首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Crop consumptive water use and productivity are key elements to understand basin water management performance. This article presents a simplified approach to map rice (Oryza sativa L.) water consumption, yield, and water productivity (WP) in the Indo-Gangetic Basin (IGB) by combining remotely sensed imagery, national census and meteorological data. The statistical rice cropped area and production data were synthesized to calculate district-level land productivity, which is then further extrapolated to pixel-level values using MODIS NDVI product based on a crop dominance map. The water consumption by actual evapotranspiration is estimated with Simplified Surface Energy Balance (SSEB) model taking meteorological data and MODIS land surface temperature products as inputs. WP maps are then generated by dividing the rice productivity map with the seasonal actual evapotranspiration (ET) map. The average rice yields for Pakistan, India, Nepal and Bangladesh in the basin are 2.60, 2.53, 3.54 and 2.75 tons/ha, respectively. The average rice ET is 416 mm, accounting for only 68.2% of potential ET. The average WP of rice is 0.74 kg/m3. The WP generally varies with the trends of yield variation. A comparative analysis of ET, yield, rainfall and WP maps indicates greater scope for improvement of the downstream areas of the Ganges basin. The method proposed is simple, with satisfactory accuracy, and can be easily applied elsewhere.  相似文献   

2.
Actual measurements of water uptake and use, and the effect of water quality considerations on evapotranspiration (ET), are indispensable for understanding root zone processes and for the development of predictive plant growth models. The driving hypothesis of this research was that root zone stress response mechanisms in perennial fruit tree crops is dynamic and dependent on tree maturity and reproductive capability. This was tested by investigating long-term ET, biomass production and fruit yield in date palms (Phoenix dactylifera L., cv. Medjool) under conditions of salinity. Elevated salinity levels in the soil solution were maintained for 6 years in large weighing-drainage lysimeters by irrigation with water having electrical conductivity (EC) of 1.8, 4, 8 and 12 dS m−1. Salinity acted dynamically with a long-term consequence of increasing relative negative response to water consumption and plant growth that may be explained either as an accumulated effect or increasing sensitivity. Sensitivity to salinity stabilized at the highest measured levels after the trees matured and began producing fruit. Date palms were found to be much less tolerant to salinity than expected based on previous literature. Trees irrigated with low salinity (EC = 1.8 dS m−1) water were almost twice the size (based on ET and growth rates) than trees irrigated with EC = 4 dS m−1 water after 5 years. Fruit production of the larger trees was 35-50% greater than for the smaller, salt affected, trees. Long term irrigation with very high EC of irrigation water (8 and 12 dS m−1) was found to be commercially impractical as growth and yield were severely reduced. The results raise questions regarding the nature of mechanisms for salinity tolerance in date palms, indicate incentives to irrigate dates with higher rather than lower quality water, and present a particular challenge for modelers to correctly choose salinity response functions for dates as well as other perennial crops.  相似文献   

3.
Northeast of Brazil is a semi-arid region, where water is a key strategic resource in the development of all sectors of the economy. Irrigation agriculture is the main water consumer in this region. Therefore, policy directives are calling for tools to aid operational monitoring in planning, control and charging of irrigation water. Using Landsat imagery, this study evaluates the utility of a process that measures the level of water use in an irrigated area of the state of Ceará. The experiment, which models evapotranspiration (ET), was carried out within the Jaguaribe-Apodi irrigation scheme (DIJA) during two months of the agricultural season. The ET was estimated with the model Mapping Evapotranspiration at High Resolution and with Internalized Calibration (METRIC). The model uses the residual of the energy balance equation to estimate ET for each pixel in the image. The results of the estimates were validated using measurements of ET from a micrometeorological tower installed within a banana plantation located near the irrigation scheme. After evaluating the ET estimates, the average fraction of depleted water for a set of agricultural parcels combined with the monthly ET mapping estimates by METRIC provided a method for predicting the total water use in DIJA for the study period. The results were then compared against the monthly accumulated flow rates for all the pumping stations provided by the district manager. Finally, this work discusses the potential use of the model as an alternative method to calculate water consumption in irrigated agriculture and the implications for water resource management in irrigated perimeters.  相似文献   

4.
Accurate estimation of actual evapotranspiration (ETa) is essential for effective local or regional water management. At a local scale, ET estimates can be made accurately considering a soil-plant-atmospheric system, if adequate meteorological-ground data or ET measurements are available. However, at a regional scale, ETa values cannot be measured directly and the estimates are frequently subject to errors. Although it is possible to extrapolate to the regional scale from local (point) data of meteorological stations, the relative sparse coverage of ground estimate can make this problematic without some spatial analysis to demonstrate the similarity of the climate in the area. The introduction of remote sensing data and techniques offers alternatives both to estimate variables (i.e. radiation) and parameters (i.e. ET) with few spatial restrictions, thus, it provides potential advantages to the regional ETa computation. In particular, the use of remote sensing procedures like the surface energy balance-based algorithms (SEB) have been successfully applied in different climates, enabling the estimation of ETa at local and regional scales. A proper variation of the Surface Energy Balance Algorithm for Land (SEBAL) was applied to 4 years of data for the Flumen District in the Ebro Basin at the N.E. of Spain. Results obtained show that the remote sensing algorithm can provide accurate daily ETa estimations as compared with lysimeter measurements of daily ET values for two crop plots: one with a reference grass and other with maize or wheat as function of the season. Also a comparison between ETa and the reference and crop ET values applying the Penman-Monteith method was carried out. The comparison analysis consider an accepted error difference of 1.0 mm d−1 (20% of error) for local scale, the ETa values for the grass show a bias of 0.30 mm d−1 against the ETgrass and a bias of 0.36 mm d−1 against ETo. Differences between ETmaize or ETwheat and ETa against their average showed an acceptable agreement for the field with sdiff ± 0.6 mm d−1. For the crop fields at regional scale external causes associated to atmospheric and surface variations (i.e. land preparation) rather to the remote sensing algorithm made difficult to determine a percentage of error. Finally, ETa values were obtained at regional scale and it was demonstrated that using the remote sensing improve significantly the crop ET estimations computed in the area using traditional methods.  相似文献   

5.
Corn crop response under managing different irrigation and salinity levels   总被引:1,自引:0,他引:1  
Non-uniformity of water distribution under irrigation system creates both deficit and surplus irrigation areas. Water salinity can be hazard on crop production; however, there is little information on the interaction of irrigation and salinity conditions on corn (Zea Mays) growth and production. This study evaluated the effect of salinity and irrigation levels on growth and yield of corn grown in the arid area of Egypt. A field experiment was conducted using corn grown in northern Egypt at Quesina, Menofia in 2009 summer season to evaluate amount of water applied, salinity hazard and their interactions. Three salinity levels and five irrigation treatments were arranged in a randomized split-plot design with salinity treatments as main plots and irrigation rates within salinity treatments. Salinity treatments were to apply fresh water (0.89 dS m−1), saline water (4.73 dS m−1), or mixing fresh plus saline water (2.81 dS m−1). Irrigation treatments were a ratio of crop evapotranspiration (ET) as: 0.6ET, 0.8ET, 1.0ET, 1.2ET, and 1.4ET. In well-watered conditions (1.0ET), seasonal water usable by corn was 453, 423, and 380 mm for 0.89EC, 2.81EC and 4.73EC over the 122-day growing season, respectively. Soil salt accumulation was significantly increased by either irrigation salinity increase or amount decrease. But, soil infiltration was significantly decreased by either salinity level or its interaction with irrigation amount. Leaf temperature, transpiration rate, and stomata resistance were significantly affected by both irrigation and salinity levels with interaction. Leaf area index, harvest index, and yield were the greatest when fresh and adequate irrigation was applied. Grain yield was significantly affected in a linear relationship (r2 ≥ 0.95) by either irrigation or salinity conditions with no interaction. An optimal irrigation scheduling was statistically developed based on crop response for a given salinity level to extrapolate data from the small experiment (uniform condition) to big field (non-uniformity condition) under the experiment constraints.  相似文献   

6.
Free-drainage or “open” substrate system used for vegetable production in greenhouses is associated with appreciable NO3 leaching losses and drainage volumes. Simulation models of crop N uptake, N leaching, water use and drainage of crops in these systems will be useful for crop and water resource management, and environmental assessment. This work (i) modified the TOMGRO model to simulate N uptake for tomato grown in greenhouses in SE Spain, (ii) modified the PrHo model to simulate transpiration of tomato grown in substrate and (iii) developed an aggregated model combining TOMGRO and PrHo to calculate N uptake concentrations and drainage NO3 concentration. The component models simulate NO3-N leached by subtracting simulated N uptake from measured applied N, and drainage by subtracting simulated transpiration from measured irrigation. Three tomato crops grown sequentially in free-draining rock wool in a plastic greenhouse were used for calibration and validation. Measured daily transpiration was determined by the water balance method from daily measurements of irrigation and drainage. Measured N uptake was determined by N balance, using data of volumes and of concentrations of NO3 and NH4+ in applied nutrient solution and drainage. Accuracy of the two modified component models and aggregated model was assessed by comparing simulated to measured values using linear regression analysis, comparison of slope and intercept values of regression equations, and root mean squared error (RMSE) values. For the three crops, the modified TOMGRO provided accurate simulations of cumulative crop N uptake, (RMSE = 6.4, 1.9 and 2.6% of total N uptake) and NO3-N leached (RMSE = 11.0, 10.3, and 6.1% of total NO3-N leached). The modified PrHo provided accurate simulation of cumulative transpiration (RMSE = 4.3, 1.7 and 2.4% of total transpiration) and cumulative drainage (RMSE = 13.8, 6.9, 7.4% of total drainage). For the four cumulative parameters, slopes and intercepts of the linear regressions were mostly not statistically significant (P < 0.05) from one and zero, respectively, and coefficient of determination (r2) values were 0.96-0.98. Simulated values of total drainage volumes for the three crops were +21, +1 and −13% of measured total drainage volumes. The aggregated TOMGRO-PrHo model generally provided accurate simulation of crop N uptake concentration after 30-40 days of transplanting, with an average RMSE of approximately 2 mmol L−1. Simulated values of average NO3 concentration in drainage, obtained with the aggregated model, were −7, +18 and +31% of measured values.  相似文献   

7.
Trunk sap flow of tree is an important index in the irrigation decision of orchard. On the basis of the measured sap flow (SF) of pear tree (Pyrus pyrifolia) in the field, the multiple-linear regression for simulating the SF was obtained after analyzing the relationships between the SF and its affecting factors in this study and an artificial neural network (ANN) technique was applied to construct a nonlinear mapping to simulate the SF, then the simulated SF by two models was, respectively, compared to the measured value. Results showed that trunk SF had significant relationship with the vapour pressure deficit (VPD) in the single-variable analysis method but with soil volumetric water content (θ) using the ANN models with default of different variables. The correlation coefficient (R2), mean relative error (MRE) and root mean square error (RMSE) between the measured and simulated sap flows by the ANN model developed by taking VPD, solar radiation (Sr), air temperature (T), wind speed (Ws), θ, leaf area index (LAI) as the input variables were 0.953, 10.0% and 5.33 L d−1, respectively, and the simulation precision of ANN model was superior to that of multiple-linear regression due to its better performance for the nonlinear relationship between trunk SF and its affecting factors, thus ANN model can simulate trunk sap flow and then may help the efficient water management of orchard.  相似文献   

8.
Wheat (Triticum durum L.) yields in the semi-arid regions are limited by inadequate water supply late in the cropping season. Planning suitable irrigation strategy and nitrogen fertilization with the appropriate crop phenology will produce optimum grain yields. A 3-year experiment was conducted on deep, fairly drained clay soil, at Tal Amara Research Station in the central Bekaa Valley of Lebanon to investigate the response of durum wheat to supplemental irrigation (IRR) and nitrogen rate (NR). Three water supply levels (rainfed and two treatments irrigated at half and full soil water deficit) were coupled with three N fertilization rates (100, 150 and 200 kg N ha−1) and two cultivars (Waha and Haurani) under the same cropping practices (sowing date, seeding rate, row space and seeding depth). Averaged across N treatments and years, rainfed treatment yielded 3.49 Mg ha−1 and it was 25% and 28% less than half and full irrigation treatments, respectively, for Waha, while for Haurani the rainfed treatment yielded 3.21 Mg ha−1, and it was 18% and 22% less than half and full irrigation, respectively. On the other hand, N fertilization of 150 and 200 kg N ha−1 increased grain yield in Waha by 12% and 16%, respectively, in comparison with N fertilization of 100 kg N ha−1, while for cultivar Haurani the increases were 24% and 38%, respectively. Regardless of cultivar, results showed that supplemental irrigation significantly increased grain number per square meter and grain weight with respect to the rainfed treatment, while nitrogen fertilization was observed to have significant effects only on grain number per square meter. Moreover, results showed that grain yield for cultivar Haurani was less affected by supplemental irrigation and more affected by nitrogen fertilization than cultivar Waha in all years. However, cultivar effects were of lower magnitude compared with those of irrigation and nitrogen. We conclude that optimum yield was produced for both cultivars at 50% of soil water deficit as supplemental irrigation and N rate of 150 kg N ha−1. However, Harvest index (HI) and water use efficiency (WUE) in both cultivars were not significantly affected neither by supplemental irrigation nor by nitrogen rate. Evapotranspiration (ET) of rainfed wheat ranged from 300 to 400 mm, while irrigated wheat had seasonal ET ranging from 450 to 650 mm. On the other hand, irrigation treatments significantly affected ET after normalizing for vapor pressure deficit (ET/VPD) during the growing season. Supplemental irrigation at 50% and 100% of soil water deficit had approximately 26 and 52 mm mbar−1 more ET/VPD, respectively, than those grown under rainfed conditions.  相似文献   

9.
Precision irrigation management and scheduling, as well as developing site- and cultivar-specific crop coefficient (Kc), and yield response factor to water deficit (ky) are very important parameters for efficient use of limited water resources. This study investigated the effect of deficit irrigation, applied at different growth stages of peanut with sprinkler irrigation in sandy soil, on field peanut evapotranspiration (ETc), yield and yield components, and water use efficiencies (IWUE and WUE). Also, yield response factor to water deficit (ky), and site- and cultivar-specific Kc were developed. Four treatments were imposed to deficit irrigation during late vegetative and early flowering, late flowering and early pegging, pegging, and pod formation growth stages of peanut, and compared with full irrigation in the course of the season (control). A soil water balance equation was used to estimate crop evapotranspiration (ETc). The results revealed that maximum seasonal ETc was 488 mm recorded with full irrigation treatment. The maximum value of Kc (0.96) occurred at the fifth week after sowing, this value was less than the generic values listed in FAO-33 and -56 (1.03 and 1.15), respectively. Dry kernels yield among treatments differed by 41.4%. Deficit irrigation significantly affected yields, where kernels yield decreased by 28, 39, 36, and 41% in deficit-irrigated late vegetative and early flowering, late flowering and early pegging, pegging, and pod formation growth stages, respectively, compared with full irrigation treatment. Peanut yields increased linearly with seasonal ETc (R2 = 0.94) and ETc/ETp (R2 = 0.92) (ETp = ETc with no water stress). The yield response factor (ky), which indicates the relative reduction in yield to relative reduction in ETc, averaged 2.9, was higher than the 0.7 value reported by Doorenbos and Kassam [Doorenbos, J., Kassam, A.H., 1979. Yield response to water. FAO Irrigation and Drainage Paper 33, Rome, Italy, 193 pp.], the high ky value reflects the great sensitivity of peanut (cv. Giza 5) to water deficit. WUE values varied considerably with deficit irrigation treatments, averaging 6.1 and 4.5 kg ha−1 mm−1 (dry-mass basis) for pods and kernels, respectively. Differences in WUE between the driest and wettest treatment were 31.3 and 31.3% for pods and kernels, respectively. Deficit irrigation treatments, however, impacted IWUE much more than WUE. Differences in IWUE between the driest and wettest treatment were 33.9 and 33.9% for pods and kernels, respectively. The results revealed that better management of available soil water in the root zone in the course of the season, as well as daily and seasonal accurate estimation of ETc can be an effective way for best irrigation scheduling and water allocation, maximizing yield, and optimizing economic return.  相似文献   

10.
Evaporation and canopy conductance of citrus orchards   总被引:2,自引:0,他引:2  
Evaporation of citrus orchards has been widely studied, but differences in methodologies and management conditions have led to conflicting results, mainly due to differences in ground cover and soil evaporation. In this work the contribution of transpiration and soil evaporation has been studied in a drip-irrigated, clean cultivated mandarin (Citrus reticulata Blanco) orchard on a sandy soil in Southern Spain. Evapotranspiration (ET) was measured using eddy covariance while soil evaporation was determined with microlysimeters, during August 2000 and May 2001. Average ET was 2.6 mm day−1 in August and 2.1 mm day−1 in May. The crop coefficient (Kc) was 0.44 and 0.43 in 2000 and 2001, respectively. The coefficient of transpiration (Kp) was 0.30 in 2000 and 0.25 in 2001. The daily bulk canopy conductance (gc) ranged from 1.2 to 2.2 (average 1.8) mm s−1 in 2000 and from 1.2 to 2.7 (average 1.9) mm s−1 in 2001. A model of daily canopy conductance as a function of intercepted radiation was derived and applied to calculate the transpiration of orchards with different values of ground cover (GC). The ratio of transpiration over reference ET of mandarin orchards is linearly related to ground cover (Kp = 0.7 GC). Calculated crop coefficients agree with values suggested by FAO for mature orchards (around 0.65) but are substantially lower than FAO values for young plantations.  相似文献   

11.
Improving irrigation water management is becoming important to produce a profitable crop in South Texas as the water supplies shrink. This study was conducted to investigate grain yield responses of corn (Zea mays) under irrigation management based on crop evapotranspiration (ETC) as well as a possibility to monitor plant water deficiencies using some of physiological and environmental factors. Three commercial corn cultivars were grown in a center-pivot-irrigated field with low energy precision application (LEPA) at Texas AgriLife Research Center in Uvalde, TX from 2002 to 2004. The field was treated with conventional and reduced tillage practices and irrigation regimes of 100%, 75%, and 50% ETC. Grain yield was increased as irrigation increased. There were significant differences between 100% and 50% ETC in volumetric water content (θ), leaf relative water content (RWC), and canopy temperature (TC). It is considered that irrigation management of corn at 75% ETC is feasible with 10% reduction of grain yield and with increased water use efficiency (WUE). The greatest WUE (1.6 g m−2 mm−1) achieved at 456 mm of water input while grain yield plateaued at less than 600 mm. The result demonstrates that ETC-based irrigation can be one of the efficient water delivery schemes. The results also demonstrate that grain yield reduction of corn is qualitatively describable using the variables of RWC and TC. Therefore, it appears that water status can be monitored with measurement of the variables, promising future development of real-time irrigation scheduling.  相似文献   

12.
Evapotranspiration (ET) is an important component of the water cycle at field, regional and global scales. This study used measured data from a 30-year irrigation experiment (1979-2009) in the North China Plain (NCP) on winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) to analyze the impacts of climatic factors and crop yield on ET. The results showed that grass reference evapotranspiration (ETo, calculated by FAO Penmen-Monteith method) was relatively constant from 1979 to 2009. However, the actual seasonal ET of winter wheat and maize under well-watered condition gradually increased from the 1980s to the 2000s. The mean seasonal ET was 401.4 mm, 417.3 mm and 458.6 mm for winter wheat, and 375.7 mm, 381.1 mm and 396.2 mm for maize in 1980s, 1990s and 2000s, respectively. The crop coefficient (Kc) was not constant and changed with the yield of the crops. The seasonal average Kc of winter wheat was 0.75 in the 1980s, 0.81 in the 1990s and 0.85 in the 2000s, and the corresponding average grain yield (GY) was 4790 kg ha−1, 5501 kg ha−1 and 6685 kg ha−1. The average Kc of maize was 0.88 in the 1980s, 0.88 in the 1990s and 0.94 in the 2000s, with a GY of 5054 kg ha−1, 7041 kg ha−1 and 7874 kg ha−1, respectively, for the three decades. The increase in ET was not in proportion to the increase in GY, resulting improved water use efficiency (WUE). The increase in ET was possibly related to the increase in leaf stomatal conductance with renewing in cultivars. The less increase in water use with more increase in grain production could be partly attributed to the significant increase in harvest index. The results showed that with new cultivars and improved management practices it was possible to further increase grain production without much increase in water use.  相似文献   

13.
Complete knowledge of all components of the water balance is essential to optimize water use in irrigated agriculture. However, most water balance components are very difficult to measure in terms of the required time interval and due to the complexity of the processes. An unsaturated zone model is a useful tool for predicting the effects of agricultural management on crop water use and can be used to optimize agricultural practices in view of minimizing the agricultural water use. For the irrigated areas in Minqin County of northwest China, the physically based one-dimensional agro-hydrological model SWAP (Soil, Water, Atmosphere and Plant) for water movement and crop growth was applied to reveal all the components of the water balance at multiple sites. This model has a varying level of abstraction referring to simulated processes in time and space. A combination of field, meteorological and aerial data was used as input to the model. Inverse modeling of evapotranspiration (ET) fluxes was followed to calibrate the soil hydraulic functions by using the parameter estimation package PEST. Surface Energy Balance System (SEBS) was used to estimate actual ET fluxes from NOAA AVHRR satellite images. Simulations were carried out for 15 different sites in Minqin County by using wheat (Triticum aestivum L.) as a test crop, but only three sites were selected for model calibration and evaluation. The period of simulation for the whole wheat growing season was from 1 April 2004 to 30 July 2004 and detailed analyses were performed for all sites. SWAP simulated soil water dynamics well and the distributed SWAP model is a useful tool to analyze all water balance components.  相似文献   

14.
Development of crop coefficient (Kc), the ratio of crop evapotranspiration (ETc) to reference evapotranspiration (ETo), can enhance ETc estimates in relation to specific crop phenological development. This research was conducted to determine growth-stage-specific Kc and crop water use for cotton (Gossypium hirsutum) and wheat (Triticum aestivum) at the Texas AgriLife Research field at Uvalde, TX, USA from 2005 to 2008. Weighing lysimeters were used to measure crop water use and local weather data were used to determine the reference evapotranspiration (ETo). Seven lysimeters, weighing about 14 Mg, consisted of undisturbed 1.5 m × 2.0 m × 2.2 m deep soil monoliths. Six lysimeters were located in the center of a 1-ha field beneath a linear-move sprinkler system equipped with low energy precision application (LEPA) and a seventh lysimeter was established to measure reference grass ETo. Crop water requirements, Kc determination, and comparison to existing FAO Kc values were determined over a 2-year period on cotton and a 3-year period on wheat. Seasonal total amounts of crop water use ranged from 689 to 830 mm for cotton and from 483 to 505 mm for wheat. The Kc values determined over the growing seasons varied from 0.2 to 1.5 for cotton and 0.1 to 1.7 for wheat. Some of the values corresponded and some did not correspond to those from FAO-56 and from the Texas High Plains and elsewhere in other states. We assume that the development of regionally based and growth-stage-specific Kc helps in irrigation management and provides precise water applications for this region.  相似文献   

15.
This study deals with the effects of intermittent irrigation on actual evapotranspiration (ET) and leaf area index (LAI) of “Superior” grapevines grown in a semiarid environment in northeastern Brazil. The field experiments were carried out during two consecutive fruiting cycles (dry season and rainy season) of grapevines (Vitis vinifera, L) irrigated by drip at a rate of 2.3 L h−1. Four irrigation time intervals were used as follow: one turn irrigation-time (I-1), two turn irrigation-time (I-2), three turn irrigation-time (I-3), and four turn irrigation-time (I-4). The growing cycles received different amounts of water by irrigation, which for dry and rainy seasons were 470.5 and 243.5 mm, respectively. The ET increased from 5.7 to 7.5 mm day−1 when the irrigation time interval changed from I-1 to I-4 and resulted in a higher value of LAI. The values of ET during the rainy-season growing cycle were much lower throughout the phenological stages, reaching a maximum of 6.4 mm day−1 for I-4 in the maturation stage. For both growing cycles, an increase in the cumulated vineyard evapotranspiration was observed when changing the irrigation time interval from I-1 to I-4, except I-2, which was slightly greater than I-3. Soil water drainage had a very gradual exponential decrease from I-1 to I-4 in both fruiting cycles. The grapevine coefficient under intermittent irrigation can be described as function of days after pruning by polynomial models.  相似文献   

16.
针对中国范围的Hargreaves(HS)公式线性回归修正研究缺少,区域或站点的修正系数存在时空尺度不统一、推广应用困难的问题,以中国气象数据网发布的中国地面气候资料月值数据集和中国辐射月值数据集中124个站点1957-2016年的气象要素逐月有效观测数据,首先,基于Penman-Monteith(PM)公式和HS公式分别计算各站点逐月的多年平均参考作物需水量ET0-PM和ET0-HS;其次,以ET0-PM为真值,基于1957-2010年的逐月平均ET0-PM和ET0-HS,引入中国农业综合区划作为空间分区框架,通过回归分析获取中国38个陆地农业子区的HS公式校正系数a和b;最后,以2011-2016年为应用验证区间,通过逐月比较ET0-HS校正前后的6 a平均相对误差,验证联合国粮农组织(FAO)推荐的HS公式校正方法在中国农业区的适用性,并进一步基于误差结果的对比分析,提出各农业区HS公式校正系数a和b的逐月最优取值方案.结果表明:各农业区之间回归计算的HS公式校正系数a和b并无明显的变化规律,但系数b稳定在0.8左右,系数a则在区域之间的差异较大,徘徊于-0.22~1.10;校正前后的ET0-HS均存在不同程度的误差,但校正后的ET0-HS误差明显降低,平均相对误差降低了20%,最大相对误差降低约100%.因此经验证,FAO推荐的HS公式回归校正方法简单易行,可操作性强,对中国各农业区大规模使用简化的方式快速获得较准确的参考作物需水量,具有一定的推广价值.  相似文献   

17.
The purpose of this study was to test the hypotheses that (1) the tree Acacia senegal competes for water with associated agricultural crops, and the soil water content would vary spatially with tree density and type of management; (2) the microclimate created by trees would favourably affect the soil water content and improve the growth of associated agricultural crops. Trees were grown at 5 m × 5 m or 10 m × 10 m spacing alone or in mixture with sorghum or sesame. Soil water content was measured using a neutron probe at three depths, 0–25, 25–50 and 50–75 cm; and at different stages of crop development (early, mid, and late). Crop growth and yield and the overall system performance were investigated over a 4-year period (1999–2002). Results showed no significant variation in the soil water content under different agroforestry systems. Intercropping also resulted in a higher land equivalent ratio. No significant variation was found between yields of sorghum and sesame when these crops were grown with or without trees. The averages crop yields were1.54 and 1.54 t ha−1 for sorghum; and 0.36 and 0.42 t ha−1for sesame in intercropping and pure cultivation, respectively. This suggests that at an early stage of agroforestry system management, A. senegal has no detrimental effect on agricultural crop yield. However, the pattern of resource capture by trees and crops can change as the system matures. There was little competition between trees and crops for water suggesting that in A. senegal agroforestry systems with 4-year-old trees the clay soil has enough water to support the crop growth over a whole growing season up to maturation and harvest.  相似文献   

18.
Studies on irrigation scheduling for soybean have demonstrated that avoiding irrigation during the vegetative growth stages could result in yields as high as those obtained if the crop was fully irrigated during the entire growing season. This could ultimately also lead to an improvement of the irrigation water use efficiency. The objective of this study was to determine the effect of different irrigation regimes (IRs) on growth and yield of four soybean genotypes and to determine their irrigation water use efficiency. A field experiment consisting of three IR using a lateral move sprinkler system and four soybean genotypes was conducted at the Bledsoe Research Farm of The University of Georgia, USA. The irrigation treatments consisted of full season irrigated (FSI), start irrigation at flowering (SIF), and rainfed (RFD); the soybean genotypes represented maturity groups (MGs) V, VI, VII, and VIII. A completely randomized block design in a split-plot array with four replicates was used with IR as the main treatment and the soybean MGs as the sub-treatment. Weather variables and soil moisture were recorded with an automatic weather station located nearby, while rainfall and irrigation amounts were recorded with rain gauges located in the experimental field. Samplings for growth analysis of the plant and its components as well as leaf area index (LAI) and canopy height were obtained every 12 days. The irrigation water use efficiency (IWUE) or ratio of the difference between irrigated and rainfed yield to the amount of irrigation water applied was estimated. The results showed significant differences (P < 0.05) between IR for dry matter of the plant and its components, canopy height, and maximum leaf area index as well as significant differences (P < 0.05) between MGs due to IR. Differences for the interaction between IR and MG were significant (P < 0.05) only for dry matter of pods and seed yield. In general, seed yield increased at a rate of 7.20 kg for each mm of total water received (rainfall + irrigation) by the crop. Within IR, significant differences (P < 0.05) on IWUE were found between maturity groups with values as low as 0.55 kg m−3 for MG V and as high as 1.14 kg m−3 for MG VI for the FSI treatment and values as low as 0.48 kg m−3 for maturity group V and as high as 1.02 kg m−3 for maturity group VI for the SIF treatment. We also found that there were genotypic differences with respect to their efficiency to use water, stressing the importance of cultivar selection as a key strategy for achieving optimum yields with reduced use of water in supplemental irrigation.  相似文献   

19.
A ratio of crop evapotranspiration (ETC) to reference evapotranspiration (ETO) determines a crop coefficient (KC) value, which is related to specific crop phenological development to improve transferability of the KC values. Development of KC can assist in predicting crop irrigation needs using meteorological data from weather stations. The objective of the research was conducted to determine growth-stage-specific KC and crop water use for maize (Zea Mays) and sorghum (Sorghum bicolor) at Texas AgriLife Research field in Uvalde, TX, USA from 2002 to 2008. Seven lysimeters, weighing about 14 Mg, consisted of undisturbed 1.5 m × 2.0 m × 2.2 m deep soil monoliths. Six lysimeters were located in the center of a 1-ha field beneath a linear-move sprinkler system equipped with low energy precision application (LEPA). A seventh lysimeter was established to measure reference grass ETO. Crop water requirements, KC determination, and comparison to existing FAO KC values were determined over a 3-year period for both maize and sorghum. Accumulated seasonal crop water use ranged between 441 and 641 mm for maize and between 491 and 533 mm for sorghum. The KC values determined during the growing seasons varied from 0.2 to 1.2 for maize and 0.2 to 1.0 for sorghum. Some of the values corresponded and some did not correspond to those from FAO-56 and from the Texas High Plains and elsewhere in other states. We assume that the development of regionally based and growth-stage-specific KC helps in irrigation management and provides precise water applications for this region.  相似文献   

20.
The aim of this research was to assess the irrigation performance of the Salihli Right Bank, Salihli Left Bank, Ahmetli, Gokkaya, Turgutlu, Mesir, Sarikiz, Gediz, Menemen Right Bank and Menemen Left Bank Water User Associations (WUAs) in the Lower Gediz Basin in western Turkey, using remote sensing techniques. To reach this aim the performance of the irrigation system for the 2004 irrigation season was determined according to five indicators, namely overall consumed ratio (ep), relative water supply (RWS), depleted fraction (DF), crop water deficit (CWD) and relative evapotranspiration (RET). Potential and actual evapotranspiration parameters used in determining these indicators were estimated according to the Surface Energy Balance Algorithm for Land (SEBAL) method using NOAA-16 satellite images.Seasonal averages of these indicators ranged from 0.59 to 2.26 for ep, 0.47-1.66 for RWS, 0.43-1.31 for DF, 180.5-269.5 mm month−1 for CWD, and 0.61-0.74 for RET. According to the seasonal average values of all the performance indicators, the irrigation performance of all WUAs was usually poor. The performance indicators showed that less irrigation water was supplied to WUAs than was needed. It was concluded that proximity to the source could be an advantage in obtaining water, and that when water was insufficient, groundwater in the crop root area could be used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号