首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
This study examines spatiotemporal variability (event-based, seasonal) in the contribution of drainage tiles within a basin to basin hydrologic discharge and soluble reactive phosphorus (SRP) and total phosphorus (TP) export over a period of 1 year. Tile discharge was highly variable at both moderate (wet versus dry periods) and smaller (within-event) temporal scales, accounting for 0-90% of basin discharge at any given time. An estimated 42% of basin annual discharge originated from drainage tiles, the majority of which occurred during the winter and spring months. Concentrations of SRP and TP in drainage tile effluent were also highly variable in space and time (1-2850 μg SRP L−1, 5-8275 μg TP L−1). Higher concentrations of SRP and TP were linked to fields receiving manure compared to fields receiving inorganic fertilizers. SRP export from tiles accounted for 118% of basin SRP export on average, although their contribution to basin SRP export ranged from 4 to 344% on 32 discrete dates during which all tiles in the basin were sampled for hydrochemistry. On the same 32 dates, tiles accounted for an average of 43% of basin TP export, although this ranged from 0 to 200%. Management options such as tile plugs and optimizing the timing and application rates of fertilizer should be explored to minimize nutrient export from tiles.  相似文献   

2.
In a small, extensively artificially drained lowland catchment (15.5 km2) in Mecklenburg-Vorpommern (North-Eastern Germany), the dynamics and the extent of total phosphorus (TP) and total reactive phosphorus (TRP) losses as well as the discharge were monitored at different scales for three winter seasons of 6 months each. Ranging from 0.036 to 0.044 mg TP l−1 and from 0.030 to 0.037 mg TRP l−1, average phosphorus concentrations in the discharge of a collector drain, a ditch draining arable land and a small brook were low. Elevated concentrations occurred during intensive snowmelt events. Probably due to the re-mobilisation of phosphorus under anaerobic conditions, concentrations (0.137 mg TP l−1 and 0.076 mg TRP l−1) in a ditch draining grassland on degraded peat were significantly higher than at the other sites characterised by mineral soils. Generally, phosphorus concentrations increased with discharge at all sites except for the grassland, although not during each single discharge event. Surprisingly, a dependency on the fertilisation practices could not be found. The phosphorus losses per winter season were low, with a maximum of 270 g TP ha−1 and 211 g TRP ha−1. Using a two-component mixing model based on baseflow separation and parameter optimisation, it was estimated that around 53, 60 and 56% of the TP losses from the collector drain, from the ditch and from the brook as well as 53, 68 and 45% of the TRP loads were exported via a fast flow component. This component accounted for 18-23% of the total discharge. At all measurement stations, there were large differences between the partitioning patterns of the single discharge events. Our study has not only shown the event-based behaviour of the P losses and the possible occurrence of high P concentrations due to preferential flow, but also that the highest potential of eutrophication in this lowland landscape originates from drained, degraded, and intensively used peatlands.  相似文献   

3.
Phosphorus (P) is the limiting nutrient responsible for the development of algal blooms in freshwater bodies, adversely impacting the water quality of downstream lakes and rivers. Since agriculture is a major non-point source of P in southern Quebec, this study was carried out to investigate P transport under subsurface and naturally drained agricultural fields with two common soil types (clay loam and sandy loam). Monitoring stations were installed at four sites (A, B, C and D) in the Pike River watershed of southern Quebec. Sites A-B had subsurface drainage whereas sites C-D were naturally drained. In addition, sites A-C had clay loam soils whereas sites B-D had sandy loam soils. Analysis of data acquired over two hydrologic years (2004-2006) revealed that site A discharged 1.8 times more water than site B, 4 times more than site C and 3 times more than site D. The presence of subsurface drainage in sandy loam soils had a significant beneficial effect in minimizing surface runoff and total phosphorus (TP) losses from the field, but the contrary was observed in clay loam soils. This was attributed to the finding that P speciation as particulate phosphorus (PP) and dissolved phosphorus (DP) remained relatively independent of the hydrologic transport pathway, and was a strong function of soil texture. While 80% of TP occurred as PP at both clay loam sites, only 20% occurred as PP at both sandy loam sites. Moreover, P transport pathways in artificially drained soils were greatly influenced by the prevailing preferential and macropore flow conditions.  相似文献   

4.
Snowmelt is the most important hydrological event in cold climates. However, snowmelt effects on suspended sediment (SS) and phosphorus (P) loss are poorly documented in Canada. Using two agricultural watersheds in Eastern Canada, this study aimed to quantify SS and P loss during the snowmelt period and to investigate how snowmelt contributes SS and P loss. Water samples were collected from the outlets of the Bras d’Henri watershed (BHW, 2007-2009) and Black Brook watershed (BBW, 2008-2009) and measured for SS and P concentrations. Hydrological parameters (precipitation, snow water equivalent, and runoff discharge), soil frozen status and soil temperature were also measured. Results revealed inter-annual variation of snowmelt conditions and SS and P losses in each watershed. The 2008 snowmelt in BHW and BBW mainly occurred on unfrozen soils, while the 2007 and 2009 snowmelts in BHW and 2009 snowmelt in BBW mainly on frozen soils. In BHW, 2008 snowmelt caused much higher median concentrations of SS, total P (TP), dissolved P (DP) and particulate P (PP) in stream water than 2007 and 2009; ratios of PP fractions in TP were variable with events but the median values were similar, suggesting both DP and PP important contrubutors to TP loss. In BBW, the median concentration of dissolved reactive phosphorus (DRP) in stream water was greater in 2008 snowmelt than in 2009 snowmelt; PP dominated TP loss. This study also suggests that soil state (i.e. frozen status) and rainfall were the most important factors influencing SS and P losses during snowmelt. Furthermore, snowmelt P export represented more than 20% of the total annual P export in BHW, and more than 12% of the annual DRP export in BBW. Thus, we strongly recommend adopting Best Management Practices (BMPs) that specifically target sediment and P loss during snowmelt.  相似文献   

5.
The application of polymer for controlling erosion and the associated nutrient transport has been well documented. However, comparatively less information is available on the effect of polymer application together with soil amendments. In this study, the effect of polyacrylamide (PAM) in combination with surface application of gypsum and Milorganite™ (MILwaukee ORGAnic NITtrogEn) biosolid for reducing sediment and phosphorus transport under laboratory rainfall simulations was investigated. The treatments considered were bare soil, gypsum, Milorganite™, gypsum + Milorganite™, PAM-coated gypsum and PAM-coated Milorganite™. Application rates for gypsum and Milorganite™ were 392 kg ha−1 (350 lb/acre) and 726 kg ha−1 (650 lb/acre), respectively. The PAM was coated on gypsum and Milorganite™ at an application rate of 11.2 kg ha−1 (10 lb/acre) and 22.4 kg ha−1 (20 lb/acre), respectively. Rain simulation experiments were conducted using a rainfall intensity of 6.0 cm h−1 for 1 h on a 10% slope. Surface runoff was collected continuously from each soil box over 10 min intervals and leachate was collected continuously over the 60 min simulation. The reduction in runoff or in leachate for all treatments was not significantly different from the bare soil control. The sediment loss for PAM coated Milorganite™ was reduced by 77%, when compared to bare soil. However, the sediment loss was not significantly reduced for any other treatment compared to bare soil. The PAM-coated gypsum was not effective for erosion control in our study, and there appears to be a correlation between effectiveness and prill size. However, the gypsum (coated and uncoated) contributed about half of the dissolved reactive phosphorus (DRP) export (in the runoff) compared to bare soil. The PAM-coated Milorgante™ reduced the DRP and total phosphorus (TP) export to 0.3-0.5 times that of Milorganite™ and to levels similar to bare soil. The decreased sediment and phosphorus export for the PAM-coated Milorganite™ treatment is a signal for a potential management practice for controlling erosion and nutrient transport in fertilized agricultural landscapes.  相似文献   

6.
An improved understanding of how precipitation patterns control pesticide leaching from structured soils prone to macropore flow could lead to practical mitigation strategies that would help farmers minimize losses by optimizing application timings. A sensitivity analysis of the macropore flow model MACRO was therefore carried out to examine the influence of antecedent soil water content and precipitation patterns on pesticide leaching to drainage systems and groundwater. One thousand model runs were executed (20 four-year weather data series, 50 application dates per season) for both autumn and spring applications of a hypothetical moderately sorbed and quickly degraded herbicide for one of three national scenarios for pesticide risk assessment in Sweden (Näsbygård, a loamy moraine soil in Scania, southern Sweden). Rapid and direct transport of pesticides in macropores to drainage systems and shallow groundwater was predicted to occur rather infrequently in spring (in 4 of the 20 years) and even more rarely in autumn. For autumn applications, the soil water deficit at application (SWDtot) and medium-term precipitation (30–90 days after application) were the two most sensitive variables controlling pesticide leaching. For spring applications, total leaching was most closely linked to rainfall the following winter, while short-term precipitation (5 days after application) and the antecedent soil water deficit were the two most important predictors for maximum pesticide concentrations in drainflow. The potential for reducing leaching by restricting applications to periods of low risk was investigated. The results showed that avoiding applications on wet soil in autumn could potentially reduce total pesticide losses by a factor of two to three. Similarly, the risk of acute toxicological effects in surface waters following pesticide applications in spring could be reduced by a factor of 2–3 by avoiding application when 5-day weather forecasts predict precipitation >10 mm.  相似文献   

7.
在南疆枣园,设置了滴灌和漫灌两种灌溉方式、3种施氮量(102 kg/hm2、204 kg/hm2、306 kg/hm2)处理进行田间试验,通过测定各处理土壤总磷、有效磷及不同磷形态组分的含量,探讨了灌溉方式与氮肥施用量对土壤磷素形态组成及生物有效性的影响.结果表明:土壤总磷含量随滴灌土层深度的增加逐渐下降,而漫灌土层4...  相似文献   

8.
小麦收获时调亏灌溉处理及对照0~20,20~40及0~40 cm土层N∶P比2008年均显著高于2007年,说明调亏灌溉能显著提高土壤N∶P比,改变土壤N、P平衡。方差分析表明,0~20 cm土层所有处理及对照间二个年度N∶P比均无显著差异,20~40 cm则差异显著,0~40 cm土层2007年所有处理及对照间N∶P比无显著差异,而2008年则差异显著。  相似文献   

9.
Unrestricted cattle access to streams in traditionally pastoral regions has been linked to increased concentrations of bacteria, suspended sediments and associated contaminants in streams. However, there is a dearth of data available regarding the impact of cattle access to streams in poorly drained landscapes of the Midwest. In this study, we investigate changes in water quality on a 1005 m long stream section impacted by cattle grazing on the upper 130 m. We monitor discharge, water quality [nitrate, ammonium, total Kjeldahl nitrogen (TKN), total phosphorus (TP), total suspended sediments (TSS), turbidity, Escherichia coli] and chloride, atrazine, silica and major cation concentrations over a 12-month period. Cattle access to the stream does not significantly affect nitrate concentration but leads to large increases in TKN (fourfold increase), TP (fivefold increase), ammonium (fourfold increase), TSS (11-fold increase), turbidity (13-fold increase) and E. coli (36-fold increase) in the summer/fall period. In particular, E. coli concentration in the stream in the summer/fall period exceeds 235 colony forming unit (CFU)/100 ml 64% of the time upstream from the section impacted by cattle, but exceeds this same threshold 89% of the time immediately downstream. Despite the negative impact of cattle access to the stream on water quality, data indicate that dilution, in-stream processes, and natural stream geometry downstream from the impacted section help mitigate this pollution. We expect that this study will be an incentive for policy makers to promote stream rehabilitation and develop more stringent guidelines limiting cattle access to streams in many Midwestern states and other regions with poorly drained soils where the impact of cattle access to streams on water quality is often ignored.  相似文献   

10.
Mulch resistance to water vapor transport   总被引:2,自引:0,他引:2  
Mulches augment soil moisture availability to plants by restraining direct evaporation of soil water. Yet, in field conditions wind decreases their resistance to water vapor transport, diminishing their efficiency as a water conservation measure. The relation between vapor transport resistance and wind speed was investigated in a wind tunnel where air flow was turbulent. The mulch material was chopped straw with bulk densities of 31 and 37 kg m−3, and chemically stabilized aggregates segregated in diameter classes 1-2, 2-4, 4-8, 8-11.2 mm, in layers 10-100 mm thick. The resistance decreased exponentially with increasing wind speed from the molecular diffusion value at zero wind speed, suggesting that turbulence penetrates the pores of the mulch and drives convective water vapor transport. Resistance rose exponentially with increasing layer thickness, a mirror reflection of the turbulence decay profile. Higher bulk density of the straw and finer aggregates augmented the resistance. The convective component of the vapor transport resistance was related to mulch area index, defined as the surface area of the solid elements of mulch per unit covered ground area. This procedure merged the effect of layer thickness and that of straw bulk density or aggregates size into a single function, indicating that friction forces proportional to internal area of the solid fabric restrain the penetration of momentum in the porous medium. Two-layered mulches combining straw and aggregates have a higher resistance than the sum of the resistances of the individual components as is expected from the attenuation of convection in the top layer. The functions derived in this study can serve as input for models evaluating the impact of mulches on soil water balance.  相似文献   

11.
Spate irrigation is a method of flood water harvesting, practiced in Dera Ismael Khan (D.I. Khan), Pakistan for agricultural production for the last several hundred years in which during monsoon period flood water is used for irrigation before wheat sowing. A field study on the effect of different pre-sowing water application depths on the yield of wheat was conducted during 2006-2007. The spate irrigation command areas normally receive the flood water as a result of rainfall on the mountains during the months of July to September, which also carries a significant amount of sediment load. The flood water flows in different torrents and is diverted through earthen bunds to the fields for irrigation with depth of water application ranging from 21 to 73 cm and resulted in sediment deposition of 1.8-3.6 cm per irrigation. In this study, the effect on wheat yield of three different pre-sowing water application depths (D1 < 30 cm, D2 = 30-45 cm and D3 > 45 cm) were studied under field conditions. Fifteen fields with field sizes of about 2-3 ha were randomly selected, in each field five samples were collected for analysis of soil physical properties, yield and yield components. Five major soil texture classes (silty clay, clay loam, silty clay loam, silt loam and loam) were found in the area with water-holding capacity ranging from 23% to 36.3% (on a volume basis) and bulk density varied from 1.35 to 1.42 g cm−3. About 36% more grain yield was obtained from loam soil fields, followed by silt loam (24%) as compared to wheat grown on silty clay soil condition. The maximum wheat grain yield of 3448 kg ha−1 was obtained from fields with water application depths of 30-45 cm and the lowest wheat yield was recorded in fields with water application depths greater than 45 cm. On-farm application efficiencies ranged from 22% to 93% with an overall average of about 49%. Due to large and uneven fields, a lot of water is lost. In general, the application efficiency decreased with increasing water application depth. Based on the results of this research, in arid to semi-arid environments, for optimum wheat yield under spate irrigation, the pre-sowing water application depth may be about 30-45 cm (September to July) and under or over irrigation should be avoided.  相似文献   

12.
Soil soluble phosphorus (P) transport with root-phosphorus-uptake (RPU) is a critical process for plant growth, cycling of P in soil-plant systems and environment protection. However, modeling soil soluble P transport is extremely challenging because it is difficult to measure the RPU distribution directly, especially in the field. In this study, an inverse method, which was utilized successfully to estimate the root-water-uptake (RWU) rate distribution by Zuo and Zhang (2002) and the source-sink term in the nitrate (NO3-N) transport equation by Shi et al. (2007), was applied to estimate the RPU rate distribution and analyze soil soluble P transport in the soil-plant systems. A soil column experiment (Exp. 1) and a field experiment (Exp. 2), respectively with winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) growth, were carried out to observe the dynamics of soil water and soluble P. Based on the experimental data in Exp. 1, the average RWU and RPU rate distributions during different irrigation periods were estimated using the inverse method. The relative errors of the total P extracted by wheat between the estimated and measured values during all periods were less than 10%. The estimated RPU rate distribution during the period of 10.5-15.5 days after planting (DAP) was used to optimize the dimensionless RPU factor δ to establish the RPU model (δ = 1.31), which helped to calculate the RPU rate distributions during other periods (from 16.5 to 57.5 DAP) in Exp. 1. The calculated RPU rate distributions were compared well with the estimated profiles by the inverse method, and the root mean squared error between them was less than 0.00005 mg cm−3 d−1. Correspondingly, the calculated total P extracted by winter wheat was also comparable with the measured value, with the relative error less than 10%. Similarly, the procedures were employed for summer maize in Exp. 2. The estimated (using the inverse method) and calculated (through the RPU model with δ = 1.38) RPU rate distributions were in good agreement with the root mean squared error as less as 0.000031 mg cm−3 d−1. According to the established RPU models (δ = 1.31 and 1.38 for Exps. 1 and 2, respectively), the distributions of soil water content and soluble P concentration were simulated, and compared well with the measured profiles, with the maximum root mean squared error of 0.0088 cm3 cm−3 and 0.0066 mg cm−3 in Exp. 1, and 0.023 cm3 cm−3 and 0.0015 mg cm−3 in Exp. 2, respectively. The inverse method should be effective and applicable for estimating the RPU rate distribution, establishing the RPU model and analyzing soil soluble P transport in soil-plant systems, either in laboratory or in the field.  相似文献   

13.
The effects of controlled drainage on N and P losses from soil were examined in a 4-year field drainage experiment on a loamy sand in Southern Sweden. Of the three plots (0.2 ha each), one was drained by conventional subsurface drainage (CD), and two by controlled drainage (CWT1 and CWT2). The groundwater level in the CWT plots was naturally drained to at least 70 cm below the soil surface during the vegetation period between early spring and harvest but allowed to rise to 20 cm below the soil surface during the rest of the year. Measurements of precipitation, drain outflow, weir depths and air and soil temperatures were carried out hourly. Groundwater levels were measured and samples of drain outflow for analyses were collected twice a month. Mineral N contents in soil were measured three times a year and grain yields and N uptake in crops after harvest.  相似文献   

14.
Gravel and sand mulch is an effective practice in conserving soil and moisture. However, the proportion of different particle size in this kind of mulch layer is an important factor to be considered in order to obtain optimal results from this practice. From 2005 to 2007, a series of experiments including one with watermelon were conducted in the semi-arid Loess Plateau of northwest China to determine the influence of particle size and its proportion in mulch layer on soil temperature, evapotranspiration, water use efficiency (WUE) and watermelon (Citrullus lanatus L.) yield. The treatments in no-watermelon experiments included particle sizes classified as <0.3, 0.3-1, 1-2, 2-4, 4-6, 6-8 and 8-10 cm mesh size or various rates of 2-6 cm pebble accounting for 0, 10, 20, 30, 40, 50, 60 and 70% with 30% 1-2 cm gravel-sand in mulch layer (as well as correspondingly decreasing sand proportions). The watermelon experiment included three particle sizes, 0.3-1, 1-2 and 2-6 cm. Soil temperature at 8:00 h was highest for the 1-2 cm treatment, and the daily average temperature at 14:00 h was highest for the 0.3-1 cm treatment. Soil temperature decreased with particle size increasing due to porosity enlarging. The relationship between soil temperature and particle size followed a quadratic or cubic curve. Soil temperature was increased by gravel-sand mulch plus plastic film. The increment of soil temperature was larger especially for 1-4 cm particle size. In the gravel-sand mulch layer having different size particles, the greater percentage being of 2-6 cm pebbles, increases porosity, and lowers soil temperature, and causes more evaporation. The results of the watermelon experiment showed that soil moisture before seeding would not affect the yield during the years of using gravel mulch. Watermelon yield and WUE were higher for 1-2 and 0.3-1 cm treatments than 2-6 cm treatments in later experiments during 2006 and 2007. In conclusion, 2-6 cm large size particles would not account for much in gravel-sand mulching layer. It would be better if the percentage of 2-6 cm particles was less than 30%.  相似文献   

15.
In this study, the ADAPT (Agricultural Drainage and Pesticide Transport) model was calibrated and validated for monthly flow and nitrate-N losses, for the 2000-2004 period, from two minor agricultural watersheds in Seven Mile Creek (SMC-1 and SMC-2) in south-central Minnesota. First, the model was calibrated and validated using the water quality data from the SMC-1 and again independently validated with the SMC-2 dataset. The predicted monthly flow and associated nitrate-N losses agreed reasonably with the measured trends for both calibration (r2 = 0.81 and 0.70 for flow and nitrate-N losses, respectively) and validation (r2 = 0.85 and 0.78 for flow and nitrate-N losses from SMC-1, and 0.89 and 0.78 for flow and nitrate-N losses from SMC-2, respectively) periods. The model performed less satisfactorily for the snowmelt periods than it did for the entire simulation period. Using the calibrated model, long-term simulations were performed using climatic data from 1955 to 2004 to evaluate the effects of climatic variability and N application rates and timing on nitrate-N losses. The predicted nitrate-N losses were sensitive to N application rates and timing. A decrease in the fall N application rate from 179.3 to 112 kg/ha decreased nitrate-N losses by 23%. By changing application timing from fall to spring at a rate of 112 N kg/ha, nitrate-N losses decreased by 12%. The predicted nitrate-N losses showed a linear response to precipitation with larger losses generally associated with wet years. A 25% increase in mean annual precipitation would offset reductions in nitrate-N loss achieved using better N fertilizer management strategies described above.  相似文献   

16.
Mechanisms of crop root water uptake play an important role in agricultural water management. In this study, stable isotopes were used to understand root water uptake patterns for the main crops (summer corn and cotton) in Shanxi Province, China. Precipitation, irrigation water, soil water, groundwater and stem water were sampled for stable isotopes analyses, and supported by hydrological observations. Both direct inference of hydrogen and oxygen isotopes between stem water and the soil water profile, and multiple-source mass balance assessment were applied to estimate the main depths of root water uptake of crops in different growing seasons. The results show that summer corn and cotton have different root water uptake patterns: summer corn mainly uses the shallow soil water from 0 to 20 cm layer (96-99%) in jointing stage and extending to 20-50 cm (58-85%) in flowering stage, then 0-20 cm (69-76%) again in full ripe stage. In contrast, the main depth of root water uptake of cotton gradually increases during the whole growth stage: from 0 to 20 cm (27-49%) in seedling stage, 20-50 cm (79-84%) in bud stage, 50-90 cm (30-92%) in blooming stage and >90 cm (69-92%) in boll open stage.  相似文献   

17.
Dynamics and modeling of soil water under subsurface drip irrigated onion   总被引:3,自引:0,他引:3  
Subsurface drip irrigation provides water to the plants around the root zone while maintaining a dry soil surface. A problem associated with the subsurface drip irrigation is the formation of cavity at the soil surface above the water emission points. This can be resolved through matching dripper flow rates to the soil hydraulic properties. Such a matching can be obtained either by the field experiments supplemented by modeling. Simulation model (Hydrus-2D) was used and tested in onion crop (Allium cepa L.) irrigated through subsurface drip system during 2002-2003, 2003-2004 and 2004-2005. Onion was transplanted at a plant to plant and row to row spacing of 10 cm × 15 cm with 3 irrigation levels and 6 depths of placement of drip lateral. The specific objective of this study was to assess the effect of depth of placement of drip laterals on crop yield and application of Hydrus-2D model for the simulation of soil water. In sandy loam soils, it was observed that operating pressures of up to 1.0 kg cm−2 did not lead to the formation of cavity above the subsurface dripper having drippers of 2.0 l h−1 discharge at depths up to 30 cm. Wetted soil area of 60 cm wide and up to a depth of 30 cm had more than 18% soil water content, which was conducive for good growth of crop resulting in higher onion yields when drip laterals were placed either on soil surface or placed up to depths of 15 cm. In deeper placement of drip lateral (20 and 30 cm below surface), adequate soil water was found at 30, 45 and 60 cm soil depth. Maximum drainage occurred when drip lateral was placed at 30 cm depth. Maximum onion yield was recorded at 10 cm depth of drip lateral (25.7 t ha−1). The application of Hydrus-2D confirmed the movement of soil water at 20 and 30 cm depth of placement of drip laterals. The model performance in simulating soil water was evaluated by comparing the measured and predicted values using three parameters namely, AE, RMSE and model efficiency. Distribution of soil water under field experiment and by model simulation at different growth stages agreed closely and the differences were statistically insignificant. The use of Hydrus-2D enabled corroborating the conclusions derived from the field experimentation made on soil water distribution at different depths of placement of drip laterals. This model helped in designing the subsurface drip system for efficient use of water with minimum drainage.  相似文献   

18.
Gully erosion is one of the main causes of soil loss in drylands. Understanding the dominant mechanisms of erosion is important to achieve effective erosion control, thus in this study our main objective was to quantify the mechanisms involved in gully bank retreat as a result of three processes, falling of entire soil aggregates, transport of soil material by splash and by water running along gully banks (runoff), during rainfall events. The study was conducted in the sloping lands of the KwaZulu-Natal province, a region that is highly affected by gully erosion. Artificial rain was applied at 60 mm h−1 for 45 min at the vertical wall of a gully bank typical to the area. The splash material was collected by using a network of 0.045 m2 buckets. The sediments in the running water were assessed by sampling the runoff collected from a microplot inserted within the base of the bank, and collecting the fallen aggregates after the rainfall simulation was complete. Results indicated that the overall erosion for the simulation was 721 g m−2 h−1. Runoff erosion proved to be the dominant mechanism and amounted to 450 g m−2 h−1, followed by splash and fall down of aggregates (about 170 g m−2 h−1). Gully bank retreat occurred at a rate of 0.55 mm h−1 and assuming that the soil bulk density is 1.3 g cm−3, this corresponds to a retreat of 8.8 mm y−1. Extrapolations to the watershed level, where about 500 m2 of gully bank are observed per hectare, would lead to an erosion rate of 4.8 t ha−1 y−1. These limited results based on a simulated storm show that the three main mechanisms (runoff, splash and fall down of aggregates) are responsible for the retreat of gully banks and that to mitigate gully erosion, appropriate measures are required to control all three mechanisms. Further research studies are needed to confirm and to scale up, both in time and space, as these data are obtained at one location and from a single artificial storm.  相似文献   

19.
Drip lines were located at distances ranging from 0 to 60 cm from one or both sides of a row of pepper plantlets, and we monitored the effects on their shoot development during 76 days from transplanting to full-size first fruits, on the final root system, and on the areal water and salt distributions in the upper 15-cm soil layer. The experiment was conducted in a greenhouse with a sandy soil, and excess fresh water (1.9 L d−1 per plant) was applied via short daily irrigations. In addition, the effects of watering distance and symmetry on the potential water uptake rate were analyzed with a coupled-source-sink steady flow and uptake model. Initial faster shoot growth with the one-side system and short distances progressively changed to faster growth with the two-side system and longer watering distances, with the optimum at 30-40 cm. These temporal changes are attributed to temporal changes in the root uptake of irrigation water: small plants with small root systems benefit from the larger water supply to a smaller soil volume provided by the one-side system, whereas larger plants with greater water needs could extract more irrigation water when they developed larger, split root systems in the two-side irrigation. Balanced root systems and maximal shoot growth can be obtained by starting the irrigation with a line on each side, near the plants, and moving the lines after a short time.  相似文献   

20.
This study explored the seasonal and interannual variation in water vapor exchange and surface water balance over a grazed steppe in central Mongolia through analysis of 4 years (2003-2006) of flux data obtained via the eddy covariance method. Annual precipitation (PPT) in 2003 measured 239 mm which is 32% above the 10-year (1983-2002) average of 181 mm. By contrast, PPT for the other 3 years of the study fell below the 10-year average, measuring 159 mm in 2004, 110 mm in 2005, and 119 mm in 2006. The annual evapotranspiration (ET) for each of the study years measured 156, 160, 153, and 101 mm, respectively, and the peak value of ET during the growing season varied from 2.2 to 3.2 mm d−1. At the study site, the ratio of ET to the equilibrium ET (ETeq) was usually lower than 0.5 during the growing season, which reflects the significant effect of water shortage on ET. The large seasonal variation in canopy surface conductance (gs), caused by variation in soil water content (SWC) and vapor pressure deficit (VPD), was the major factor affecting ET. The annual ET/PPT was 0.65 in 2003, 1.01 in 2004, 1.39 in 2005, and 0.85 in 2006. The stored soil water (especially at a depth of 0-30 cm) resulting from autumnal precipitation of the previous year remained frozen for about 5 months, from winter through early spring. This stored water had a considerable effect on plant growth during the following spring. For the central Mongolian steppe, there was a high correlation between the mean normalized difference vegetation index (NDVI) and total precipitation during the growing season (May-September) as well as during the preceding 9 months (August-April). This correlation reflects the important contribution of precipitation input and stored soil water during the previous year to ET.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号