首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crops grown in semiarid rainfed conditions are prone to water stress which could be alleviated by improving cultural practices. This study determined the effect of cropping system, cultivar, soil nitrogen status and Rhizobium inoculation (Rz) on water use and water use efficiency (WUE) of chickpea (Cicer arietinum L.) in semiarid environments. The cultivars Amit, CDC Anna, CDC Frontier, and CDC Xena were grown in no-till barley, no-till wheat, and tilled-fallow systems and under various rates of N fertilizer (0, 28, 56, 84, and 112 kg N ha−1) coupled with or without Rz. The study was conducted at Swift Current and Shaunavon, Saskatchewan, from 2004 to 2006. On average, chickpea used about 10 mm of water from the top 0-15 cm soil depth. In the tilled-fallow system, chickpea extracted 20% more water in the 15-30 cm depth, 70% more in the 30-60 cm depth, and 156% more in the 60-120 cm depth than when it was grown in the no-till systems. CDC Xena had WUE of 5.3 kg ha−1 mm−1 or 20% less than the average WUE (6.6 kg ha−1 mm−1) of the three other cultivars, even though these cultivars used the same amounts of water. Water use efficiency increased from 4.7 to 6.8 kg ha−1 mm−1 as N fertilizer rate was increased from 0 to 112 kg N ha−1 when chickpea was grown in the no-till barley or wheat systems, but chickpea grown in the tilled-fallow system did not respond to changes in the fertilizer N rates averaging WUE of 6.5 kg ha−1 mm−1. In the absence of N fertilizer, the application of Rz increased WUE by 33% for chickpea grown in the no-till barley system, 30% in the no-till wheat system, and 9% in the tilled-fallow system. Chickpea inoculated with Rhizobium achieved a WUE value similar to the crop fertilized at 84 kg N ha−1. Without the use of Rz, chickpea increased WUE in a linear fashion with increasing fertilizer N rates from 0 to 84 kg N ha−1. Cropping system, cultivar, and inoculation all had greater impact on WUE than on the amount of water extracted by the crop from the soil. The improvement of cultural practices to promote general plant health along with the development of cultivars with improved crop yields will be keys for improving water use efficiency of chickpea in semiarid environments.  相似文献   

2.
The increasing cost and scarcity of water for irrigation is placing pressure on Australian dairy farmers to utilize water more efficiently, and as result, water use efficiency (WUE) of forages is becoming an important criterion for sustainable dairy production. This study was conducted to identify more water use efficient forage species than the dominant dairy forage, perennial ryegrass (Lolium perenne L.). Seventeen annual forage species were investigated under optimum irrigation (I1) and two deficit irrigation treatments (nominally 66 and 33% of irrigation water applied to the optimal level), over 3 years at Camden, NSW, on a brown Dermsol in a warm temperate climate. Forages with the highest yield generally had the highest WUEt (total yield/evapotranspiration). Under optimal irrigation, there was a three-fold difference in mean annual WUEt between forages, with maize (Zea mays L.) having the highest (42.9 kg ha−1 mm−1) and cowpea (Vigna unguiculata (L.) Walp.) the lowest (13.5 kg ha−1 mm−1), with 11 of the forage species having a greater WUEt than perennial ryegrass. The ‘harvested’ forages maize, wheat, triticale (Triticosecale rimpaui Wittm.) and maple pea (Pisum sativium L.) generally had higher mean WUEt (26.7-42.9 kg ha−1 mm−1) than the remaining forages which were defoliated multiple times to simulate grazing (13.5-30.1 kg ha−1 mm−1). The reduction in annual WUEt in response to deficit irrigation was greatest for the warm season forages with up to 30% reduction for maize, while most of the cool season annuals were not significantly affected by deficit irrigation at the levels imposed. In order to maximize WUEt of any forage, it is necessary to maximize yield, as there is a strong positive relationship between yield and WUEt. However, while WUEt is an important criterion for choosing dairy forages, it is only one factor in a complex system. Choice of forages must be considered on a whole farm basis and include consideration of yield, nutritive value, cost of production and risk.  相似文献   

3.
Studies quantifying winter annual cover crop effects on water quality are mostly limited to short-term studies at the plot scale. Long-term studies scaling-up water quality effects of cover crops to the watershed scale provide more integrated spatial responses from the landscape. The objective of this research was to quantify N loads from artificial subsurface drainage (tile drains) in a subbasin of the Walnut Creek, Iowa (Story county) watershed using the hybrid RZWQ-DSSAT model for a maize (Zea mays L.)-soybean [Glycine max (L.) Merr.] and maize-maize-soybean rotations in all phases with and without a winter wheat (Triticum aestivum L.) cover crop during a 25-year period from 1981 to 2005. Simulated cover crop dry matter (DM) and N uptake averaged 1854 and 36 kg ha−1 in the spring in the maize-soybean phase of the 2-year rotation and 1895 and 36 kg ha−1 in the soybean-maize phase during 1981-2005. In the 3-year rotation, cover crop DM and N uptake averaged 2047 and 44 kg ha−1 in the maize-maize-soybean phase, 2039 and 43 kg ha−1 in the soybean-maize-maize phase, and 1963 and 43 kg ha−1 in the maize-soybean-maize phase during the same period. Annual N loads to tile drains averaged 29 kg ha−1 in the maize-soybean phase and 25 kg ha−1 in the soybean-maize phase compared to 21 and 20 kg ha−1 in the same phases with a cover crop. In the 3-year rotation, annual N loads averaged 46, 43, and 45 kg ha−1 in each phase of the rotation without a cover crop and 37, 35, and 35 kg ha−1 with a cover crop. These results indicate using a winter annual cover crop can reduce annual N loads to tile drains 20-28% in the 2-year rotation and 19-22% in the 3-year rotation at the watershed subbasin scale over a 25-year period.  相似文献   

4.
Evapotranspiration (ET) is an important component of the water cycle at field, regional and global scales. This study used measured data from a 30-year irrigation experiment (1979-2009) in the North China Plain (NCP) on winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) to analyze the impacts of climatic factors and crop yield on ET. The results showed that grass reference evapotranspiration (ETo, calculated by FAO Penmen-Monteith method) was relatively constant from 1979 to 2009. However, the actual seasonal ET of winter wheat and maize under well-watered condition gradually increased from the 1980s to the 2000s. The mean seasonal ET was 401.4 mm, 417.3 mm and 458.6 mm for winter wheat, and 375.7 mm, 381.1 mm and 396.2 mm for maize in 1980s, 1990s and 2000s, respectively. The crop coefficient (Kc) was not constant and changed with the yield of the crops. The seasonal average Kc of winter wheat was 0.75 in the 1980s, 0.81 in the 1990s and 0.85 in the 2000s, and the corresponding average grain yield (GY) was 4790 kg ha−1, 5501 kg ha−1 and 6685 kg ha−1. The average Kc of maize was 0.88 in the 1980s, 0.88 in the 1990s and 0.94 in the 2000s, with a GY of 5054 kg ha−1, 7041 kg ha−1 and 7874 kg ha−1, respectively, for the three decades. The increase in ET was not in proportion to the increase in GY, resulting improved water use efficiency (WUE). The increase in ET was possibly related to the increase in leaf stomatal conductance with renewing in cultivars. The less increase in water use with more increase in grain production could be partly attributed to the significant increase in harvest index. The results showed that with new cultivars and improved management practices it was possible to further increase grain production without much increase in water use.  相似文献   

5.
Oilseed and pulse crops have been increasingly used to replace conventional summer fallow and diversify cropping systems in northern high latitude areas. The knowledge of water use (WU) and its distribution profile in the soil is essential for optimizing cropping systems aimed at improving water use efficiency (WUE). This study characterized water use and distribution profile for pulse and oilseed crops compared to spring wheat (Triticum aestivum L.) in a semiarid environment. Three oilseeds [canola (Brassica napus L.), mustard (Brassica juncea L.) and flax (Linum usitatissimum L.)], three pulses [chickpea (Cicer arietinum L.), dry pea (Pisum sativum L.) and lentil (Lens culinaris Medik.)], and spring wheat were seeded in removable 100 cm deep × 15 cm diameter lysimeters placed in an Aridic Haploboroll soil, in southwest Saskatchewan in 2006 and 2007. Crops were studied under rainfed and irrigated conditions where lysimeters were removed and sampled for plant biomass and WU at various soil depths. Wheat yields were greater than pulse crop yields which were greater than oilseed yields, and WUE averaged 4.08 kg ha−1 mm−1 for pulse crops, 3.64 kg ha−1 mm−1 for oilseeds, and ranged between 5.5 and 7.0 kg ha−1 mm−1 for wheat. Wheat used water faster than pulse and oilseed crops with crop growth. Pulse crops extracted water mostly from the upper 60 cm soil depths, and left more water unused in the profile at maturity compared to oilseeds or wheat. Among the three pulses, lentil used the least amount of water and appeared to have a shallower rooting depth than chickpea and dry pea. Soil WU and distribution profile under canola and mustard were generally similar; both using more water than flax. Differences in WU and distribution profile were similar for crops grown under rainfall and irrigation conditions. A deep rooting crop grown after pulses may receive more benefits from water conservation in the soil profile than when grown after oilseed or wheat. Alternating pulse crops with oilseeds or wheat in a well-planned crop sequence may improve WUE for the entire cropping systems in semiarid environments.  相似文献   

6.
Rainfed crop production in northern China is constrained by low and variable rainfall, and by improper management practices. This study explored both the impact of long-term rainfall variability and the long-term effects of various combinations of maize stover, cattle manure and mineral fertiliser (NP) applications on maize (Zea mays L.) yields and water use efficiency (WUE) under reduced tillage practices, at Shouyang Dryland Farming Experimental Station in northern China from 1993 onwards. The experiment was set up according to an incomplete, optimal design, with 3 factors at five levels and 12 treatments including a control with two replications. Grain yields were greatly influenced by the amount of rain during the growing season, and by soil water at sowing. Annual mean grain yields ranged from 3 to 10 t ha−1 and treatment mean yields from 4.2 to 7.2 t ha−1. The WUE ranged from 40 in treatments with balanced nutrient inputs in dry (weather/or soil) years to 6.5 kg ha−1 mm−1 for the control treatments in wet years. The WUE averaged over the 15-year period ranged from 11 to 19 kg ha−1 mm−1. Balanced combination of stover (3000-6000 kg), manure (1500-6000 kg) and N fertiliser (105 kg) gave the highest yield and hence WUE. It is suggested that 100 kg N per ha should be a best choice, to be adapted according to availability of stover and manure. Possible management options under variable rainfall conditions to alleviate occurring moisture stress for crops must be tailored to the rainfall pattern. The potentials of split applications, targeted to the need of the growing crop (response nutrient management), should be explored to further improve grain yield and WUE.  相似文献   

7.
The objective of this investigation was to study effects of nitrogen on drought resistance in terms of changes in cotton (Gossypium hirsutum L.) root dry matter accumulation, N concentration, antioxidant enzyme activities and root vigor during short-duration water stress (withholding water for 8 days and then permitting to 10 days recover by re-watering). Cotton plants were grown in pots with three N levels (0, 240, and 480 kg N ha−1). Soil-relative water content decreased with increasing N supply during the soil water stress period, while leaf area, dry matter production and N accumulation were enhanced. The root/shoot ratio and root-N/shoot-N ratio increased with water stress, and were smallest at 240 kg N ha−1. Application of N increased the activities of peroxidase (POD) and catalase (CAT) of cotton root, but decreased superoxide dismutase (SOD) activity during water stress as well as during recovery. Malondialdehyde (MDA) content was significantly (p < 0.05) increased, and was lowest in the 240 kg N ha−1 N treatment during water stress. At the 10th day after soil re-watering, MDA content of 240 kg N ha−1 was similar to that of 480 kg N ha−1, but less than that of 0 kg N ha−1. The root vigor, which was debased by water stress, was the highest at 240 kg N ha−1. After soil re-watering, N application promoted root vigor. The trends of net photosynthetic rate were the same as that of root vigor during water stress. These results suggest that appropriate N supply (240 kg N ha−1 in this investigation) may contribute to drought resistance of cotton plants by adjusting the antioxidant enzyme activities of root, debasing lipid peroxidation and boosting root vigor during short-duration water stress (withholding water for 8 days in this investigation), however, excessive N supply (480 kg N ha−1) had a deleterious effect on plant drought resistance.  相似文献   

8.
The experiment aimed at evaluating the yield and quality response of broccoli (Brassica oleracea L. var. italica) to applied irrigation water and nitrogen by drip irrigation method during the spring and autumn cultivation periods of 2007. Irrigation water was applied based on a ratio of Class A pan evaporation (kcp = 0.50, 0.75, 1.00 and 1.25) with 7 days interval. Also, the effect of four nitrogen levels (0 kg ha−1, 150 kg ha−1, 200 kg ha−1 and 250 kg ha−1) was compared with each treatment. The seasonal evapotranspiration in the treatments varied from 233 mm to 328 mm during the spring period and from 276 mm to 344 mm during the autumn period. The highest broccoli yield was obtained in the spring period as 11.02 t ha−1 and in the autumn period as 4.55 t ha−1. In general, there were statistical differences along nitrogen does with respect to yield and yield components while there were no statistically significant differences in the yield and yield components among irrigation regimes. Both yield and yield parameters in the spring period were found to be higher than that of the autumn period due to the low temperature and high rainy days in autumn. Irrigation water use efficiency (IWUE) ranged from 3.78 kg m−3 to 14.61 kg m−3 during the spring period and from 1.89 kg m−3 to 5.93 kg m−3 during the autumn period. On the other hand, nitrogen use efficiency (NUE) changed as 37.32-73.13% and 13.08-22.46% for spring and autumn season, respectively.  相似文献   

9.
Leaching is disadvantageous, both for economical and environmental reasons since it may decrease the ecosystem productivity and may also contribute to the contamination of surface and ground water. The objective of this paper was to quantify the loss of nitrogen and sulfur by leaching, at the depth of 0.9 m, in an Ultisol in São Paulo State (Brazil) with high permeability, cultivated with sugarcane during the agricultural cycle of crop plant. The following ions were evaluated: nitrite, nitrate, ammonium, and sulfate. Calcium, magnesium, potassium, and phosphate were also evaluated at the same depth. The sugarcane was planted and fertilized in the furrows with 120 kg ha−1 of N-urea. In order to find out the fate of N-fertilizer, four microplots with 15N-enriched fertilizer were installed. Input and output of the considered ions at the depth of 0.9 m were quantified from the flux density of water and the concentration of the elements in the soil solution at this soil depth: tensiometers, soil water retention curve and soil solution extractors were used for this quantification. The internal drainage was 205 mm of water, with a total loss of 18 kg ha−1 of N and 10 kg ha−1 of S. The percentage of N in the soil solution derived from the fertilizer (%NSSDF) was 1.34, resulting in only 25 g ha−1 of N fertilizer loss by leaching during all agricultural cycle. Under the experimental conditions of this crop plant, that is, high demand of nutrients and high incorporation of crop residues, the leached N represented 15% of applied N and S leaching were not considerable; the higher amount of leached N was native nitrogen and a minor quantity from N fertilizer; and the leached amount of Ca, Mg, K and P did not exceed the applications performed in the crop by lime and fertilization.  相似文献   

10.
Quantification of the interactive effects of nitrogen (N) and water on nitrate (NO3) loss provides an important insight for more effective N and water management. The goal of this study was to evaluate the effect of different irrigation and nitrogen fertilizer levels on nitrate-nitrogen (NO3-N) leaching in a silage maize field. The experiment included four irrigation levels (0.7, 0.85, 1.0, and 1.13 of soil moisture depletion, SMD) and three N fertilization levels (0, 142, and 189 kg N ha−1), with three replications. Ceramic suction cups were used to extract soil solution at 30 and 60 cm soil depths for all 36 experimental plots. Soil NO3-N content of 0-30 and 30-60-cm layers were evaluated at planting and harvest maturity. Total N uptake (NU) by the crop was also determined. Maximum NO3-N leaching out of the 60-cm soil layer was 8.43 kg N ha−1, for the 142 kg N ha−1 and over irrigation (1.13 SMD) treatment. The minimum and maximum seasonal average NO3 concentration at the 60 cm depth was 46 and 138 mg l−1, respectively. Based on our findings, it is possible to control NO3 leaching out of the root zone during the growing season with a proper combination of irrigation and fertilizer management.  相似文献   

11.
A 5-year field trial to assess the impact of microsprinkler irrigation and nutrition on vanilla grown as intercrop in arecanut plantation was conducted on a laterite soil. Pooled analysis indicated that microsprinkler irrigation at 1.0 Epan resulted in significantly higher green bean yield (842 kg ha−1) than 0.75 Epan (579 kg ha−1). Organic manure application in the form of vermicompost (720 kg ha−1) and FYM (768 kg ha−1) and recommended NPK (718 kg ha−1) produced green bean yield at par with recycling of gliricidia prunings (625 kg ha−1). Irrigation at 1.0 Epan proved superior by registering maximum benefit:cost (B:C) ratio of 2.25 compared to 1.62 at 0.75 Epan. The highest B:C ratio was obtained with recommended NPK (2.27) followed by recycling of gliricidia prunings (2.10), vermicompost (1.87), vermicompost + arecanut husk mulching (1.80) and FYM (1.64). The soil pH increased by 0.4 units in 2008 compared with the pre-experimental soil pH of 5.6 in 2004. Nutrition alone and in combination with irrigation had significant impact on soil pH. Organic manure application increased the soil pH (6.1-6.2) significantly over recommended NPK (5.6) at the end of experiment in 2008. Significant variation in soil organic carbon (SOC) was noticed due to different nutrition treatments. Application of vermicompost and FYM significantly increased the SOC content by 38-54% in 2008 over initial levels in 2004. Bray's P availability was influenced by nutrition and its interaction with irrigation. Application of FYM continuously for 4 years has resulted in significant increase in Bray's P content (41.3 mg kg−1) compared to other nutrition treatments (9.4-17.2 mg kg−1). Irrigation equivalent to 0.75 Epan (223 mg kg−1) increased the K availability significantly over 1.0 Epan (172 mg kg−1). The K availability was significantly higher in recommended NPK (416 mg kg−1) than in other organic treatments (98-223 mg kg−1) at 0-30 cm soil depth. Overall, vanilla responded well to irrigation and nutrition in arecanut-based cropping system with a better economic output and improved soil fertility.  相似文献   

12.
Spring maize under plastic mulch is the staple food crop in northwest China. Studying its evapotranspiration (ET) and crop coefficient (Kc) is important for managing water-saving irrigation in the region. Eddy covariance (EC) was applied to measure spring maize ET in 2007 in northwest China, focusing on the characteristics of the maize ET and Kc processes under plastic mulch. An interesting result was that a higher Kc in this study relative to the value of FAO 56 was presented in the mid and late season, e.g. average Kc was 1.46, 1.39 and 1.22 during the heading, filling and maturity stage, respectively. This result was mainly due to that (1) the plastic mulch had an effect on anti-senescence of maize and great green leaf still existed before the harvest; (2) the FAO 56 PM model may underestimate the reference crop ET in the mid and late season of maize in the region; (3) the planting density was higher in the study, which was about 374,800 plants ha−1. Though Kc during the mid and late season was high, a high water use efficiency of 25.2 kg ha−1 mm−1 was still obtained in the study. Our study confirmed that plastic mulch has beneficial effect on improving maize water use efficiency in this severe water shortage region of northwest China.  相似文献   

13.
Water is the most important limiting factor of wheat (Triticum aestivum L.) and maize (Zea mays L.) double cropping systems in the North China Plain (NCP). A two-year experiment with four irrigation levels based on crop growth stages was used to calibrate and validate RZWQM2, a hybrid model that combines the Root Zone Water Quality Model (RZWQM) and DSSAT4.0. The calibrated model was then used to investigate various irrigation strategies for high yield and water use efficiency (WUE) using weather data from 1961 to 1999. The model simulated soil moisture, crop yield, above-ground biomass and WUE in responses to irrigation schedules well, with root mean square errors (RMSEs) of 0.029 cm3 cm−3, 0.59 Mg ha−1, 2.05 Mg ha−1, and 0.19 kg m−3, respectively, for wheat; and 0.027 cm3 cm−3, 0.71 Mg ha−1, 1.51 Mg ha−1 and 0.35 kg m−3, respectively, for maize. WUE increased with the amount of irrigation applied during the dry growing season of 2001-2002, but was less sensitive to irrigation during the wet season of 2002-2003. Long-term simulation using weather data from 1961 to 1999 showed that initial soil water at planting was adequate (at 82% of crop available water) for wheat establishment due to the high rainfall during the previous maize season. Preseason irrigation for wheat commonly practiced by local farmers should be postponed to the most sensitive growth stage (stem extension) for higher yield and WUE in the area. Preseason irrigation for maize is needed in 40% of the years. With limited irrigation available (100, 150, 200, or 250 mm per year), 80% of the water allocated to the critical wheat growth stages and 20% applied at maize planting achieved the highest WUE and the least water drainage overall for the two crops.  相似文献   

14.
Water use efficiency and crop coefficients of dry season oilseed crops   总被引:1,自引:0,他引:1  
Eastern India receives higher average annual rainfall (1000–2000 mm) but 80% of it occurs within the June–September (rainy season), whereas the winter season (November–March) is dry. Due to a shortage of soil moisture, most rainfed areas of the region remain fallow during the winter season and cultivation (mainly rice) is confined to the rainy season only (June–September). To explore the possibility of double cropping in the rainfed rice areas, three oilseed crops, viz., linseed (Linum usitatissimum L.), safflower (Carthamous tinctorious L.), mustard (Brassica juncea L.), were grown in a representative rainfed area of eastern India, i.e. Dhenkanal, Orissa, during the dry/winter season by applying irrigation water at phonological stages. Study revealed that with three supplemental irrigations, the highest WUE was achieved by safflower followed by linseed with the mean values being 3.04 and 2.59 kg ha−1 mm−1, respectively. Whereas, with one irrigation, the highest water use efficiency (WUE) was achieved for safflower (1.23 kg ha−1 mm−1) followed by linseed (0.93 kg ha−1 mm−1). Of the three crops studied, safflower withdrew maximum water followed by mustard and crops were shown to use 90–105 mm more water than linseed. With three irrigations, average maximum rooting depths were 1.66, 1.17 and 0.67 m for safflower, mustard and linseed, respectively, which were 13.5, 10.6 and 11.4% higher than for single irrigated crops because of more wet sub soils and decrease of soil strength. The crop growth parameters like leaf area, dry biomass were also recorded with different levels of irrigation. The research work amply revealed the potential of growing these low water requiring oilseed crops in rice fallow during dry/winter season utilizing limited irrigation from harvested rainwater of rainy season. Crop coefficients (Kc) of three winter season oilseed crops were derived using field water balance approach. Study showed that LAI was significantly correlated with Kc values with the R2 values of 0.91, 0.89 and 0.94 in linseed, safflower and mustard, respectively. When LAI exceeded 3.0, the Kc value was 1 in safflower and mustard whereas in linseed corresponding LAI was 2.5. Study revealed that the Kc values for the development and mid season stage were slightly higher to that obtained by the procedure proposed by FAO, which might be due to local advection.  相似文献   

15.
Field experiments were conducted for 2 years to investigate the effects of various levels of nitrogen (N) and methods of cotton planting on yield, agronomic efficiency of N (AEN) and water use efficiency (WUE) in cotton irrigated through surface drip irrigation at Bathinda situated in semi-arid region of northwest India. Three levels of N (100, 75 and 50% of recommended N, 75 kg ha−1) were tested under drip irrigation in comparison to 75 kg of N ha−1 in check-basin. The three methods of planting tried were; normal sowing of cotton with row to row spacing of 67.5 cm (NS), normal paired row sowing with row to row spacing of 35 and 100 cm alternately (NP) and dense paired row sowing with row to row spacing of 35 and 55 cm alternately resulting in total number rows and plants to be 1.5 times (DP) than NS and NP. In NS there was one lateral along each row, but in paired sowings there was one lateral between each pair of rows. Consequently the number of laterals and quantity of water applied was 50 and 75% in NP and DP, respectively, as compared with NS in which irrigation water applied was equivalent to check-basin.Drip irrigation under NS resulted in an increase of 258 and 453 kg ha−1 seed cotton yield than check-basin during first and second year, respectively, when same quantity of water and N was applied. Drip irrigation under dense paired sowing (DP) in which the quantity of irrigation water applied was 75% as compared with NS, further increased the yield by 84 and 101 kg ha−1 than NS during first and second year, respectively. Drip irrigation under NP, in which the quantity of water applied and number of laterals used were 50% as compared with drip under NS, resulted in a reduction in seed cotton yield of 257 and 112 kg ha−1 than NS during first and second year, respectively. However, the yield obtained in NP under drip irrigation was equivalent to yield obtained in NS under check-basin during first year but 341 kg ha−1 higher yield was obtained during second year. The decrease in N applied, irrespective of methods of planting, caused a significant decline in seed cotton yield during both the years. Water use efficiency (WUE) under drip irrigation increased from 1.648 to 1.847 and from 0.983 to 1.615 kg ha−1 mm−1 during first and second year, respectively, when the same quantity of N and water was applied. The WUE further increased to 2.125 and 1.788 kg ha−1 mm−1 under DP during first and second year, respectively. The agronomic efficiency of nitrogen was higher in drip than check-basin during both the years when equal N was applied. The WUE decreased with decrease in the rate of N applied under fertigation but reverse was true for AEN. It is evident that DP under drip irrigation resulted in higher seed cotton yield, WUE and AEN than NS and also saved 25% irrigation water as well as cost of laterals.  相似文献   

16.
A field experiment was conducted for 2 years to investigate the effects of deficit irrigation, nitrogen and plant growth minerals on seed cotton yield, water productivity and yield response factor. The treatment comprises six levels of deficit irrigation (Etc 1.0, 0.9, 0.8, 0.7, 0.6 and 0.5) and four levels of nitrogen (80, 120, 160 and 200 kg N ha−1). These were treatments superimposed with and without plant growth mineral spray. Furrow irrigation treatments were also kept. Cotton variety Ankur-651 Bt was grown during 2006 and 2007 cotton season. Drip irrigation at 1.0 Etc saved 26.9% water and produced 43.1% higher seed cotton yield over conventional furrow irrigation (1.0 Etc). Imposing irrigation deficit of 0.8 Etc caused significant reduction in seed cotton yield to the tune of 9.3% of the maximum yield. Further increase in deficit irrigation from 0.7 Etc to 0.5 Etc significantly decreased seed cotton yield over its subsequent higher irrigation level. Decline in the yield under deficit irrigation was associated with reduction in number of bolls plant−1 and boll weight. Nitrogen at 200 kg ha−1 significantly increased mean seed cotton yield by 36.3% over 80 kg N ha−1. Seed cotton yield tended to increase linearly up to 200 kg N ha−1 with drip Etc 0.8 to drip Etc 1.0. With drip Etc 0.6-0.5, N up to 160 kg ha−1 provided the highest yield, thereafter it had declined. Foliar spray of plant growth mineral (PGM) brought about significant improvement in seed cotton yield by 14.1% over control. The water productivity ranged from 0.331 to 0.491 kg m−3 at different irrigation and N levels. On pooled basis, crop yield response factor of 0.87 was calculated at 20% irrigation deficit.  相似文献   

17.
In Mexico, corn production, part of which is sweet corn, is mainly destined for human consumption. In the present work, the morphological quality of sweet corn ears was assessed in response to four levels of soil moisture tension indicating irrigation start (−5, −30, −55, and −80 kPa) and three levels of phosphate fertilization (60, 80 and 100 kg ha−1) in carstic soils in the south-east of Mexico. A factorial experimental design with three replicates was used. The following variables were determined: fresh weight (SCFWh), dry weight (SCDWh), diameter (SCDh), and length (SCLh) of sweet corn ears, all without husk, as well as number of kernels (NKxE), number of unfilled kernels (NUK), number of rows (NRxE), and dry kernel weight per ear (DKW). Yield of fresh (YFSCh) and dry (YDSCh) sweet corn ears, both without husk, and the harvest index (HI) were also determined. HI did not show significant statistical differences among irrigation or fertilization treatments. Regarding the other variables, the effect of the more humid treatments (−5 and −30 kPa) and the effect of the higher phosphorus doses (80 and 100 kg ha−1) were statistically equal (P ≤ 0.01) with the lowest NUK and the highest values of all other variables; therefore, irrigation start at soil moisture tension of −30 kPa and phosphate fertilization application of 80 kg ha−1 are recommended. At this level of soil moisture, the mean values over the three fertilization levels and all the replicates, obtained for SCFWh, SCDh, SCLh and NKxE were 198.5 g, 4.39 cm, 26.72 cm and 467 grains, respectively. According to the regression models, moisture tensions from −11.8 to −24.0 kPa, and phosphate fertilization doses from 87.7 to 102.2 kg ha−1 minimize NUK and maximize the values of the rest of the variables. The highest irrigation water use efficiency was found in the moisture tension treatment of −30 kPa with an increase of 27 kg ha−1 ears for each millimeter of applied irrigation water.  相似文献   

18.
The effect of moisture tension and doses of phosphate fertilization on yield components of sweet corn A-7573 (Zea mays L.) hybrid, in a Calcium Vertisol were evaluated. Four levels of soil moisture tension, ranging from −5 to −80 kPa, and three levels of phosphate fertilization: 60, 80, and 100 kg ha−1 were studied. In order to evaluate the effect of the experimental treatments, plant growth, development, and yield were monitored. Treatments were distributed using the randomized complete block design (RCB) for divided plots of experimental units. ANOVA analysis indicated that the effects on more humid treatments (−5 and −30 kPa) were statistically equivalent, however were different from the effect of −55 kPa treatment, which in turn was statistically different from the effect of the driest treatment (p ≤ 0.01). On the other hand, 80 and 100 kg ha−1 phosphate doses were statistically equal among them, but different from the lowest dose in almost all cases (p ≤ 0.01), which suggests that 80 kg ha−1 P2O5 application is sufficient to satisfy the nutritional requirements of the A-7573 hybrid. Both stress caused by the lack of water and the one due to deficiency of phosphorus affect all variables under study, however none of them showed interaction between irrigation and fertilization treatments. Irrigation of sweet corn crop is advisable when soil moisture tension grows to −30 kPa at 0-30 cm depth and to apply a phosphate fertilization dose of 80 kg ha−1 is also recommended; using this management, sweet corn expected average length and fresh weight are 30.8 cm and 298 g, respectively, and their average yield is around 16.5 t ha−1. In accordance with regression equations obtained, the maximum values in the evaluated response variables are obtained for a rank from −14.4 to −22.2 kPa in soil moisture tension. The greater efficiency in the use of irrigation water for sweet corn was of 36 kg ha−1 for every millimetre laminate of watering applied, found in the −30 kPa treatment of soil moisture tension.  相似文献   

19.
Excessive amounts of irrigation water and fertilizers are often utilized for early potato cultivation in the Mediterranean basin. Given that water is expensive and limited in the semi-arid areas and that fertilizers above a threshold level often prove inefficacious for production purposes but still risk nitrate and phosphorous pollution of groundwater, it is crucial to provide an adequate irrigation and fertilization management. With the aim of achieving an appropriate combination of irrigation water and nutrient application in cultivation management of a potato crop in a Mediterranean environment, a 2-year experiment was conducted in Sicily (South Italy). The combined effects of 3 levels of irrigation (irrigation only at plant emergence, 50% and 100% of the maximum evapotranspiration - ETM) and 3 levels of mineral fertilization (low: 50, 25 and 75 kg ha−1, medium: 100, 50 and 150 kg ha−1 and high: 300, 100 and 450 kg ha−1 of N, P2O5 and K2O) were studied on the tuber yield and yield components, on both water irrigation and fertilizer productivity and on the plant source/sink (canopy/tubers dry weight) ratio. The results show a marked interaction between level of irrigation and level of fertilization on tuber yield, on Irrigation Water Productivity and on fertilizer productivity of the potato crop. We found that the treatments based on 50% ETM and a medium level of fertilization represent a valid compromise in early potato cultivation management. Compared to the high combination levels of irrigation and fertilization, this treatment entails a negligible reduction in tuber yield to save 90 mm ha−1 year−1 of irrigation water and 200, 50 and 300 kg ha−1 year−1 of N, P2O5 and K2O, respectively, with notable economic savings for farmers compared to the spendings that are usually made.  相似文献   

20.
Cotton (Gossypium hirsutum L.) is the most important industrial and summer cash crop in Syria and many other countries in the arid areas but there are concerns about future production levels, given the high water requirements and the decline in water availability. Most farmers in Syria aim to maximize yield per unit of land regardless of the quantity of water applied. Water losses can be reduced and water productivity (yield per unit of water consumed) improved by applying deficit irrigation, but this requires a better understanding of crop response to various levels of water stress. This paper presents results from a 3-year study (2004-2006) conducted in northern Syria to quantify cotton yield response to different levels of water and fertilizer. The experiment included four irrigation levels and three levels of nitrogen (N) fertilizer under drip irrigation. The overall mean cotton (lint plus seed, or lintseed) yield was 2502 kg ha−1, ranging from 1520 kg ha−1 under 40% irrigation to 3460 kg ha−1 under 100% irrigation. Mean water productivity (WPET) was 0.36 kg lintseed per m3 of crop actual evapotranspiration (ETc), ranging from 0.32 kg m−3 under 40% irrigation to 0.39 kg m−3 under the 100% treatment. Results suggest that deficit irrigation does not improve biological water productivity of drip-irrigated cotton. Water and fertilizer levels (especially the former) have significant effects on yield, crop growth and WPET. Water, but not N level, has a highly significant effect on crop ETc. The study provides production functions relating cotton yield to ETc as well as soil water content at planting. These functions are useful for irrigation optimization and for forecasting the impact of water rationing and drought on regional water budgets and agricultural economies. The WPET values obtained in this study compare well with those reported from the southwestern USA, Argentina and other developed cotton producing regions. Most importantly, these WPET values are double the current values in Syria, suggesting that improved irrigation water and system management can improve WPET, and thus enhance conservation and sustainability in this water-scarce region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号