achieved with the WP 1.0 treatment. Irrigation water use efficiency (IWUE) and water use efficiency (WUE) were influenced significantly by the irrigation methods and levels ( P ≤ 0.05). The highest values of WUE and IWUE were obtained by the WP 0.75 and WP 0.50 treatment, respectively, in both study years. However, the smallest irrigation amount resulted in lower total yield for the WP 0.50 treatment, and is not recommended. In conclusion, the WP 0.75 treatment is recommended for soybean production in order to attain higher values of IWUE and WUE, and to conserve water and maximize yield with the same volume of water. 相似文献
5.
通过小区试验,研究了粉碎、氨化秸秆以及与无机土壤改良剂(硫酸钙)混合配施措施对土壤水分及作物产量的影响。结果表明,氨化秸秆利于提高土壤对降水的保蓄能力,显著增加0~100 cm土层土壤蓄水量。在夏玉米-冬小麦轮作中,氨化秸秆提高土壤蓄水能力主要反映在夏玉米苗期和冬小麦抽穗期。粉碎秸秆氨化与硫酸钙处理的夏玉米、冬小麦水分利用效率分别较粉碎秸秆覆盖提高了4.97%、30.32%,效果显著。氨化秸秆施入土壤的措施较未氨化秸秆覆盖还田的措施夏玉米、冬小麦产量分别提高4.56%~10.00%和6.65%~11.12%。 相似文献
6.
Straightforward guidelines for deficit irrigation (DI) can help in increasing crop water productivity in agriculture. To elaborate such guidelines, crop models assist in assessing the conjunctive effect of different environmental stresses on crop yield. We use the AquaCrop model to simulate crop development for long series of historical climate data. Subsequently we carry out a frequency analysis on the simulated intermediate biomass levels at the start of the critical growth stage, during which irrigation will be applied. From the start of the critical growth stage onwards, we simulate dry weather conditions and derive optimal frequencies (time interval of a fixed net application depth) of irrigation to avoid drought stress during the sensitive growth stages and to guarantee maximum water productivity. By summarizing these results in easy readable charts, they become appropriate for policy, extension and farmer level use. We illustrate the procedure to derive DI schedules with an example of quinoa in Bolivia. If applied to other crops and regions, the presented methodology can be an illustrative decision support tool for sustainable agriculture based on DI. 相似文献
7.
Groundwater is being mined in much of the irrigated area of the central and southern High Plains of the USA. Profits and risks inherent in irrigation management depend on the association between crop yield and level of water application. Research was conducted over a 14 year period (1974–1987) to establish the yield vs. water application relationships of corn, grain sorghum, and sunflower. The research was located near Tribune, Kansas, USA on a Ulysses silt loam soil. Plots were level-basins to which water was added individually through gated pipe. Irrigation studies of the three crops were located adjacent to each other. Irrigation treatments were arranged in completely randomized blocks with three replications. As total irrigation amount increased from 100 to 200, 200 to 300, and 300 to 400 mm, sunflower yield increased by 0.53 Mg ha −1, 0.43 Mg ha −1, and 0.37 Mg ha −1, respectively. Corn outyielded grain sorghum at total irrigation amounts of 345 mm and above. Yield increase over continuous dryland was greater in corn than in grain sorghum at total irrigation amounts above 206 mm. Therefore, if grain mass is the consideration, grain sorghum is a better choice than corn at less than 206 mm of irrigation, whereas corn is a better choice than grain sorghum at more than 206 mm of irrigation. 相似文献
8.
Deficit irrigation (DI) has been widely investigated as a valuable and sustainable production strategy in dry regions. By limiting water applications to drought-sensitive growth stages, this practice aims to maximize water productivity and to stabilize - rather than maximize - yields. We review selected research from around the world and we summarize the advantages and disadvantages of deficit irrigation. Research results confirm that DI is successful in increasing water productivity for various crops without causing severe yield reductions. Nevertheless, a certain minimum amount of seasonal moisture must be guaranteed. DI requires precise knowledge of crop response to drought stress, as drought tolerance varies considerably by genotype and phenological stage. In developing and optimizing DI strategies, field research should therefore be combined with crop water productivity modeling. 相似文献
9.
对不同生育期水分亏缺程度对春青稞(Hordeum vulgare)水分利用效率和产量的影响进行了桶栽试验研究。试验处理设充分灌溉处理(2个水分控制下限和秸秆覆盖)以及在全生育期和5个不同生育期的4个水分亏缺程度(轻度、中度、重度和极度)处理,共27个处理。结果表明,在充分灌溉条件下,75%田间持水率水分下限控制处理的春青稞收获指数、籽粒产量和作物水分利用效率大于80%水分处理;秸秆覆盖处理的籽粒产量和水分利用效率在所有试验处理中最大。在全生育期水分亏缺条件下,春青稞籽粒产量均小于充分灌溉处理,且随着水分亏缺程度的增大而显著减小;轻度至重度水分亏缺处理可获得更大的作物收获指数和水分利用效率,但极度水分亏缺却导致最低的籽粒产量、收获指数和水分利用效率。除成熟期水分亏缺处理外,不同生育期水分亏缺处理条件下,春青稞籽粒产量和作物水分利用效率基本随着水分亏缺程度的增大而减小;拔节期、分蘖期和灌浆期水分亏缺对籽粒产量的不利影响较大。地表秸秆覆盖或全生育期轻度至重度水分亏缺处理可提高春青稞水分利用效率。 相似文献
10.
Eastern India receives higher average annual rainfall (1000–2000 mm) but 80% of it occurs within the June–September (rainy season), whereas the winter season (November–March) is dry. Due to a shortage of soil moisture, most rainfed areas of the region remain fallow during the winter season and cultivation (mainly rice) is confined to the rainy season only (June–September). To explore the possibility of double cropping in the rainfed rice areas, three oilseed crops, viz., linseed ( Linum usitatissimum L.), safflower ( Carthamous tinctorious L.), mustard ( Brassica juncea L.), were grown in a representative rainfed area of eastern India, i.e. Dhenkanal, Orissa, during the dry/winter season by applying irrigation water at phonological stages. Study revealed that with three supplemental irrigations, the highest WUE was achieved by safflower followed by linseed with the mean values being 3.04 and 2.59 kg ha −1 mm −1, respectively. Whereas, with one irrigation, the highest water use efficiency (WUE) was achieved for safflower (1.23 kg ha −1 mm −1) followed by linseed (0.93 kg ha −1 mm −1). Of the three crops studied, safflower withdrew maximum water followed by mustard and crops were shown to use 90–105 mm more water than linseed. With three irrigations, average maximum rooting depths were 1.66, 1.17 and 0.67 m for safflower, mustard and linseed, respectively, which were 13.5, 10.6 and 11.4% higher than for single irrigated crops because of more wet sub soils and decrease of soil strength. The crop growth parameters like leaf area, dry biomass were also recorded with different levels of irrigation. The research work amply revealed the potential of growing these low water requiring oilseed crops in rice fallow during dry/winter season utilizing limited irrigation from harvested rainwater of rainy season. Crop coefficients ( Kc) of three winter season oilseed crops were derived using field water balance approach. Study showed that LAI was significantly correlated with Kc values with the R2 values of 0.91, 0.89 and 0.94 in linseed, safflower and mustard, respectively. When LAI exceeded 3.0, the Kc value was 1 in safflower and mustard whereas in linseed corresponding LAI was 2.5. Study revealed that the Kc values for the development and mid season stage were slightly higher to that obtained by the procedure proposed by FAO, which might be due to local advection. 相似文献
11.
The effects of pre-anthesis water deficit and cycle length were examined in Papaver somniferum L., cultivated for alkaloid production, in two locations in southern Spain. The vegetative period was shortened by extending the photoperiod through supplemental lighting in the field, while water deficit in pre-anthesis was induced by avoiding irrigations and installing rain shelters. The treatments were: IN (irrigated-normal photoperiod), IL (irrigated-hastened flowering), DN (water deficit in pre-anthesis-normal photoperiod) and DL (water deficit in pre-anthesis and hastened flowering). The artificial photoperiod hastened the flowering by 15 and 21 days, for irrigated and deficit treatments respectively. Seasonal evapotranspiration (ET) ranged from 398 (DN) to 505 mm (IN). There was evidence of root water uptake deeper than 1.5 m. Stomatal conductance was reduced (16%) during water stress, and did not recover in post-anthesis after resuming irrigation. Head yields (capsule + seeds + 7 cm stem) ranged between 3.8 and 4.3 t ha −1; water deficit and short vegetative period both reduced the biomass accumulated, although the effect on yields in these treatments was counterbalanced by a higher harvest index. Early flowering had a detrimental effect on alkaloid concentration in the capsule. Alkaloids yield ranged between 27 and 37 kg ha −1. Water use efficiency (WUE) ranged between 0.78 and 0.96 kg m −3 ET for yield and between 63.4 and 73.7 g m −3 ET for alkaloids. Water stress increased slightly the Water Use Efficiency. A shorter vegetative phase had no effect on WUE for biomass or yield, but decreased the WUE for alkaloids production. 相似文献
12.
The amount of water used by any crop largely depends on the extent to which the soil water depletion from the root zone is being recharged by appropriate depth of irrigation. To test this hypothesis a field study was carried out in November–March of 2002–2003 and 2003–2004 on a sandy loam (Aeric haplaquept) to quantify the effect of depth of irrigation applied through micro-sprinklers on onion ( Allium cepa L.) bulb yield (BY) and water use patterns. Seven irrigation treatments consisted of six amounts of sprinkler applied water relative to compensate crop ( Kc) and pan ( Kp) coefficient-based predicted evapotranspiration loss from crop field (ET p) (i) 160% of ET p (1.6ET p); (ii) 1.4ET p; (iii) 1.2ET p; (iv) 1.0ET p; (v) 0.8ET p; (vi) 0.6ET p; (vii) 40 mm of surface applied water whenever cumulative pan evaporation equals to 33 mm. Water use efficiency (WUE), net evapotranspiration efficiency (WUE ET) and irrigation water use efficiency (WUE I) were computed. Marginal water use efficiency (MWUE) and elasticity of water productivity (EWP) of onion were calculated using the relationship between BY and measured actual evapotranspiration (ET c). Yield increased with increasing sprinkler-applied water from 0.6 to 1.4ET p. Relative to the yield obtained at 0.6ET p, yield at 1.0ET p increased by 23–25% while at 1.4ET p it was only 3–9% greater than that at 1.0ET p. In contrast, yield at 1.6ET p was 9–12% less than that at 1.4ET p. Maximum WUE (7.21 kg m −3) and WUE ET (13.87 kg m −3) were obtained under 1.0ET p. However, the highest WUE I (3.83 kg m −3) was obtained with 1.2ET p. The ET c associated with the highest WUE was 20% less than that required to obtain the highest yields. This study confirmed that critical levels of ET c needed to obtain maximum BYs, or WUE, could be obtained more precisely from the knowledge of MWUE and EWP. 相似文献
13.
Adoption of more uniform sprinkler systems involves a trade off between increased capital expenditure on equipment and the benefits associated with reduced water application when application is uniform. An empirical analysis of the economics of lettuce production, grown using sprinkler systems under the windy conditions of the Swan Coastal plain in Western Australia is presented, where the yield response to water exhibits eventual declining marginal productivity. A range of sprinkler designs that have been field-tested for performance were examined. The optimal per-crop water application for the least efficient system was up to double the application rate of the most efficient system. However, the economic analysis demonstrates that there are clear incentives for adopting more water-efficient systems despite the higher capital cost, because of the yield depressing effect of over-watering. Sensitivity analysis demonstrates substantially poorer incentives for improving irrigation efficiency when yield relationships follow a Mitscherlich functional form. 相似文献
14.
Field experiments were conducted in 2002-2003 and 2003-2004 to evaluate the relative performance of synthetic (black polyethylene) and organic (paddy husk and straw) mulches on soil and plant water status vis-a-vis N uptake in wheat in a semi-arid environment of India. Scope of better utilization of soil moisture was documented through all the mulches, especially during initial crop growth stages, when the moisture content was 1-3% higher in mulches. Soil temperature was more moderate under organic mulches. Paddy husk recorded significantly higher plant biomass, while the effect of mulching in enhancing root growth was clearly documented. Organic mulches produced more roots (25 and 40% higher root weight and root length densities compared to no-mulch) in sub-surface (>0.15 m) layers, probably due to greater retention of soil moisture in deeper layers and relatively narrow range of soil temperature changes under these systems. Incremental N dose significantly improved all the plant parameters in both mulch and no-mulch treatments. Grain yield was 13-21% higher under mulch and so with increasing N levels. Nitrogen uptake was higher in organic mulches and also with higher N doses, while polyethylene mulch showed mixed trend. Mulches were effective in reducing 3-11% crop water use and improved its efficiency by 25%. Grain yield and biomass were well-correlated with leaf area index ( r = 0.87 and 0.91, respectively) and water use was better correlated with root length than its weight. Results indicated substantial improvement in water and N use efficiency and crop growth in wheat under surface mulching, and the organic mulches, especially rice husk performed better than synthetic mulches. 相似文献
15.
This study evaluated the effects of climate change on cowpea bean crop grown in northeastern Brazil based on the reports of the Intergovernmental Panel on Climate Change (IPCC). The water balance model combined with Geographic Information System techniques was used to identify regional areas where the cowpea bean crop will suffer yield reduction due to climate changes. Model input variables were: rainfall, crop coefficients, potential evapotranspiration and duration of the crop cycle. A limit value of 0.5 was adopted for the water requirement satisfaction index (WRSI), being the ratio of actual to maximum evapotranspiration. The acceptable seeding date was defined as the date at which the water balance simulation presented a WRSI value greater than the limit value, with a frequency of at least 80%. An increase in air temperature will cause a significant reduction in the areas currently favorable to cowpea bean crop growth in northeastern Brazil, and it is recommended that bean varieties better suited to high-temperature conditions should be planted. 相似文献
16.
Population growth, urban expansion and economic development are increasing competition for water use between agriculture and other users. In addition, the high rate of soil degradation and declining soil moisture in the Sub-Saharan African Region have called for several crop production management and irrigation options to improve soil fertility, reduce water use by crops and produce ‘more crops per drop of water’. Notwithstanding this, considerable variations exist in the literature on water-use efficiency, WUE cwu (economic yield per water used) for maize ( Zea mays L.) across climates and soil management practices. Different views have been expressed on the effect of different rates of nitrogen (N) application on transpiration efficiency, TE (biomass produced per unit of water transpired). The objectives of the study were to assess the effect of different rates of N-enriched municipal waste co-compost and its derivatives on TE, WUE cwu and yield of maize ( Z. mays L.) in comparison to inorganic fertiliser. The greenhouse pot experiment was conducted in Accra, Ghana on a sandy loam soil ( Ferric Lixisol) using a split plot design. The main plot treatments were soil (S), dewatered faecal sludge (DFS), municipal solid waste compost (C), co-compost from municipal solid waste and dewatered faecal sludge (Co), compost enriched with (NH 4) 2SO 4 (EC), co-compost enriched with (NH 4) 2SO 4 (ECO), (NH 4) 2SO 4 and NPK15-15-15 + (NH 4) 2SO 4. The sub-plot treatments were different rates of application of nitrogen fertiliser applied at the rate of 91, 150 and 210 kg N ha −1 respectively. Maize cv. Abelehii was grown in a poly bag filled with 15 kg soil. Eight plants per treatment were selected randomly and used for the collection of data on growth parameters forth-nightly. At physiological maturity two plants per treatment were also selected randomly from each treatment plot for yield data. The results showed that TE of maize ( Z. mays) varied for the different treatments and these are 6.9 Pa in soil (S) alone to 8.6 Pa in ECO. Increase in N application rate increased TE at the vegetative phase for fast nutrient releasing fertilisers (DFS, ECO, EC, NPK + (NH 4) 2SO 4, (NH 4) 2SO 4) and at the reproductive phase for slow nutrient releasing fertilisers (C and CO). Water-use efficiency increased significantly as rate of N application increased. Treatment ECO improved crop WUE cwu and was 11% and 4 times higher than that for NPK + (NH 4) 2SO 4 or soil alone; and 18-36% higher than those for DFS and CO. Treatment ECO used less amount of water to produce dry matter yield (DMY) and grain yield (GY) that was 5.2% and 12.6%, respectively, higher than NPK + (NH 4) 2SO 4. Similarly, the DMY and GY for ECO was 8.9-18.5% and 23.4-34.7%, respectively, higher than DFS and CO. High nutrient (N and K) uptake, TE, and low leaf senescence accounts for 83% of the variations in DMY whereas WUE cwu accounts for 99% of the variations in GY. Thus, the study concluded that different sources of fertiliser increased TE and WUE cwu of maize differently as N application rate increases. 相似文献
17.
Deficit irrigation occurrence while maintaining acceptable yield represents a useful trait for sunflower production wherever irrigation water is limited. A 2-year experiment (2003–2004) was conducted at Tal Amara Research Station in the Bekaa Valley of Lebanon to investigate sunflower response to deficit irrigation. In the plots, irrigation was held at early flowering (stage F1), at mid flowering (stage F3.2) and at early seed formation (stage M0) until physiological maturity. Deficit-irrigated treatments were referred to as WS1, WS2 and WS3, respectively, and were compared to a well-irrigated control (C). Reference evapotranspiration (ET rye-grass) and crop evapotranspiration (ET crop) were measured each in a set of two drainage lysimeters of 2 m × 2 m × 1 m size cultivated with rye grass ( Lolium perenne) and sunflower ( Helianthus annuus L., cv. Arena). Crop coefficients ( Kc) in the different crop growth stages were derived as the ratio (ET crop/ET rye-grass). Lysimeter measured crop evapotranspiration (ETcrop) totaled 765 mm in 2003 and 882 mm in 2004 for total irrigation periods of 139 and 131 days, respectively. Daily ETcrop achieved a peak value of 13.0 mm day−1 at flowering time (stage F3.2; 80–90 days after sowing) when LAI was >6.0 m2 m−2. Then ETcrop declined to 6.0 mm day−1 during seed maturity phase. Average Kc values varied from 0.3 at crop establishment (sowing to four-leaf stage), to 0.9 at late crop development (four-leaf stage to terminal bud), to >1.0 at flowering stage (terminal bud to inflorescence visible), then to values <1.0 at seed maturity phase (head pale to physiological maturity). Measured Kc values were close to those reported by the FAO. Average across years, seed yield at dry basis on the well-irrigated treatment was 5.36 t ha−1. Deficit irrigation at early (WS1) and mid (WS2) flowering stages reduced seed yield by 25% and 14% (P < 0.05), respectively, in comparison with the control. However, deficit irrigation at early seed formation was found to increase slightly seed yield in WS3 treatment (5.50 t ha−1). We concluded that deficit irrigation at early seed formation (stage M0) increased the fraction of assimilate allocation to the head, compensating thus the lower number of seeds per m2 through increased seed weight. In this experiment, while deficit irrigation did not result in any remarkable increase in harvest index (HI), water use efficiency (WUE) was found to vary significantly (P < 0.05) among treatments, where the highest (0.83 kg m−3) and the lowest (0.71 kg m−3) values were obtained from WS3 and WS1 treatments, respectively. Finally, results indicate that irrigation limitation at early flowering (stage F1) and mid flowering (stage F3.2) should be avoided while it can be acceptable at seed formation (stage M0). 相似文献
18.
The irrigated dairy industry in Australia depends on pasture as a low-cost source of fodder for milk production. The industry is under increasing pressure to use limited water resources more efficiently. Pasture is commonly irrigated using border-check but there is growing interest amongst dairy irrigators to explore the potential for overhead sprinklers to save water and/or increase productivity. This paper reports on a detailed water balance study that evaluated the effectiveness of centre pivot irrigation for pasture production. The study was conducted between 2004/2005 and 2005/2006 on a commercial dairy farm in the Shepparton Irrigation Region in northern Victoria. More than 90% of supplied water (irrigation plus rainfall) was utilized for pasture growth. Deep drainage of respectively 90 and 93 mm was recorded for the two observation seasons. During the 2004/2005 season, deep drainage resulted from large unseasonal summer rainfall events. Over the 2005/2006 season, deep drainage resulted from excess irrigation. The cumulative pasture dry matter (DM) production was 15.5 and 11.3 tonnes DM ha −1 for the two irrigation seasons, with an agronomic water use efficiency (WUE) of 16 and 12 kg DM ha −1 mm −1 respectively. The farmer's intuitive irrigation scheduling was found to be very effective; the pattern of irrigation application closely matched measured pasture water use, prevented water stress and resulted in high irrigation efficiency. 相似文献
19.
遥感技术的发展为区域尺度蒸散发计算、作物分布识别及估产提供了一条有效途径,为基于遥感信息的灌区灌溉水利用效率及作物水分利用效率定量评价奠定了基础。回顾总结了遥感蒸散发模型、瞬时蒸散发升尺度方法、日蒸散发插值方法、作物分布识别方法及作物估产模型的研究进展,评述了遥感蒸散发及作物估产结果在灌区灌溉水利用效率及作物水分利用效率评价中的应用情况。提出了相关领域需要进一步研究的问题,包括适合非均匀下垫面特点且具有较强物理基础的灌区遥感蒸散发模型、日蒸散发插值中灌溉或降雨引起土壤含水量突变情况的处理、农田蒸散发中灌溉水有效消耗量的准确估算、能适应复杂种植结构并且适用于多年的作物分布遥感识别模型以及精度较高且可操作性强的遥感估产模型等。 相似文献
20.
Field water supply (FWS) combines the three sources of water used by a crop for evapotranspiration (ET), and consists of available soil water at planting (ASWP), rainfall, and irrigation. Examining the grain yield and FWS relationship ( Yg:FWS) may provide insight into the reported variability in crop water production functions such as water productivity (WP) and irrigation water productivity (IWP). Since water is most productive when entirely consumed in ET, diversion of FWS into non-ET losses such as drainage and excessive soil water evaporation results in declines in WP and IWP. The objective of this experiment was to examine the Yg:FWS and Yg:ET relationships of grain sorghum grown under a range of irrigation treatments (0, 25, 50, and 100% replacement of ET), beginning soil water contents, evaporative demands, in the Amarillo, Pullman, and Ulysses soils of the Great Plains. The purpose was to determine the amount of FWS beyond which declines in WP and IWP began to occur due to non-ET losses as indicated by a change in the slope and intercept of the Yg:FWS and Yg:ET relationships. Large amounts of non-ET irrigation application losses occurred in the finer-textured soils in the T-100 irrigation treatment. In both years, the T-100 irrigation application amounts and ASWP resulted in a FWS ranging from 750 to 870 mm which exceeded the maximum ET requirement of 530-630 mm and which reduced WP and IWP. Piecewise regression analysis of the Yg:FWS and Yg:ET relationships for the crops in the Pullman and Ulysses soils identified the knot point, or change in slope and intercept, in the FWS where both WP and IWP tended to be optimized. This was about 500 mm in both soils, and involved the utilization of about 250 mm in ASWP, irrigation applications averaging about 250 mm, and about 60-130 mm remaining in the soil at harvest. For the coarser-textured Amarillo soil, the yield response to increasing FWS was linear, because non-ET application losses such as drainage gradually increased with the irrigation application amount. The linear Yg response in the sandy Amarillo soil and the piecewise Yg responses in the clay and silt loams of the Pullman and Ulysses soils to FWS also reflected the difference in water-holding capacities of the soils that affected the amount of available water as irrigation increased. Irrigating without considering FWS resulted in non-ET irrigation application losses and declines in WP and IWP. 相似文献
|