首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Manipulating the N release from high-N crop residues by simultaneous mixing of these residues with organic biological waste (OBW) materials seems to be a possible method to reduce NO3 leaching. The aim of this study was to examine whether the incorporation of OBW materials together with a high-N crop residue (celery) had also an effect on N2O emission from horticultural soil under short-term and optimised laboratory conditions. A sandy loam soil and celery residues were mixed with different OBW materials and brought into PVC tubes at 80% water-filled pore space and 15°C. Every 2.5 h, a gas sample was taken and analysed by gas chromatography for its N2O concentration. The soil amended with only celery residues had a cumulative N2O emission of 9.6 mg N kg–1 soil in 50 h. When the celery residues were mixed with an OBW material, the N2O emission was each time lower than the emission from the celery-only treatment (between 3.8 and 5.9 mg N kg–1 soil during maximum 77 h), except with paper sludge (17.2 mg N kg–1 soil in 100 h). The higher N2O emission from the paper sludge treatment was probably due to its unusually low C:N ratio. Straw, green waste compost 1 (GWC1) and 2 (GWC2), saw dust, and tannic acid reduced the N2O emission of the celery treatment by 40 to 60%. Although the N2O reduction potential can be expected to be lower and with differing dynamics under field conditions, this study indicates that apart from reducing NO3 leaching, OBW application may at the same time reduce N2O emissions after incorporation of high-N crop residues.  相似文献   

2.
Summary A field study was undertaken to examine the effects of various management strategies on wheat (Triticum aestivum L.) performance and N cycling in an intensively cropped soil. Microplots receiving 100 kg N ha–1 as15NH4 + 15NO3 at sowing, tillering or stem elongation were compared with unfertilized microplots. Stubble from the previous rice crop was either incorporated, burnt without tillage, burnt then tilled or retained on the surface of untilled soil. Wheat grain yield ranged from 1.5 to 5.1 t ha and was closely related to N uptake. Plant accumulation of soil N averaged 36 kg N ha–1 (LSD 5% = 10) on stubble-incorporation plots and 54 kg N ha–1 on stubble-retention plots. Fertilizer N accumulation averaged 18 kg N ha–1 (LSD 51% = 6) on stubble-incorporation plots and 50 kg N ha–1 on stubble-retention plots. Tillage had little effect on burnt plots. Delaying N application from sowing until stem elongation increased average fertilizer N uptake from 26 to 39 kg N ha–1 (LSD 5% = 6), but reduced soil N uptake from 50 to 37 kg N ha (LSD 5% = 10).Immobilization and leaching did not vary greatly between treatments and approximately one-third of the fertilizer was immobilized. Less than 1% of the fertilizer was found below a depth of 300 mm. Incorporating 9 t ha–1 of rice stubble 13 days before wheat sowing reduced net apparent mineralization of native soil N from 37 to 3 kg ha–1 between tillering and maturity. It also increased apparent denitrification of fertilizer N from an average 34 to 53 kg N ha–1 (LSD 5% = 6). N loss occurred over several months, suggesting that denitrification was maintained by continued release of metabolizable carbohydrate from the decaying rice stubble. The results demonstrate that no-till systems increase crop yield and use of both fertilizer and soil N in intensive rice-based rotations.  相似文献   

3.
Tillage with a spring tine harrow has become a recommended mechanical weeding technique for cereal crops. In this study, the impact of its use on soil mineral N content, soil aggregation and spring wheat (Triticum aestivum L.) production was investigated. The experiment was performed during 2 successive years (2005–2006) on a clay loam and on a silty loam. The two-main plot treatments consisted of a wheat crop subjected or not to intensive harrow use in a weed-free production system. Two N fertilizer treatments (mineral fertilizer and dry granular poultry manure) were also included as subplots within these main treatments and compared to a non-fertilized control. Harrowing had significant and variable effects on soil NO3 contents in the 0–5 cm soil layer. Slightly higher NO3 contents (average difference of 3.2 kg NO3 ha−1) were measured in the harrowed treatments than in the undisturbed plots in the clay loam soil in 2006. However, significantly lower mineral N contents were observed in the harrowed treatments than in the undisturbed plots in the clay loam soil in 2005 and in the silty loam soil in 2006. This apparent N immobilization amounted to 19 kg NO3 ha−1 in the clay loam soil in 2005 (for both fertilizers) and 30 kg NO3 ha−1 in the silty loam soil in 2006 (only in mineral fertilizer plots) after the successive harrowing treatments. In all cases, data of the last sampling dates in the fall indicated that residual NO3 content was not affected by the treatments. Overall harrowing had a minor decreasing and transient effect on the mean weight diameter (MWD) of soil aggregates while the dry poultry manure tended to increase MWD. The harrowing treatment had no significant effect on wheat, grain N uptake and yield. In conclusion, harrow use had variable impacts on soil NO3 content and a minor decreasing effect on the MWD of soil aggregates. Of note, significant apparent mineral N immobilization was observed on a few sampling dates following the harrow treatments.  相似文献   

4.
Summary A greenhouse study was conducted to examine the residual effects of sewage sludge on soybean Glycine max (L.) Merr., nodulation, and N fixation. Nodulating and nonnodulating isolines of Clark soybean were grown to the R2 stage in soils (Typic Paleudults) obtained from plots where heat-treated sludge had been applied in 1976 at rates equal to 0, 56,112, and 224 Mg ha–1 high (7.0) and low (6.2) soil pH regimes were established by CaCO3 additions. Sludge and soil pH treatments resulted in clearly defined differences in metal uptake by soybean shoots. Plant Zn, Cd, and Ni concentrations were greater on pH 6.2, sludge-amended soil than on the pH 7.0, amended soil. At low soil pH, soybean Zn and Cd concentrations, respectively, increased from 41 and 0.19 mg kg–1 (control) to 120 and 0.58 mg kg–1 at the 224 Mg hat sludge rate. At the high soil pH and 224 hg hat sludge rate, Zn and Cd concentrations were 45 and 0.15 mg kg–1, respectively.Symbiotic N fixation provided 90% of the total N accumulation. Total N accumulation, shoot N concentration, dry matter, and N fixation by nodulating soybeans exhibited a significant linear increase with sludge rate. Total N accumulation, dry matter, and N fixation were significantly greater at high soil pH. For high and low soil pH, respectively, N fixation increased from 422 and 382 mg N per plant (control) to 614 and 518 mg N per plant at the 224 Mg ha–1 sludge rate. While soybean nodulation also increased linearly on sludge-amended soil, a significant rate times pH interaction for nodule number indicated that nodulation was less strongly enhanced by sludge at low soil pH.  相似文献   

5.
Core lysimeters containing undisturbed coarse sandy soil (from grassland) were amended with a high rate of anaerobically digested sewage sludge (equivalent to >1,000 t ha–1). Water, at a rate equivalent to the mean weekly rainfall for the soil, was applied to amended and control lysimeters for 30 weeks and the leachate analysed for anions and cations. Lysimeters were also destructively sampled at intervals throughout the experiment and soil samples were analysed for extractable NH4+-N, NO3-N and PO43–-P. Ammonium N leached for about 11 weeks from the amended lysimeters, then abruptly stopped. A similar amount of NO3-N leached, but leaching was continuing when the experiment finished. The control lysimeters leached as much NO3-N as those that were amended, but no NH4+-N. The amended lysimeters also leached NO2-N. Negligible PO43–-P, but large amounts of SO42– were leached from the amended lysimeters. Concentrations of extractable NH4+-N and PO43–-P were very high in the amended soils, but NO3-N concentrations remained low throughout the experiment, indicating that nitrification rates were low and/or that denitrification rates were high.  相似文献   

6.
This paper focuses on N balance in a paddy field planted with whole crop rice (Oryza sativa cv. Kusahonami). The experiment was conducted with two treatments during two rice-growing seasons: one was fertilized with N (160 kg N ha–1; 16N plot) and the other unfertilized (0N plot); both plots were fertilized with P and K. The N input from precipitation was 15 and 12 kg N ha–1 in 2002 and 2003, respectively. The N input from irrigation water reached as much as 123 and 69 kg N ha–1 in 2002 and 2003, respectively. This was because irrigation water contained higher NO3 concentrations ranging from 4 to 8 mg N l–1. The N uptake by rice plants was the major output: 118 and 240 kg N ha–1 in the 0N and 16N plots in 2002 and 103 and 238 kg N ha–1 in 2003, respectively. N losses by leaching were 4.8–5.3 and 6.5–7.3 kg N ha–1 in 2002 and in 2003, respectively. Laboratory experiments were carried out to estimate the amounts of N2 fixation and denitrification. Amount of N2 fixation was 43 and 0 kg N ha–1 in the 0N and 16N plots, respectively. Denitrification potential was quite high in both the plots, and 90% of the N input through irrigation water was lost through denitrification. Collectively, the total N inputs were relatively large due to irrigation water contaminated with NO3, but N outflow loading, expressed as leaching–(irrigation water + precipitation + fertilizer), showed large negative values, suggesting that the whole crop rice field might serve as a constructed wetland for decreasing N.  相似文献   

7.
The beneficial effect of sewage sludge in crop production has been demonstrated, but there is concern regarding its contribution to nitrate (NO3) leaching. The objectives of this study were to compare nitrogen (N) rates of sewage sludge and ammonium nitrate (NH4NO3) on soil profile (0–180 cm), inorganic N [ammonium nitrate (NH4‐N) and nitrate nitrogen (NO3‐N)] accumulation, yield, and N uptake in winter wheat (Triticum aestivum L.). One field experiment was established in 1993 that evaluated six N rates (0 to 540 kg·ha‐1·yr‐1) as dry anaerobically digested sewage sludge and ammonium nitrate. Lime application in 1993 (4.48 Mg ha‐1) with 540 kg N ha‐1·yr‐1 was also evaluated. A laboratory incubation study was included to simulate N mineralization from sewage sludge applied at rates of 45, 180, and 540 kg N ha‐1·yr‐1. Treatments did not affect surface soil (0–30 cm) pH, organic carbon (C), and total N following the first (1994) and second (1995) harvest. Soil profile inorganic N accumulation increased when ≥270 kg N ha‐1 was applied as ammonium nitrate. Less soil profile inorganic N accumulation was detected when lime was applied. In general, wheat yields and N uptake increased linearly with applied N as sewage sludge, while wheat yields and N uptake peaked at 270 kg N ha‐1 when N was applied as ammonium nitrate. Lime did not affect yields or N uptake. Fertilizer N immobilization was expected to be high at this site where wheat was produced for the first time in over 10 years (previously in native bermudagrass). Estimated N use efficiency using sewage sludge in grain production was 20% (average of two harvests) compared to ammonium nitrate. Estimated plant N recovery was 17% for sewage sludge and 27% for ammonium nitrate.  相似文献   

8.
在红壤自然状况下,模拟了施肥沟,对红壤不同污泥施肥处理的N素释放特性进行了研究。试验结果表明,干污泥配比在10%~20%时,碱解氮、铵态氮和硝态氮累计释放量分别为:25.71%~33.48%,9.57%~14.85%和4.08%~7.65%。堆肥污泥配比在20%~33%时,其累计释放量分别为13.55%~15.65%,2.03%~4.23%和3.11%~5.37%。干污泥处理的释放量大于堆肥污泥处理的释放量,释放过程变化较堆肥污泥剧烈,铵态氮和硝态氮均有明显峰值,铵态氮最大含量532.98±10 mg/kg,释放量最大达10.95%;硝态氮含量最大为149.2±14 mg/kg,释放量最大时为3.32%。无论是从氮的肥效角度,还是氮释放的环境风险角度考虑,污泥堆肥处理后施肥方式均优于干污泥处理施肥方式。  相似文献   

9.
The long-term effects of cropping systems and management practices on soil properties provide essential information for assessing sustainability and environmental impact. Field experiments were undertaken in southern Spain to evaluate the long-term effects of tillage, crop rotation and nitrogen (N) fertilization on the organic matter (OM) and mineral nitrogen (Nmin) contents of soil in a rain-fed Mediterranean agricultural system over a 6-year period. Tillage treatments included no tillage (NT) and conventional tillage (CT), crop rotations were of 2 yr with wheat (Triticum aestivum L.)-sunflower (Helianthus annuus L.) (WS), wheat-chickpea (Cicer arietinum L.) (WP), wheat-faba bean (Vicia faba L.) (WB), wheat-fallow (WF), and in addition, continuous wheat (CW). Nitrogen fertilizer rates were 50, 100, and 150 kg N ha−1. A split-split plot design with four replications was used. Soil samples were collected from a depth of 90 cm at the beginning of the experiment and 6 yr later. Soil samples were also collected from a depth of 30 cm after 4 yr. These samples, like those obtained at the beginning of the experiment, were subjected to comprehensive physico-chemical analyses. The soil samples that were collected 6 yr later were analyzed for OM, NH4+---N and NO3---N at the 0–30, 30–60 and 60–90 cm soil depths. The tillage method did not influence the OM or Nmin contents of the soil, nor did legume rotations increase the OM content of soil relative to CW. A longer period may have been required for differences between treatments to be observed owing to the small amount of crop residue that is returned to soil under rain-fed conditions of semi-arid climates. The WF rotation did not raise the Nmin content of the soil relative to the other rotations. The consistent significant interaction between tillage and crop rotation testifies to the differential effect of the management system on the OM content and N status of the soil. The ammonium levels clearly exceeded those of NO3---N throughout the soil profile. The high Nmin content of the soils reveals the presence of abundant N resources that should be borne in mind in establishing N fertilization schemes for crops under highly variable climatic conditions including scant rainfall such as those of the Mediterranean region.  相似文献   

10.
Soils comprise a critical interface between the atmosphere, lithosphere, hydrosphere and biosphere, and play a major role in the cycling of nitrogen (N), an element crucial to plant growth. Isotope techniques constitute a powerful tool to study the origin and fate of N compounds (e.g. NO3) within the environment including soils. The objective of our study was to test the usefulness of the isotope composition of soil NO3 extracted with 2 M KCl (soil NO3) as a tool to investigate the origin and fate of NO3 in the environment. Specifically issues related to repeat extractions, crop type, length of fertilization, and soil depth were addressed. Soils from four contrasting agricultural management regimes were sampled. Within the relatively confined study area (4 ha), the isotopic compositions of soil NO3 differed markedly due to management treatments (up to 6 and 17‰ for δ15N and δ18O, respectively), but were repeatable among replicate plots (±1‰). Differences in both δ15N and δ18O values were observed between legume and non-legume treatments, as well as fertilized versus non-fertilized treatments, which were larger than the variability observed between replicate plots. Differences in the isotopic composition of extractable soil nitrate were not limited to the surface layer, but also occurred within deeper soil layers. This study indicates that the analysis of the natural abundance stable isotope composition of soil NO3 may provide a promising additional tool for tracing the origin and fate of NO3 in the soil zone.  相似文献   

11.
Swine lagoon sludge is commonly applied to soil as a source of nitrogen (N) for crop production but the fate of applied N not recovered from the soil by the receiver crop has received little attention. The objectives of this study were to (1) assess the yield and N accumulation responses of corn (Zea mays L.) and wheat (Triticum aestivum) to different levels of N applied as swine lagoon sludge, (2) quantify recovery of residual N accumulation by the second and third crops after sludge application, and (3) evaluate the effect of different sludge N rates on nitrate (NO3-N) concentrations in the soil. Sludge N trials were conducted with wheat on two swine farms and with corn on one swine farm in the coastal plain of North Carolina. Agronomic optimum N rates for wheat grown at two locations was 360 kg total sludge N ha?1 and the optimum N rate for corn at one location was 327 kg total sludge N ha?1. Residual N recovered by subsequent wheat and corn crops following the corn crop that received lagoon sludge was 3 and 12 kg N ha?1, respectively, on a whole-plant basis and 2 and 10 kg N ha?1, respectively, on a grain basis at the agronomic optimum N rate for corn (327 kg sludge N ha?1). From the 327 kg ha?1 of sludge N applied to corn, 249 kg N ha?1 were not recovered after harvest of three crops for grain. Accumulation in recalcitrant soil organic N pools, ammonia (NH3) volatilization during sludge application, return of N in stover/straw to the soil, and leaching of NO3 from the root zone probably account for much of the nonutilized N. At the agronomic sludge N rate for corn (327 kg N ha?1), downward movement of NO3-N through the soil was similar to that for the 168 kg N ha?1 urea ammonium nitrate (UAN) treatment. Thus, potential N pollution of groundwater by land application of lagoon sludge would not exceed that caused by UAN application.  相似文献   

12.
Major impediments to the land application of coal combustion byproducts (fly ash) for crop fertilization have been the presence of heavy metals and their relatively low and imbalanced essential nutrient concentration. Although nutrient deficiencies, in particular N, P, and K, may be readily augmented by adding organic wastes such as sewage sludge and animal manure, the indiscriminate application of mixtures to crops can cause excessive soil alkalinity, imbalanced nutrition (P, Mg), phytotoxicities (B, Mn, ammonia, nitrite), and unspecified contamination of the food chain by elements such as As. In this study, nutrient availability data and linear programming (LP) were used to solve these problems by formulating fly ash-biosolid triple mixtures which complied with both plant and soil fertilization requirements, and met existing U.S.A. environmental regulations for total As application in sewage sludge (EPA-503). Thirteen different fly ash samples were LP-formulated with sewage sludge, poultry manure, CaCO3, and KCl to yield 13 unique mixtures, which were then evaluated in greenhouse pot experiments. Results indicated that normal growth and balanced nutrition of sorghum (Sorghumbicolor L.) and soybean (Glycine max (L.) Merr.) crops were achieved in all mixtures, comparable to a balanced fertilizer reference treatment, and significantly better than the untreated control. Phytotoxic levels of B, NH3, NO2 -, overliming problems, and excessive As levels which were previously encountered from indiscriminate use of these waste materials, were all well controlled by LP-formulated mixtures. Most fly ash quantities in mixtures were limited by either available B (< 4 kg ha-1) or total As (< 2 kg ha-1) restrictions during formulation, while the most alkaline fly ash was limited by its high calcium carbonate equivalence (CCE = 53.9%). These results confirmed that fly ash land application should not be at arbitrary fixed rates, but should be variable, depending on the soil, crop, and particularly the fly ash chemistry.  相似文献   

13.
Maintaining and/or conserving organic carbon (C) and nitrogen (N) concentrations in the soil using management practices can improve its fertility and productivity and help to reduce global warming by sequestration of atmospheric CO2 and N2. We examined the influence of 6 years of tillage (no-till, NT; chisel plowing, CP; and moldboard plowing, MP), cover crop (hairy vetch (Vicia villosa Roth.) vs. winter weeds), and N fertilization (0, 90, and 180 kg N ha−1) on soil organic C and N concentrations in a Norfolk sandy loam (fine-loamy, siliceous, thermic, Typic Kandiudults) under tomato (Lycopersicon esculentum Mill.) and silage corn (Zea mays L.). In a second experiment, we compared the effects of 7 years of non-legume (rye (Secale cereale L.)) and legume (hairy vetch and crimson clover (Trifolium incarnatum L.)) cover crops and N fertilization (HN (90 kg N ha−1 for tomato and 80 kg N ha−1 for eggplant)) and FN (180 kg N ha−1 for tomato and 160 kg N ha−1 for eggplant)) on soil organic C and N in a Greenville fine sandy loam (fine-loamy, kaolinitic, thermic, Rhodic Kandiudults) under tomato and eggplant (Solanum melogena L.). Both experiments were conducted from 1994 to 2000 in Fort Valley, GA. Carbon concentration in cover crops ranged from 704 kg ha−1 in hairy vetch to 3704 kg ha−1 in rye in 1999 and N concentration ranged from 77 kg ha−1 in rye in 1996 to 299 kg ha−1 in crimson clover in 1997. With or without N fertilization, concentrations of soil organic C and N were greater in NT with hairy vetch than in MP with or without hairy vetch (23.5–24.9 vs. 19.9–21.4 Mg ha−1 and 1.92–2.05 vs. 1.58–1.76 Mg ha−1, respectively). Concentrations of organic C and N were also greater with rye, hairy vetch, crimson clover, and FN than with the control without a cover crop or N fertilization (17.5–18.4 vs. 16.5 Mg ha−1 and 1.33–1.43 vs. 1.31 Mg ha−1, respectively). From 1994 to 1999, concentrations of soil organic C and N decreased by 8–16% in NT and 15–25% in CP and MP. From 1994 to 2000, concentrations of organic C and N decreased by 1% with hairy vetch and crimson clover, 2–6% with HN and FN, and 6–18% with the control. With rye, organic C and N increased by 3–4%. Soil organic C and N concentrations can be conserved and/or maintained by reducing their loss through mineralization and erosion, and by sequestering atmospheric CO2 and N2 in the soil using NT with cover crops and N fertilization. These changes in soil management improved soil quality and productivity. Non-legume (rye) was better than legumes (hairy vetch and crimson clover) and N fertilization in increasing concentrations of soil organic C and N.  相似文献   

14.
Information on N cycling in dryland crops and soils as influenced by long-term tillage and cropping sequence is needed to quantify soil N sequestration, mineralization, and N balance to reduce N fertilization rate and N losses through soil processes. The 21-yr effects of the combinations of tillage and cropping sequences was evaluated on dryland crop grain and biomass (stems + leaves) N, soil surface residue N, soil N fractions, and N balance at the 0–20 cm depth in Dooley sandy loam (fine-loamy, mixed, frigid, Typic Argiboroll) in eastern Montana, USA. Treatments were no-tilled continuous spring wheat (Triticum aestivum L.) (NTCW), spring-tilled continuous spring wheat (STCW), fall- and spring-tilled continuous spring wheat (FSTCW), fall- and spring-tilled spring wheat–barley (Hordeum vulgare L.) (1984–1999) followed by spring wheat–pea (Pisum sativum L.) (2000–2004) (FSTW-B/P), and spring-tilled spring wheat–fallow (STW-F). Nitrogen fractions were soil total N (STN), particulate organic N (PON), microbial biomass N (MBN), potential N mineralization (PNM), NH4-N, and NO3-N. Annualized crop grain and biomass N varied with treatments and years and mean grain and biomass N from 1984 to 2004 were 14.3–21.2 kg N ha−1 greater in NTCW, STCW, FSTCW, and FSTW-B/P than in STW-F. Soil surface residue N was 9.1–15.2 kg N ha−1 greater in other treatments than in STW-F in 2004. The STN at 0–20 cm was 0.39–0.96 Mg N ha−1, PON 0.10–0.30 Mg N ha−1, and PNM 4.6–9.4 kg N ha−1 greater in other treatments than in STW-F. At 0–5 cm, STN, PON, and MBN were greater in STCW than in FSTW-B/P and STW-F. At 5–20 cm, STN and PON were greater in NTCW and STCW than in STW-F, PNM and MBN were greater in STCW than in NTCW and STW-F, and NO3-N was greater in FSTW-B/P than in NTCW and FSTCW. Estimated N loss through leaching, volatilization, or denitrification at 0–20 cm depth increased with increasing tillage frequency or greater with fallow than with continuous cropping and ranged from 9 kg N ha−1 yr−1 in NTCW to 46 kg N ha−1 yr−1 in STW-F. Long-term no-till or spring till with continuous cropping increased dryland crop grain and biomass N, soil surface residue N, N storage, and potential N mineralization, and reduced N loss compared with the conventional system, such as STW-F, at the surface 20 cm layer. Greater tillage frequency, followed by pea inclusion in the last 5 out of 21 yr in FSTW-B/P, however, increased N availability at the subsurface layer in 2004.  相似文献   

15.
《Applied soil ecology》2010,46(3):225-231
There are plans to vegetate soil of the former lake Texcoco and use wastewater sludge to provide nutrients. However, the Texcoco soil is N depleted, so the amount of N available to the vegetation might be limited and the dynamics of C and N affected. We investigated how emissions of CO2, N2O and N2, and dynamics of mineral N were affected when different types of N fertilizer, i.e. NH4+, NO3, or unsterilized or sterilized wastewater sludge, were added to the Texcoco soil. An agricultural soil served as control. Sewage sludge added to an alkaline saline soil (Texcoco soil) induced a decrease in concentrations of NH4+ and NO3. Addition of sewage sludge increased the CO2 emission rate > two times compared to soil amended with sterilized sludge. The NH4+ concentration was lower when sludge was added to an agricultural soil for the first 28 days and in the Texcoco soil for 56 days compared to soil amended with sterilized sludge. Production of N2O in the agricultural soil was mainly due to nitrification, even when sludge was added, but denitrification was the main source of N2O in the Texcoco soil. Microorganisms in the sludge reduced N2O to N2, but not the soil microorganisms. It was found that microorganisms added with the sludge accelerated organic material decomposition, increased NH4+ immobilization, and induced immobilization of NO3 (in Texcoco soil). These results suggest that wastewater sludge improves soil fertility at Otumba (an agricultural soil) and would favour the vegetation of the Texcoco soil (alkaline saline).  相似文献   

16.
Nitrification associated with the various components [subsurface soil from unplanted and planted (rhizosphere) fields, standing water and surface soil from planted and unplanted fields and leaf sheath suspensions] of submerged rice paddies was examined in incubation experiments with solutions inoculated with soil or water samples. Substantial nitrification occurred in all samples, standing water and surface soil samples in particular, during their 40-day incubation with NH 4 + –N. Almost all the NH 4 + –N, disappeared during incubation with standing water, was recovered as NO inf3 sup- –N. This, compared to 70–80% from all soil samples and only 29% from leaf sheath suspensions. Significant loss of nitrogen, especially from leaf sheath suspensions, is probably due to nitrification-denitrification as evidenced by its complete recovery in the presence of N-Serve. Nitrification potential of the soil and water samples varied with the crop growth stage and was more pronounced at tillering and panicle inititation stages than at other stages. Nitrification potential of samples from green-manure-amended plots was distinctly less than that of samples from control and urea-amended plots. Most probable number (MPN) estimates of ammonium-oxidizing bacteria were always higher in surface soil in both planted and unplanted plots at all stages of crop growth.Dedicated to Professor J. C. G. Ottow on the occasion of his 60th birthday  相似文献   

17.
Organic wastes such as sewage sludge and compost increase the input of carbon and nutrients to the soil. However, sewage sludge-applied heavy metals, and organic pollutants adversely affect soil biochemical properties. Therefore, an incubation experiment lasting 90 days was carried out to evaluate the effect of the addition of two sources of organic C: sewage sludge or composted turf and plant residues to a calcareous soil at three rates (15, 45, and 90 t of dry matter ha–1) on pH, EC, dissolved organic C, humic substances C, organic matter mineralization, microbial biomass C, and metabolic quotient. The mobile fraction of heavy metals (Zn, Cd, Cu, Ni, and Pb) extracted by NH4NO3 was also investigated.The addition of sewage sludge decreased soil pH and increased soil salinity to a greater extent than the addition of compost. Both sewage sludge and compost increased significantly the values of the cumulative C mineralized, dissolved organic C, humic and fulvic acid C, microbial biomass C, and metabolic quotient (qCO2), especially with increasing application rate. Compared to compost, the addition of sewage sludge caused higher increases in the values of these parameters. The values of dissolved organic C, fulvic acid C, microbial biomass C, metabolic quotient, and C/N ratio tended to decrease with time. The soil treated with sewage sludge showed a significant increase in the mobile fractions of Zn, Cd, Cu, and Ni and a significant decrease in the mobile fraction of Pb compared to control. The high application rate of compost resulted in the lowest mobility of Cu, Ni, and Pb. The results suggest that biochemical properties of calcareous soil can be enhanced by both organic wastes. But, the high salinity and extractability of heavy metals, due to the addition of sewage sludge, may limit the application of sewage sludge.  相似文献   

18.
The aim of this study was to investigate how electromagnetic induction can be used to improve the characterization of N dynamics in a 1.2 ha pasture. The soil apparent electrical conductivity (ECa) was measured by electromagnetic induction using an EM38DD. At 116 locations, soil samples were taken according to a clustered sampling design, three times during one winter, and analyzed for the NO3–N content in the topsoil (0–60 cm). Management zones were delineated using a fuzzy k-means classification of the interpolated ECa measurements. Two ECa zones were found, reflecting mainly differences in soil texture. Since the mean NO3–N content was different for the two ECa zones (24 and 65 kg/ha in November 2002), the residuals were interpolated using stratified simple kriging. This allowed evaluating the NO3 dynamics during the winter in both zones; one ECa zone showed a higher risk for NO3 losses than the other calling for a site-specific N management. As a validation, NO3–N was interpolated using ordinary kriging without stratification. This resulted in similar zones confirming the usefulness of the ECa measurements to assess N-specific management zones, even within small fields.  相似文献   

19.
Site of nitrous oxide production in field soils   总被引:1,自引:0,他引:1  
Summary Nitrous oxide (N2O) fluxes at the soil surface and concentrations at 0.1, 0.2, and 0.3 m were determined in a 40-year-old planted tallgrass (XXX) prairie, a 40-year-old white pine (Pinus strobus) plantation, and field plots treated annually for 18 years either with 33 metric tons of manure ha–1 (330 kg N ha–1) and NH4NO3 (80 kg N ha–1) or with only NH4NO3 (control). Nitrous oxide fluxes from the prairie, forest, manure-amended, and control sites from 13 May to 10 November 1980 ranged from 0.2 to 1.3, 3.5 to 19.5, 3.7 to 79.0, and 1.7 to 24.8 ng N2O-N m–2s–1, respectively. We observed periods when there was no apparent relationship between the N2O flux from the surface and N2O concentrations in the soil profile. This was generally the case in the prairie and in the field sites following the application of N fertilizer. The N2O concentrations in the soil profile increased markedly and coincided with increased soil water content following periods of heavy rainfall for all sites except the prairie. Nitrous oxide concentration gradients indicate that following heavy rainfalls the site of N2O production was moved from the surface deeper into the soil profile. We suggest that the source of N2O production near the surface is nitrification and that N2O is produced by denitrification of NO3 leached into the soil following heavy rainfall.  相似文献   

20.
Nitrate-N (NO3 --N) pollution of water resources is a widely recognized problem. Water and nitrogen fertilizer are the two most important factors affecting NO3 --N movement to surface and groundwater. Field trials were conducted from 1998 to 2000 growing seasons to investigate the combined impacts of water table management (WTM) and N fertilization rate on NO3 --N concentration in the soil profile and in drain discharge. There were two water table treatments: free drainage (FD) with open drains at a 1.0 m depth from the soil surface and subirrigation (SI) with a target water table depth of 0.6 m below the soil surface, and two N fertilizer rates: 120 kg N ha-1 (N120) and 200 kg N ha-1 (N200) in a split-plot design. Compared to FD, SI reducedNO3 --N concentration in the soil by up to 50% averaged over the two N rates. Concentrations of NO3 --N in drainage water fromSI plots were lower than those from FD by 55 to 73%. These findings suggest that SI can be used as a means of reducing soil NO3 --N pollution and drainage water NO3 --N concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号