首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objective of this study was to compare soil water measurements made using capacitance and neutron probes by means of a water balance experiment in a drainage lysimeter. The experiment was conducted in a 5-year-old drip-irrigated peach orchard (Prunus persica L. Batsch, cv. Flordastar, on GF-677 peach rootstock) planted in a clay loam textured soil located in southern Spain. Four drainage lysimeters (5 m × 5 m × 1.5 m), each containing one tree, were constructed and equipped with one lateral line containing eight drippers per tree, with a discharge rate of 2 L h−1. Three access tubes for the neutron probe (NP), symmetrically facing three PVC access tubes containing the multi-depth capacitance probes (MDCP) were located perpendicularly to the drip line (0.2, 0.6 and 1 m). The results demonstrated that both the capacitance and neutron probes gave similar soil water content values under steady state hydraulic gradient conditions (0.2 m from the emitter) although some discrepancies were found in heterogeneous soil water distribution conditions (1 m from the emitter), which might be attributed to the smaller soil volume explored by the MDCP compared with the NP. Explanations for the discrepancies between both devised are presented. When water inputs and outputs were fairly constant, the volumetric soil water content could be considered to represent field saturation (θsat = 0.36 m3 m−3). When drainage was zero, there were 2 days when the soil water content was constant and could be considered as field capacity (θfc = 0.31 m3 m−3). The findings suggest that: (i) capacitance probes can be used for continuous real-time soil water content monitoring unlike the manual measurements obtained with the neutron probe; (ii) the location of the sensors is critical when used for drip irrigation scheduling and our recommendations for practical agricultural purposes would be to place MDCP sensors in the place representing the highest root density, leading the sensors to become biological sensors rather than mere soil moisture sensors; and (iii) on average, the water balance values determined by lysimeter match those calculated using the data from both probes. However, due to the smaller soil volume explored by MDCP, more of these sensors must be used to characterize the soil water status in water balance studies.  相似文献   

2.
Available water holding capacity (AWC) and field capacity (FC) maps have been produced using regression models of high resolution apparent electrical conductivity (ECa) data against AWC (adj. R2 = 0.76) and FC (adj. R2 = 0.77). A daily time step has been added to field capacity maps to spatially predict soil water status on any day using data obtained from a wireless soil moisture sensing network which transmitted hourly logged data from embedded time domain transmission (TDT) sensors in ECa-defined management zones. In addition, regular time domain reflectometry (TDR) monitoring of 50 positions in the study area was used to assess spatial variability within each zone and overall temporal stability of soil moisture patterns. Spatial variability of soil moisture within each zone at any one time was significant (coefficient of variation [% CV] of volumetric soil moisture content (θ) = 3-16%), while temporal stability of this pattern was moderate to strong (bivariate correlation, R = 0.52-0.95), suggesting an intrinsic soil and topographic control. Therefore, predictive ability of this method for spatial characterisation of soil water status, at this site, was limited by the ability of the sensor network to account for the spatial variability of the soil moisture pattern within each zone. Significant variability of soil moisture within each ECa-defined zone is thought to be due to the variable nature of the young alluvial soils at this site, as well as micro-topographic effects on water movement, such as low-lying ponding areas. In summary, this paper develops a method for predicting daily soil water status in ECa-defined zones; digital information available for uploading to a software-controlled automated variable rate irrigation system with the aim of improved water use efficiency. Accuracy of prediction is determined by the extent to which spatial variability is predicted within as well as between ECa-defined zones.  相似文献   

3.
Efficiently controlling soil water content with irrigation is essential for water conservation and often improves potato yield. Volumetric soil water content (θv) in relation to irrigation, plant uptake, and yield in potato hills and replicated plots was studied to evaluate four water management options. Measurements of θv using a hammer driven probe were used to derive a θv index representing the relative θv status of replicated plots positioned along a hill slope. Time series for θv were determined using time domain reflectometry (TDR) probes at 5 and 15 cm depths at the center, shoulder, and furrow locations in potato hills. Sap flow was determined using flow collars in replicated field plots for four treatments: un-irrigated, sprinkler, surface drip, and sub-surface drip irrigation (40 cm depth). Irrigated yields were high/low as the θv index was low/high suggesting θv excess was a production problem in the wetter portions of the study area. The diurnal pattern of sap flow was reflected in the θv fluctuation it induces at hill locations with appreciable uptake. Hill locations with higher plant uptake were drier as was the case for the 5 cm (dry) depth relative to the 15 cm (wet) depth and for locations in the hill (dry) relative to the furrow (wet). The surface drip system had the lowest water use requirement because it delivers water directly to the hill locations where uptake is greatest. The sub-surface drip system wetted the hill gradually (1-2 days). Measurement of the θv index prior to experimental establishment could improve future experimental design for treatment comparisons.  相似文献   

4.
Irrigated agriculture is threatened by soil salinity in numerous arid and semiarid areas of the Mediterranean basin. The objective of this work was to quantify soil salinity through electromagnetic induction (EMI) techniques and relate it to the physical characteristics and irrigation management of four Mediterranean irrigation districts located in Morocco, Spain, Tunisia and Turkey. The volume and salinity of the main water inputs (irrigation and precipitation) and outputs (crop evapotranspiration and drainage) were measured or estimated in each district. Soil salinity (ECe) maps were obtained through electromagnetic induction surveys (ECa readings) and district-specific ECa-ECe calibrations. Gravimetric soil water content (WC) and soil saturation percentage (SP) were also measured in the soil calibration samples. The ECa-ECe calibration equations were highly significant (P < 0.001) in all districts. ECa was not significantly correlated (P > 0.1) with WC, and was only significantly correlated (P < 0.1) with soil texture (estimated by SP) in Spain. Hence, ECa mainly depended upon ECe, so that the maps developed could be used effectively to assess soil salinity and its spatial variability. The surface-weighted average ECe values were low to moderate, and ranked the districts in the order: Tunisia (3.4 dS m−1) > Morocco (2.2 dS m−1) > Spain (1.4 dS m−1) > Turkey (0.45 dS m−1). Soil salinity was mainly affected by irrigation water salinity and irrigation efficiency. Drainage water salinity at the exit of each district was mostly affected by soil salinity and irrigation efficiency, with values very high in Tunisia (9.0 dS m−1), high in Spain (4.6 dS m−1), moderate in Morocco (estimated at 2.6 dS m−1), and low in Turkey (1.4 dS m−1). Salt loads in drainage waters, calculated from their salinity (ECdw) and volume (Q), were highest in Tunisia (very high Q and very high ECdw), intermediate in Turkey (extremely high Q and low ECdw) and lowest in Spain (very low Q and high ECdw) (there were no Q data for Morocco). Reduction of these high drainage volumes through sound irrigation management would be the most efficient way to control the off-site salt-pollution caused by these Mediterranean irrigation districts.  相似文献   

5.
Volumetric water content of a silt loam soil (fluvo-aquic soil) in North China Plain was measured in situ by L-520 neutron probe (made in China) at three depths in the crop rootzone during a lysimeter experiment from 2001 to 2006. The electrical conductivity of the soil water (ECsw) was measured by salinity sensors buried in the soil during the same period at 10, 20, 45 and 70 cm depth below soil surface. These data were used to test two mathematical procedures to predict water content and soil water salinity at depths of interest: all the available data were divided into training and testing datasets, then back propagation neural networks (BPNNs) were optimized by sensitivity analysis to minimizing the performance error, and then were finally used to predict soil water and ECsw. In order to meet with the prerequisite of autoregressive integrated moving average (ARIMA) model, firstly, original soil water content and ECsw time series were likewise transformed to obtain stationary series. Subsequently, the transformed time series were used to conduct analysis in frequency domain to obtain the parameters of the ARIMA models for the purposes of using the ARIMA model to predict soil water content and ECsw. Based on the statistical parameters used to assess model performance, the BPNN model performed better in predicting the average water content than the ARIMA model: coefficient of determination (R2) = 0.8987, sum of squares error (SSE) = 0.000009, and mean absolute error (MAE) = 0.000967 for BPNN as compared to R2 = 0.8867, SSE = 0.000043, MAE = 0.002211 for ARIMA. The BPNN model also performed better than the ARIMA model in predicting average ECsw of soil profile. However, the ARIMA model performed better than the BPNN models in predicting soil water content at the depth of 20 cm and ECsw at the depth of 10 cm below soil surface. Overall, the model developed by BPNN network showed its advantage of less parameter input, nonlinearity, simple model structure and good prediction of soil ECsw and water content, and it gave an alternative method in forecasting soil water and salt dynamics to those based on deterministic models based on Richards’ equation and Darcy's law provided climatic, cropping patterns, salinity of the irrigation water and irrigation management are very similar from one year to the next.  相似文献   

6.
The highly weathered, low-carbon, intensively cropped, drought-prone Coastal Plain soils of Georgia are susceptible to runoff and soil loss, especially at certain times of the year when soil water contents are elevated. We quantified the effects of antecedent water content (AWC) on runoff (R) and sediment (E) losses from two loamy sands managed under conventional- (CT), strip- (ST), and/or no-till (NT) systems. Two AWC treatments were evaluated: field moist (FM) and pre-wet (PW), created with and without post pesticide application irrigations (∼12 mm of water added with the rainfall simulated over 30 min) for incorporation. Treatments (5) evaluated were: CT + FM, CT + PW, ST + FM, ST + PW, and NT + PW. Field plots, each 2-m × -3 m, were established on each treatment. Each 6-m2 field plot received simulated rainfall at a variable rainfall intensity (Iv) pattern for 70 min (site 1) or a constant rainfall intensity (Ic) pattern for 60 min (site 2; Ic = 50.8 mm h−1). Adding ∼12 mm of water as herbicide incorporation increased AWCs of the 0-2 (3-9-fold) and 2-15 (23-117%) cm soil depths of PW plots compared to existing field moist soil conditions. Increase in AWC increased R (as much as 60%) and maximum R rates (as much as 62%), and decreased E (at least 59%) and maximum E rates (as much as 2.1-fold) for corresponding tillage treatments. Compared to CT plots, ST and NT plots decreased R (at least 2.6-fold) and maximum R rates (as much as 3-fold), and decreased E (at least 2.7-fold) and maximum E rates (at least 3.2-fold). Runoff curves for pre-wetted CT and ST plots were always higher than corresponding FM curves, whereas E curves for field moist CT and ST plots were always higher than corresponding PW curves. Changes in AWC and tillage affected detachment and transport processes controlling runoff and sediment yields. A more accurate measure of rainfall partitioning and detachment and transport processes affecting R and E losses was obtained when commonly occurring field conditions (increased AWC with irrigation; Iv pattern derived from natural rainfall; commonly used tillage systems) were created and evaluated.  相似文献   

7.
Large areas of vineyards have been established in recent years in arid region of northwest China, despite limited water resources. Water to support these vineyards is mainly supplied by irrigation. Accurate estimation of vineyard evapotranspiration (ET) can provide a scientific basis for developing irrigation management. Transpiration and soil evaporation, as two main components of ET, were measured separately in a vineyard in this region by heat balance sap flow system and micro-lysimeters during the growing season of 2009. Diurnal and seasonal dynamics of sap flow and its environmental controls were analyzed. Daily sap flow rate (SRl) increased linearly with solar radiation (Rs), but showed an exponential increase to its maximum curve as a function of vapor pressure deficit (VPD). Residuals of the two regressions both depended on volumetric soil water content to a depth of 1.0 m (VWC). VWC also significantly influenced SRl. The relationship of them could be expressed by a piecewise regression with the turnover point of VWC = 0.188 cm3 cm−3, which was ∼60% of the field capacity. Conversely, soil evaporation (Es) increased exponentially with VWC. Thus, we recommended keeping VWC in such vineyards slightly above ∼60% of the field capacity to maintain transpiration while reducing soil evaporation. Vineyard transpiration (Ts) was scaled from sap flow by using leaf area (Al) as it explained 60% of the spatial variability of sap flow. Vine transpiration was 202.0 mm during the period from April 28 to October 5; while that of Es was 181.0 mm. The sum of these two components was very close to ET estimated by the Bowen ratio energy balance method (386.9 mm), demonstrating the applicability of sap flow for measuring grape water use in this region.  相似文献   

8.
Independent historic datasets on irrigated maize, collected over seven years (1984-1990), were used to parameterize the irrigation scheduling model ISAREG. Experimental data were obtained under rainfed, deficit, and full irrigation conditions in an alluvial soil at Tsalapitsa, Plovdiv region, in the Thracian plain, Bulgaria. Crop coefficients and depletion fractions for no-stress were calibrated by minimizing the differences between observed and simulated soil water content. The calibration was performed using data from full irrigation and rainfed treatments while deficit irrigation treatments were used for validation. The modelling efficiency was high, 0.91 for the calibration and 0.89 for the validation. The resulting average absolute errors of the estimate for the soil water content were smaller than 0.01 cm3 cm−3. The model was also tested by comparing computed versus observed seasonal evapotranspiration. Results for dry years show a modelling efficiency of 0.96 but the model slightly underestimated evapotranspiration for other years. The yield response factor was derived from observed yield data of the hybrid variety H708 when relative evapotranspiration deficits were smaller than 0.5. The value Ky = 1.32 was obtained. The relative yield decreases predicted with this Ky value compared well with observed data. Results support the use of the ISAREG model for developing water saving irrigation schedules for the Thracian plain.  相似文献   

9.
Northeast Thailand has a semi-humid tropical climate which is characterized by dry and rainy seasons. In order to stabilize crop production, it may be necessary to develop new water resources, such as soil moisture and groundwater, instead of rainfed resources. This is because rainfed agriculture has already been unsuccessfully tried in many areas of this region. In this study, we investigate the soil water content in rainfed fields in Khon Kaen in Northeast Thailand, where rice and sugarcane were planted, over a 1-year period that contained both dry and rainy seasons, and estimate the actual evapotranspiration (ETa) using micrometeorological data. In addition, we assess the water balance from the results of the soil water content investigation and the actual evapotranspiration. Although the soil water content at depths above 0.6 m in both the lower and the sloping fields gradually decreased during the dry season, the soil water content at a depth of 1.0 m was under almost constant wet conditions. Two-dimensional profiles of the soil water content demonstrated that at the end of the dry season, the soil layers below a depth of 0.4 m showed a soil water content of more than 0.10-0.15 m3 m−3, thus suggesting that water was supplied to the sugarcane from those layers. The range in ETa rates was almost the same as that in the previous study. The average ETa rates were 3.7 mm d−1 for the lower field and 4.2 mm d−1 for the sloping field. In the dry season, an upward water flow of 373 mm (equivalent to a flux of 1.9 mm d−1) was estimated from outside the profile. The source of this upward water flow was the sandy clay (SC) layer below a depth of 1 m. It was this soil water supply from the SC layer that allowed the sugarcane to grow without irrigation.  相似文献   

10.
New soil moisture sensor systems (SMSs) for irrigation control have been commercialized in recent years. However, limited research has been carried out to evaluate their precision to measure the volumetric soil water content (θ). The objectives of this research were to: (a) determine the relationship between θ and the θ sensed by four commercially available SMSs, (b) quantify the proportion of scheduled irrigation cycles (SICs) that the SMSs bypassed, and (c) determine the θ at which SICs were allowed or bypassed. Sensors from brands Acclima, Rain Bird, Irrometer, and Water Watcher were buried at 7-10 cm depth, on plots with common bermudagrass [Cynodon dactylon (L.) Pers.]. A calibrated ECH2O probe was also installed in every plot, at the same depth, to monitor θ continuously. When comparing the ECH2O readings with θ sensed by the SMSs, significant correlations were found for the three Acclima RS500 (AC) systems tested, and for two of the three systems of Irrometer Watermark 200SS/WEM (IM) and Rain Bird MS-100 (RB). Most of the SMS-based treatments bypassed the majority of the SICs during rainy periods, and allowed irrigation during the dry periods. On average, 71% of the SICs were bypassed by the SMS treatments, without detriment to the turfgrass quality. However, most of the SMSs were not found to be precision instruments, because sometimes they bypassed SICs and sometimes they did not, even when reading the same or a lower θ. Considering the average θ range of over which the different SMS treatments always allowed or always bypassed irrigation, brand AC resulted in the significantly narrowest range (1.4%) followed by RB (3.2%), suggesting that they were more consistent and precise in measuring θ than Water Watcher DPS-100 (WW) and IM (7.4 and 7.8%, respectively). These results are consistent with the reported water savings achieved by these SMSs in related studies.  相似文献   

11.
We have investigated hydraulic lift by winter wheat in response to four fertilizer treatments—nitrogen (N), phosphorus (P), nitrogen and phosphorus (NP) and control (CK, no fertilizer)—in a greenhouse experiment, in which root systems of wheat plants were split between a drier, upper layer and a wetter, lower layer. The soil volumetric water content (Øv) was measured at 2 h intervals in the upper layer by time domain reflectometry (TDR). Under the N, NP and CK treatments the fluctuations in this parameter were maximal during the blooming stage, amounting to 0.0038, 0.0127 and 0.0100 m3 water m−3 soil, respectively, but under the P treatment it peaked at 0.0116 m3 water m−3 soil during the grain-filling stage. Increases in the Øv of the upper layer occurred from 22:00 to 04:00 (6.7, 11.5, 13.5 and 7.5% under the N, P, NP and CK treatments, respectively), during the blooming stage. The wheat roots under the NP treatment showed the highest level of hydraulic lift across the entire growth period (0.3762 m3m−3); 1.36, 3.49 and 1.02 times higher than under the CK, N and P treatments, respectively. Hydraulic lift was shown to be driven by the soil water potential difference between the upper and lower layers using controls in which the soil moisture content of the two layers was the same.  相似文献   

12.
Improving irrigation water management is becoming important to produce a profitable crop in South Texas as the water supplies shrink. This study was conducted to investigate grain yield responses of corn (Zea mays) under irrigation management based on crop evapotranspiration (ETC) as well as a possibility to monitor plant water deficiencies using some of physiological and environmental factors. Three commercial corn cultivars were grown in a center-pivot-irrigated field with low energy precision application (LEPA) at Texas AgriLife Research Center in Uvalde, TX from 2002 to 2004. The field was treated with conventional and reduced tillage practices and irrigation regimes of 100%, 75%, and 50% ETC. Grain yield was increased as irrigation increased. There were significant differences between 100% and 50% ETC in volumetric water content (θ), leaf relative water content (RWC), and canopy temperature (TC). It is considered that irrigation management of corn at 75% ETC is feasible with 10% reduction of grain yield and with increased water use efficiency (WUE). The greatest WUE (1.6 g m−2 mm−1) achieved at 456 mm of water input while grain yield plateaued at less than 600 mm. The result demonstrates that ETC-based irrigation can be one of the efficient water delivery schemes. The results also demonstrate that grain yield reduction of corn is qualitatively describable using the variables of RWC and TC. Therefore, it appears that water status can be monitored with measurement of the variables, promising future development of real-time irrigation scheduling.  相似文献   

13.
Results from a field experiment examining soil water fate within U.S. Golf Association (USGA) putting greens were used to examine the validity of a water flow simulation model. The experiment used six different sandy root zones each with depths of 300 mm overlying a 100 mm thick gravel layer. Data collected over two growing seasons consisted of measured rainfall, irrigation, drainage volume, and soil water contents; and calculated turfgrass evapotranspiration (ET). Turfgrass rooting was measured at the end of each growing season, and water retention curve and saturated hydraulic conductivity measurements were conducted at the end of the study. For each root zone treatment, HYDRUS-2D (H2D) was calibrated using a subset of the experimental data and then validated by comparing observed and predicted water contents at 76, 152 and 229 mm depth and over both growing seasons. Model efficiency (E) ranged from 0.33 to 0.78; Mean Absolute Error (MAE) ranged from 0.012 to 0.024 m3 m−3; and Root Mean Square Error (RMSE) ranged from 0.015 to 0.028 m3 m−3, for the six treatments and both years. Also, RMSE values were at best slightly larger than and at worst twice as large as the mean standard deviation values of replicate measurements. Thus, H2D simulation performed reasonably well in describing the water content results of the field study. The calibration results provide evidence of hysteresis in water retention where water retention properties from the field appear to follow the sorption or wetting curve as compared with the laboratory measurements following the desorption or drying curve. This suggests that standard laboratory measurements of water release would not precisely predict water retention behavior in the field and over estimate water storage of these capillary barrier soils. The validation results provide evidence for turfgrass use of perched water held within these profiles, even though turfgrass rooting is shallow and water storage principally occurs deep within the root zone. Thus, the perched water of USGA putting greens should serve reasonably well as a water reservoir for subsequent turfgrass use, allowing for water conserving irrigation practices that makes use of this stored water.  相似文献   

14.
Degradation of soils irrigated with the ground waters having residual alkalinity constitutes a major threat to irrigated agriculture in semi-arid parts especially the South Asia. Paddy–wheat has come to stay as the major crop rotation in the afflicted areas, which is either irrigated solely with alkali waters (AW) or combined with good quality water supplies through canal networks. Therefore, to develop appropriate conjunctive use strategies for the latter situations, response of paddy and wheat was evaluated to the combined use of a good quality water (GW, ECiw 0.5, RSC nil) and that having residual alkalinity (AW, ECw 2.3 dS m−1, RSC 11.3 mequiv L−1, SARw 15 mmol L0.5) for 6 years (1997–2003) in lysimeters (2.0 m deep, 0.9 m i.d., with drainage outlets at the bottom) filled in with a sandy loam soil (pH 7.8, ESP 5.3). Increase in soil pH (8.71), salinity (3.8 dS m−1) and sodicity (ESP 27.3) as a consequence of irrigation with alkali water markedly affected the yields of both the crops. The sustainability yield index (SYI) was 0.522 and 0.793 for paddy and wheat, respectively, indicating the sensitivity of the former to the use of alkali water. Keeping the AW input to be similar through irrigations, the SYI for paddy with blending of GW and AW in the ratio of 2:1, 1:1 and 1:2 was 0.732, 0.708 and 0.678, respectively, when compared with 0.751, 0.729 and 0.701 under intera-seasonal cyclic uses. Similarly, the SYI of wheat ranged between 0.821–0.907 and 0.853–0.949 with blending and cyclic uses of the two waters, indicating thereby a yield advantage with the latter. When the two waters were rotated inter-seasonally, the dilution effects of monsoon rains helped to induce greater use of AW for paddy. The overall deterioration in soil properties under different modes was related to proportion of AW applied. It was concluded that the alternating good quality and alkali waters could be a better way to alleviate sodicity problems caused with the use of alkali water alone.  相似文献   

15.
A priori knowledge of the in situ soil field water capacity (FWC) and the soil-water retention curve for soils is important for the effective irrigation management and scheduling of many crops. The primary objective of this study was to estimate the in situ FWC using the soil-water retention curve developed from volumetric water content (θ), and water potential (ψ) data collected in the field by means of soil moisture sensors in two contrasting-textured soils. The two study soils were Lihen sandy loam and Savage clay loam. Six metal frames 117 cm × 117 cm × 30 cm high were inserted into the soil to a depth of 5–10 cm at approximately 40 m intervals on a 200 m transect. Two Time Domain Reflectrometry (TDR) sensors were installed in the center of the frame and two Watermark (WM) sensors were installed in the SW corner at 15 and 30 cm depths to continuously monitor soil θ and ψ, respectively. A neutron probe (NP) access tube was installed in the NE corner of each frame to measure soil θ used for TDR calibration. The upper 50–60 cm of soil inside each frame was saturated with intermittent application of approximately 18–20 cm of water. Frames were then covered with plastic tarps. The Campbell and Gardner equations best fit the soil–water retention curves for sandy loam and clay loam soils, respectively. Based on the relationship between soil ψ and elapsed time following cessation of infiltration, we calculated that the field capacity time (t FWC) were reached at approximately 50 and 450 h, respectively, for sandy loam and clay loam soils. Soil-water retention curves showed that θ values at FWC (θ FWC) were approximately 0.228 and 0.344 m3 m−3, respectively, for sandy loam and clay loam soils. The estimated θ FWC values were within the range of the measured θ FWC values from the NP and gravimetric methods. The TDR and WM sensors provided accurate in situ soil–water retention data from simultaneous soil θ and ψ measurements that can be used in soil-water processes, irrigation scheduling, modeling and chemical transport.  相似文献   

16.
Excess salinity in irrigation water reduces sugarcane yield and juice quality. This study was conducted to compare the effect of irrigation with water of 1.3 dS m−1 vs. 3.4 dS m−1 on sugarcane yield and quality, and to evaluate whether an electrostatic conditioning treatment of the water influenced the salt effects. The study was conducted in a commercial field divided into large plots ranging from 1.0 to 1.2 ha in size. Cane and sugar yields were reduced approximately 17% by the 3.4 dS m−1 water compared to the 1.3 dS m−1 water, but juice quality parameters were not affected. Conditioning of the irrigation water using a device called an ‘electrostatic precipitator’ which claimed to affect various water properties had no effect on cane yield, juice quality or soil salinity levels. The detrimental effect of the high salt irrigation water was somewhat less than might be expected, probably due to good late summer rainfall which may have flushed the root zone from the excessive salts.  相似文献   

17.
The purpose of optimal water and nutrient management is to maximize water and fertilizer use efficiency and crop production, and to minimize groundwater pollution. In this study, field experiments were conducted to investigate the effect of soil salinity and N fertigation strategy on plant growth, N uptake, as well as plant and soil 15N recovery. The experimental design was a 3 × 3 factorial with three soil salinity levels (2.5, 6.3, and 10.8 dS m−1) and three N fertigation strategies (N applied at the beginning, end, and in the middle of an irrigation cycle). Seed cotton yield, dry matter, N uptake, and plant 15N recovery significantly increased as soil salinity level increased from 2.5 to 6.3 dS m−1, but they decreased markedly at higher soil salinity of 10.8 dS m−1. Soil 15N recovery was higher under soil salinity of 10.8 dS m−1 than those under soil salinity of 6.3 dS m−1, but was not significantly different from that under soil salinity of 2.5 dS m−1. The fertigation strategy that nitrogen applied at the beginning of an irrigation cycle had the highest seed cotton yield and plant 15N recovery, but showed higher potential loss of fertilizer N from the root zone. While the fertigation strategy of applying N at the end of an irrigation cycle tended to avoid potential N loss from the root zone, it had the lowest cotton yield and nitrogen use efficiency. Total 15N recovery was not significantly affected by soil salinity, fertigation strategy, and their interaction. These results suggest that applying nitrogen at the beginning of an irrigation cycle has an advantage on promoting yield and fertilizer use efficiency, therefore, is an agronomically efficient way to provide cotton with fertilizer N under the given production conditions.  相似文献   

18.
Population growth, urban expansion and economic development are increasing competition for water use between agriculture and other users. In addition, the high rate of soil degradation and declining soil moisture in the Sub-Saharan African Region have called for several crop production management and irrigation options to improve soil fertility, reduce water use by crops and produce ‘more crops per drop of water’. Notwithstanding this, considerable variations exist in the literature on water-use efficiency, WUEcwu (economic yield per water used) for maize (Zea mays L.) across climates and soil management practices. Different views have been expressed on the effect of different rates of nitrogen (N) application on transpiration efficiency, TE (biomass produced per unit of water transpired). The objectives of the study were to assess the effect of different rates of N-enriched municipal waste co-compost and its derivatives on TE, WUEcwu and yield of maize (Z. mays L.) in comparison to inorganic fertiliser. The greenhouse pot experiment was conducted in Accra, Ghana on a sandy loam soil (Ferric Lixisol) using a split plot design. The main plot treatments were soil (S), dewatered faecal sludge (DFS), municipal solid waste compost (C), co-compost from municipal solid waste and dewatered faecal sludge (Co), compost enriched with (NH4)2SO4 (EC), co-compost enriched with (NH4)2SO4 (ECO), (NH4)2SO4 and NPK15-15-15 + (NH4)2SO4. The sub-plot treatments were different rates of application of nitrogen fertiliser applied at the rate of 91, 150 and 210 kg N ha−1 respectively. Maize cv. Abelehii was grown in a poly bag filled with 15 kg soil. Eight plants per treatment were selected randomly and used for the collection of data on growth parameters forth-nightly. At physiological maturity two plants per treatment were also selected randomly from each treatment plot for yield data. The results showed that TE of maize (Z. mays) varied for the different treatments and these are 6.9 Pa in soil (S) alone to 8.6 Pa in ECO. Increase in N application rate increased TE at the vegetative phase for fast nutrient releasing fertilisers (DFS, ECO, EC, NPK + (NH4)2SO4, (NH4)2SO4) and at the reproductive phase for slow nutrient releasing fertilisers (C and CO). Water-use efficiency increased significantly as rate of N application increased. Treatment ECO improved crop WUEcwu and was 11% and 4 times higher than that for NPK + (NH4)2SO4 or soil alone; and 18-36% higher than those for DFS and CO. Treatment ECO used less amount of water to produce dry matter yield (DMY) and grain yield (GY) that was 5.2% and 12.6%, respectively, higher than NPK + (NH4)2SO4. Similarly, the DMY and GY for ECO was 8.9-18.5% and 23.4-34.7%, respectively, higher than DFS and CO. High nutrient (N and K) uptake, TE, and low leaf senescence accounts for 83% of the variations in DMY whereas WUEcwu accounts for 99% of the variations in GY. Thus, the study concluded that different sources of fertiliser increased TE and WUEcwu of maize differently as N application rate increases.  相似文献   

19.
A probe has been designed which uses a simplified impedance measuring system to determine soil water content. Apart from cost and simplicity, a major advantage is its d.c. voltage output which allows continuous unattended recording by most field data loggers. The calculated soil water volumetric fractionv) determined by this new method compares well with results from the standard neutron probe.  相似文献   

20.
Plant water status is a key factor impacting crop growth and agricultural water management. Crop water stress may alter canopy temperature, the energy balance, transpiration, photosynthesis, canopy water use efficiency, and crop yield. The objective of this study was to calculate the Crop Water Stress Index (CWSI) from canopy temperature and energy balance measurements and evaluate the utility of CWSI to quantify water stress by comparing CWSI to latent heat and carbon dioxide (CO2) flux measurements over canopies of winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.). The experiment was conducted at the Yucheng Integrated Agricultural Experimental Station of the Chinese Academy of Sciences from 2003 to 2005. Latent heat and CO2 fluxes (by eddy covariance), canopy and air temperature, relative humidity, net radiation, wind speed, and soil heat flux were averaged at half-hour intervals. Leaf area index and crop height were measured every 7 days. CWSI was calculated from measured canopy-air temperature differences using the Jackson method. Under high net radiation conditions (greater than 500 W m−2), calculated values of minimum canopy-air temperature differences were similar to previously published empirically determined non-water-stressed baselines. Valid measures of CWSI were only obtained when canopy closure minimized the influence of viewed soil on infrared canopy temperature measurements (leaf area index was greater than 2.5 m2 m−2). Wheat and maize latent heat flux and canopy CO2 flux generally decreased linearly with increases in CWSI when net radiation levels were greater than 300 W m−2. The responses of latent heat flux and CO2 flux to CWSI did not demonstrate a consistent relationship in wheat that would recommend it as a reliable water stress quantification tool. The responses of latent heat flux and CO2 flux to CWSI were more consistent in maize, suggesting that CWSI could be useful in identifying and quantifying water stress conditions when net radiation was greater than 300 W m−2. The results suggest that CWSI calculated by the Jackson method under varying solar radiation and wind speed conditions may be used for irrigation scheduling and agricultural water management of maize in irrigated agricultural regions, such as the North China Plain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号