首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Propofol anaesthesia for surgery in late gestation pony mares   总被引:2,自引:0,他引:2  
Objective To characterize propofol anaesthesia in pregnant ponies. Animals Fourteen pony mares, at 256 ± 49 days gestation, undergoing abdominal surgery to implant fetal and maternal vascular catheters. Materials and methods Pre‐anaesthetic medication with intravenous (IV) acepromazine (20 µg kg?1), butorphanol (20 µg kg?1) and detomidine (10 µg kg?1) was given 30 minutes before induction of anaesthesia with detomidine (10 µg kg?1) and ketamine (2 mg kg?1) IV Maternal arterial blood pressure was recorded (facial artery) throughout anaesthesia. Arterial blood gas values and plasma concentrations of glucose, lactate, cortisol and propofol were measured at 20‐minute intervals. Anaesthesia was maintained with propofol infused initially at 200 µg kg?1 minute?1, and at 130–180 µg kg?1 minute?1 after 60 minutes, ventilation was controlled with oxygen and nitrous oxide to maintain PaCO2 between 5.0 and 6.0 kPa (37.6 and 45.1 mm Hg) and PaO2 between 13.3 and 20.0 kPa (100 and 150.4 mm Hg). During anaesthesia flunixin (1 mg kg?1), procaine penicillin (6 IU) and butorphanol 80 µg kg?1 were given. Lactated Ringer's solution was infused at 10 mL kg?1 hour?1. Simultaneous fetal and maternal blood samples were withdrawn at 85–95 minutes. Recovery from anaesthesia was assisted. Results Arterial blood gas values remained within intended limits. Plasma propofol levels stabilized after 20 minutes (range 3.5–9.1 µg kg?1); disposition estimates were clearance 6.13 ± 1.51 L minute?1 (mean ± SD) and volume of distribution 117.1 ± 38.9 L (mean ± SD). Plasma cortisol increased from 193 ± 43 nmol L?1 before anaesthesia to 421 ± 96 nmol L?1 60 minutes after anaesthesia. Surgical conditions were excellent. Fetal umbilical venous pH, PO2 and PCO2 were 7.35 ± 0.04, 6.5 ± 0.5 kPa (49 ± 4 mm Hg) and 6.9 ± 0.5 kPa (52 ± 4 mm Hg); fetal arterial pH, PO2 and PCO2 were 7.29 ± 0.06, 3.3 ± 0.8 kPa (25 ± 6 mm Hg) and 8.7 ± 0.9 kPa (65 ± 7 mm Hg), respectively. Recovery to standing occurred at 46 ± 17 minutes, and was generally smooth. Ponies regained normal behaviour patterns immediately. Conclusions and clinical relevance Propofol anaesthesia was smooth with satisfactory cardiovascular function in both mare and fetus; we believe this to be a suitable anaesthetic technique for pregnant ponies.  相似文献   

2.
Objective To compare the arterial pH and blood gas values, heart rate and mean arterial blood pressure, in hypoxaemic anaesthetized horses, before and after treatment, with a salbutamol (albuterol) aerosol. Animal population Eighty‐one client‐owned horses weighing between 114 and 925 kg. Fifty‐seven underwent emergency abdominal surgery and 24 were anaesthetized for elective procedures. Materials and methods Pre‐anaesthetic medication included xylazine, detomidine, butorphanol and morphine, alone or in various combinations. Induction of anaesthesia was achieved with guaifenesin and ketamine, diazepam and ketamine, or guaifenesin and thiopental. The trachea of all animals was intubated and anaesthesia maintained with either halothane (33 horses) or isoflurane (48 horses) in oxygen. Heart rate and rhythm were monitored continuously. Arterial blood pressure was monitored directly, and arterial blood collected for pH and blood gas analyses. When arterial PaO2 fell below 9.3 kPa (70 mm Hg) and failed to respond to corrective measures including positive pressure ventilation and treatment of hypotension (mean arterial blood pressures <70 mm Hg), a salbutamol aerosol (2 µg kg?1) was delivered via the endotracheal tube. Twenty minutes later, a second arterial blood sample was analysed. Results There were no significant differences in mean arterial blood pressure, heart rate, arterial pH, base excess and bicarbonate before and after treatment. Arterial O2 tension increased significantly from a mean ± SD of 8.3 ± 1.7 kPa (62.4 ± 13.1 mm Hg) before administration to 15.9 ± 9.8 kPa (119.4 ± 57.7 mm Hg) after treatment. There was a small but significant decrease in PaCO2 from 7.4 ± 1.5 kPa (55.2 ± 11.2 mm Hg) to 7.0 ± 1.3 kPa (52.9 ± 9.8 mm Hg) between sample times. No changes in heart rhythm were observed. A high percentage (approximately 70%) of animals sweated following treatment. Conclusions Salbutamol administered at a dose of 2 µg kg?1 via the endotracheal tube of anaesthetized horses with PaO2 values less than 9.3 kPa (70 mm Hg) resulted in an almost two‐fold increase in PaO2 values within 20 minutes of treatment. No changes in heart rate or mean arterial blood pressure were associated with the use of salbutamol in this study. The improvement in PaO2 may be a result of bronchodilatation and improved ventilation, increased perfusion secondary to an increase in cardiac output, or a combination of these two factors. Cardiac output and ventilation–perfusion distribution were not measured in this study; therefore, the reason for the increase in PaO2 values cannot be conclusively determined. Clinical relevance Administration of a salbutamol aerosol is a simple but effective technique that can be used to improve PaO2 values in hypoxaemic horses during inhalant anaesthesia with no apparent detrimental side effects.  相似文献   

3.
Four hundred and ninety horses were anaesthetised with halothane for clinical surgical or diagnostic procedures following induction with either detomidine/keta-mine, detomidine/thiopentone, xylazine/ketamine or guaiphenesin/thiopentone. Routine clinical monitoring was performed during anaesthesia. All horses developed hypotension (mean arterial pressures below 80 mm Hg) and respiratory depression (significant fall in respiratory rate and arterial carbon dioxide tension above 7 kPa (53 mm Hg)) consistent with the recognised effects of halothane. All anaesthetic procedures incorporating xylazine or detomidine resulted in lower pulse rates (28–35 per min) than after guaiphenesin/thiopentone (36–44 per min) and there was greater respiratory depression after techniques employing thiopentone rather than keta-mine. Development of hypotension was delayed after techniques using the α2 adrenoceptor agonist agents (xylazine and detomidine), particularly detomidine. Prernedication with acepromazine did not affect any of the physiological variables measured after techniques employing detomidine. Recovery to standing was fastest after xylazine/ketamine (31±1 min) and slowest after detomidine/thiopentone (53±2 min). Recovery quality was best after detomidine/thiopentone and all techniques employing an α2 adrenoceptor agonist agent resulted in smoother recovery than after guaiphenesin/thiopentone. This study demonstrates that most of the physiological effects of individual induction agents are overridden by the cardiovascular and respiratory depressant effects of halothane. The study also shows that detomidine is an acceptable sedative for use before general anaesthesia with halothane in horses.  相似文献   

4.
This study evaluated the antinociceptive and physiologic effects of xylazine (X) and detomidine (D) administered intrathecally (IT) at the lumbosacral space, before and after the injection of atipamezole (A) IV. The study was approved by the National Animal Protection Authorities. Five adult healthy female sheep were anaesthetized with propofol on four occasions to inject the following treatments IT: groups 1 and 2, 0.05 mg kg?1 X (2 mg mL?1 saline) IT; groups 3 and 4, 0.01 mg kg?1 D (0.5 mg mL?1 saline) IT ( Waterman et al. 1988 ). Nociceptive threshold (TH) was tested by applying pulsed and stepwise enhanced direct current ( Ludbrook et al. 1995 ) at one hind leg pastern and noting the current at the moment of foot lift. Maximum current applied was 40 mA. Baseline TH was measured twice before anaesthesia and every 10 minutes when the sheep regained consciousness. Atipamezole was given IV immediately after reaching maximum analgesic action of X and D as defined by two equal or decreasing TH values and measurements were continued for 90 minutes. The dose of A for groups 1 and 3 was 0.005 mg kg?1 (0.25 mg mL?1 saline) IV, and for groups 2 and 4 was 0.0025 mg kg?1 A (0.25 mg mL?1 saline) IV. Heart rate (HR), mean direct arterial pressure (MAP), PaO2 and PaCO2 were measured. The differences between measurements recorded before and after treatment were analysed using a paired t‐test for the drug effects and a nonparametric Wilcoxon's rank sum test for the comparison between groups. A p‐value < 0.05 was considered significant. All sheep were able to stand before A IV. Threshold baseline value was 4.5 ± 1.7 (mean ± SD) mA for all animals. Xylazine caused a significantly higher TH rise (35.2 ± 1.8 mA), faster onset (21.1 ± 16.0 minutes) and longer duration of the TH enhancement (104.1 ± 8.6 minutes) than D (TH: 16.3 ± 7.8 mA, onset: 49.5 ± 28.4 minutes, duration: 59.3 ± 27.3 minutes). A significant increase in PaCO2 was observed in the X and D treated animals, 0.39 ± 0.21 kPa (2.9 ± 1.6 mm Hg) and 0.39 ± 0.29 kPa (2.9 ± 2.2 mm Hg), respectively. Heart rate was significantly decreased by ?21 ± 17 beats minute?1 for X animals and ?13 ± 13 beats minute?1 for D. Mean arterial pressure (?9 ± 13 mm Hg for X and ?1 ± 11 mm Hg for D animals) and PaO2 0.65 ± 1.32 kPa (4.9 ± 9.9 mm Hg) for X and 1.45 ± 4.19 kPa (10.9 ± 31.4 mm Hg) for D animals) did not change significantly. The nociceptive threshold was not affected by A in any group. Threshold values of all X treated animals before A was 39.3 ± 1.4 mA and after was 37.2 ± 6.3 (group 1) and 40 ± 0 (group 2). Threshold values of all D treated animals before A was 21.0 ± 8.3 and after was 19.4 ± 7.3 (group 3) and 24.8 ± 8.0 (group 4). At the dosages administered intrathecally in this study, X and to a lower degree D induce antinociception without major physiologic changes. Atipamezole up to 0.005 mg kg?1 IV does not affect the resulting antinociception as assessed by electrical stimulation.  相似文献   

5.
Six ponies were anaesthetised for two hours with intermittent injections of a combination of guaiphenesin (72 mg/kg/hr), ketamine (1.4 mg/kg/hr) and detomidine (0.015 mg/kg/hr) after premedication with detomidine 0.01 mg/kg and induction of anaesthesia with guaiphenesin 50 mg/kg and ketamine 2 mg/kg. Induction of anaesthesia was smooth, the ponies were easily intubated and after intubation breathed 100% oxygen spontaneously. During anaesthesia mean pulse rate ranged between 31–44 beats per minute and mean respiratory rate between 12–23 breaths per minute. Mean arterial blood pressure remained between 110–130 mm Hg, mean arterial carbon dioxide tension between 6.1–6.9 kPa and pH between 737–7.42. Arterial oxygen tension was over 23 kPa throughout anaesthesia. Plasma glucose increased to more than 25 mmol per litre during anaesthesia; there was no change in lactate or ACTH concentration and plasma cortisol concentration decreased. Recovery was rapid and smooth. A guaiphenesin, ketamine and detomidine combination appeared to offer potential as a total intravenous technique for maintenance of anaesthesia in horses.  相似文献   

6.
This clinical study analysed the anaesthetic sparing effect of a medetomidine constant rate infusion (CRI) during isoflurane anaesthesia in horses. Forty healthy horses undergoing different types of orthopaedic and soft tissue surgeries were studied in a randomized trial. Orthopaedic surgeries were primarily arthroscopies and splint bone extractions. Soft tissue surgeries were principally castrations with one ovariectomy. All horses received 0.03 mg kg?1 acepromazine IM 1 hour prior to sedation. Group A (11 orthopaedic and nine soft tissue surgeries), was sedated with 1.1 mg kg?1 xylazine IV, group B (13 orthopaedic and seven soft tissue surgeries) with 7 µg kg?1 medetomidine IV. Anaesthesia was induced in both groups with 2.2 mg kg?1 ketamine and diazepam 0.02 mg kg?1 IV. Maintenance of anaesthesia was with isoflurane (ISO) in 100% oxygen, depth of anaesthesia was always adjusted by the first author. Group B received an additional CRI of 3.5 µg kg?1 hour?1 medetomidine. Respiratory rate (RR), heart rate (HR), mean arterial blood pressure (MAP), Fe ′ISO and Fe ′CO2 were monitored with a methane insensitive monitor (Cardiocap 5, Ohmeda, Anandic, Diessenhofen) and noted every 5 minutes. Arterial blood was withdrawn for gas analysis (PaO2, PaCO2) 5 minutes after the induction of anaesthesia and every 30 minutes thereafter. Dobutamine (DOB) was given as a CRI to maintain mean arterial blood pressure above 70 mm Hg. Data were averaged over time (sum of measurements/number of measurements) and tested for differences between groups by unpaired t‐tests. There were no significant differences between the groups in terms of body mass (group A, 508 ± 73.7 kg; group B, 529.25 ± 78.4 kg) or duration of anaesthesia (group A, 125.5 ± 36 minutes; group B, 121.5 ± 48.4 minutes). The mean Fe ′ISO required to maintain a surgical plane of anaesthesia was significantly higher in group A (1.33 ± 0.13%) than in group B (1.07 ± 0.19%; p = 2.78 × 10?5). Heart rate was different between the two groups (group A, 42.2 ± 8.3; group B, 32.6 ± 3.5; p = 8.8 × 10?5). Dobutamine requirements were higher in group A (group A, 0.72 ± 0.24 μg kg?1 minute?1; group B, 0.53 ± 0.23 μg kg?1 minute?1; p = 0.023). Respiratory rate, Fe ′CO2, PaO2, PaCO2 were not different between the groups. Adjustment of anaesthetic depth subjectively was easier with the medetomidine infusion and isoflurane (group B) than with isoflurane as a sole agent (group A). In group A 12 horses and in group B five horses showed purposeful movements on 27 (A) and 12 (B) occasions. They were given thiopental (group A, 0.0114 mg kg?1 minute?1; group B, 0.0023 mg kg?1 minute?1). In group A, a further 17 horses were given ketamine to deepen anaesthesia (52 occasions, 0.00426 mg kg?1 minute?1) whereas in group B only nine horses needed ketamine (34 occasions, 0.00179 mg kg?1 minute?1). An infusion of 3.5 µg kg?1 MED during ISO anaesthesia resulted in a significantly reduced ISO requirement.  相似文献   

7.
Objective To characterize responses to different doses of propofol in horses pre‐medicated with xylazine. Animals Six adult horses (five females and one male). Methods Each horse was anaesthetized four times with either ketamine or propofol in random order at 1‐week intervals. Horses were pre‐medicated with xylazine (1.1 mg kg?1 IV over a minute), and 5 minutes later anaesthesia was induced with either ketamine (2.2 mg kg?1 IV) or propofol (1, 2 and 4 mg kg?1 IV; low, medium and high doses, respectively). Data were collected continuously (electrocardiogram) or after xylazine administration and at 5, 10 and 15 minutes after anaesthetic induction (arterial pressure, respiratory rate, pH, PaO2, PaCO2 and O2 saturation). Anaesthetic induction and recovery were qualitatively and quantitatively assessed. Results Differences in the quality of anaesthesia were observed; the low dose of propofol resulted in a poorer anaesthetic induction that was insufficient to allow intubation, whereas the high dose produced an excellent quality of induction, free of excitement. Recorded anaesthesia times were similar between propofol at 2 mg kg?1 and ketamine with prolonged and shorter recovery times after the high and low dose of propofol, respectively (p < 0.05; ketamine, 38 ± 7 minutes; propofol 1 mg kg?1, 29 ± 4 minutes; propofol 2 mg kg?1, 37 ± 5 minutes; propofol 4 mg kg?1, 50 ± 7 minutes). Times to regain sternal and standing position were longest with the highest dose of propofol (32 ± 5 and 39 ± 7 minutes, respectively). Both ketamine and propofol reversed bradycardia, sinoatrial, and atrioventricular blocks produced by xylazine. There were no significant alterations in blood pressure but respiratory rate, and PaO2 and O2 saturation were significantly decreased in all groups (p < 0.05). Conclusion The anaesthetic quality produced by the three propofol doses varied; the most desirable effects, which were comparable to those of ketamine, were produced by 2 mg kg?1 propofol.  相似文献   

8.
Objective To compare the characteristics of anaesthesia induced with four dose combinations of ketamine/medetomidine. Design Prospective randomized study. Animals Five female New Zealand White (NZW) rabbits of approximately 2.3 kg. Methods Rabbits were given one of four drug combinations (25/0.25; 15/0.5; 15/0.25 and 10/0.5 mg kg?1 IM) on four successive occasions with a four day interval. Response to injection and then arterial blood gas and cardiovascular parameters were recorded at predetermined time points. Toe and ear pinch reflexes gave measures of total duration of surgical anaesthesia and total sleep time. Analyses used repeated measures analysis of variance. Results Induction was smooth with little reaction to injection and intubation achieved easily. Two combinations (15/0.25, 10/0.5) produced moderate hypoxaemia (mean pO2 < 8.0 kPa) and two (25/0.25, 15/0.5) very marked hypoxaemia (mean pO2 < 5.3 kPa). This was reversed within 15 minutes of oxygen administration and all rabbits recovered uneventfully. Heart rates fell in all cases, with only minimal effects on arterial blood pressure and no cardiac arrhythmias. Mean duration of surgical anaesthesia was significantly longer for dose groups 25/0.25 (57 ± 12 minutes) and 15/0.5 (59 ± 17 minutes, p = 0.01) compared to dose group 15/0.25 (27 ± 8 minutes). Only three animals in the 10/0.5 mg kg?1 group achieved surgical anaesthesia. Mean duration of loss of the ear pinch reflex was similar between doses, being, respectively, 64 ± 13, 81 ± 7, 60 ± 22 and 62 ± 24 minutes. Sleep time was significantly longer for the 15/0.5 dose (112 ± 10 minutes) compared to 15/0.25 (86 ± 22 minutes, p = 0.04). Sleep times for the 25/0.25 and 10/0.5 mg kg?1 doses were, respectively, 103 ± 23 and 108 ± 12 minutes. Conclusions Ketamine/medetomidine reliably produces smooth induction and recovery in the NZW rabbit, but due to the degree of hypoxaemia produced, should only be used with simultaneous provision of oxygen. Clinical relevance Currently recommended dose rates of ketamine/medetomidine for minor procedures such as ovariohysterectomy in rabbits (25 mg/0.5 mg kg?1) are unnecessarily high; a dose of 15/0.25 mg kg?1 should be adequate for 15–30 minutes of surgical anaesthesia.  相似文献   

9.
ObjectiveTo investigate a combination of azaperone, detomidine, butorphanol and ketamine (DBK) in pigs and to compare it with the combination of azaperone, tiletamine and zolazepam (TZ).Study designProspective, randomized, blinded, cross–over study.AnimalsTwelve clinically healthy crossbred pigs aged about 2 months and weighing 16–25 kg.MethodsPigs were pre–medicated with azaperone (4 mg kg?1). Ten minutes later anaesthesia was induced with intramuscular DBK (detomidine 0.08 mg kg?1, butorphanol 0.2 mg kg?1, ketamine 10 mg kg?1) or TZ (tiletamine and zolazepam 5 mg kg?1). The pigs were positioned in dorsal recumbency. Heart and respiratory rates, posture, anaesthesia score, PaO2, PaCO2, pH and bicarbonate concentration were measured. t–test was used to compare the areas under time–anaesthesia index curve (AUCanindex) between treatments. Data concerning heart and respiratory rates, PaO2, PaCO2 and anaesthesia score were analysed with anova for repeated measurements. Wilcoxon signed rank test was used for the data concerning the duration of sedation and anaesthesia.ResultsThe sedation, analgesia and anaesthesia lasted longer after DBK than TZ. The AUCanscore were 863 ± 423 and 452 ± 274 for DBK and TZ, respectively (p = 0.002). The duration of surgical anaesthesia lasted a median of 35 minutes (0–105 minutes) after DBK and a median of 15 minutes (0–35 minutes) after TZ (p = 0.05). Four pigs after DBK and six after TZ did not achieve the plane of surgical anaesthesia. The heart rate was lower after DBK than after TZ. Both treatments had similar effects on the other parameters measured.ConclusionsAt the doses used DBK was more effective than TZ for anaesthesia in pigs under field conditions.Clinical relevanceThe combinations can be used for sedation and minor field surgery in pigs. The doses and drugs chosen were insufficient to produce a reliable surgical plane of anaesthesia in these young pigs.  相似文献   

10.
ObjectiveTo evaluate the effects of medetomidine, midazolam and ketamine (MMK) in captive gorillas after premedication with oral zuclopenthixol.Study designCase series.AnimalsSix gorillas, two males and four females, aged 9–52 years and weighing 63–155 kg.MethodsThe gorillas were given zuclopenthixol dihydrochloride 0.2 ± 0.05 mg kg?1 per os twice daily for 3 days for premedication. On the day of anaesthesia the dose of zuclopenthixol was increased to 0.27 mg kg?1 and given once early in the morning. Anaesthesia was induced with medetomidine 0.04 ± 0.004 mg kg?1, midazolam 0.048 ± 0.003 mg kg?1 and ketamine 4.9 ± 0.4 mg kg?1 intramuscularly (IM). Upon recumbency, the trachea was intubated and anaesthesia was maintained on 1–2% isoflurane in oxygen. Physiological parameters were monitored every 10 minutes and arterial blood gas analysis was performed once 30–50 minutes after initial darting. At the end of the procedure, 42–115 minutes after initial darting, immobilisation was antagonized with atipamezole 0.21 ± 0.03 mg kg?1 and sarmazenil 5 ± 0.4 μg kg?1 IM.ResultsRecumbency was reached within 10 minutes in five out of six animals. One animal required two additional darts before intubation was feasible. Heart rate ranged from 60 to 85 beats minute?1, respiratory rate from 17 to 46 breaths minute?1 and temperature from 36.9 to 38.3 °C. No spontaneous recoveries were observed and anaesthetic level was stable. Blood gas analyses revealed mild respiratory acidosis, and mean PaO2 was 24.87 ± 17.16 kPa (187 ± 129 mmHg) with all values being above 13.4 kPa (101 mmHg). Recovery was smooth and gorillas were sitting within 25 minutes.Conclusion and clinical relevanceThe drug combination proved to be effective in anaesthetizing captive gorillas of various ages and both sexes, with minimal cardio-respiratory changes.  相似文献   

11.
Objective To investigate the cardiopulmonary effects of a xylazine–guaiphenesin–ketamine infusion combined with inter‐coccygeal extradural (lidocaine) anaesthesia in calves. Study design Prospective study. Animals Five Holstein Friesian calves (one steer, four heifers) aged 6 weeks weighing 65.2 ± 2.7 kg. Materials and methods Calves were anaesthetized with isoflurane in oxygen for instrumentation. At least 12 hours later, xylazine (0.2 mg kg?1 IM) was given. After 15 minutes, an infusion of xylazine hydrochloride (0.1 mg mL?1), guaiphenesin (50 mg mL?1) and ketamine (1 mg mL?1) (X–G–K) was infused at a rate of 1.1 mL kg?1 hour?1 IV. Oxygen (4 L minute?1) was delivered by nasotracheal tube 30 minutes later. Inter‐coccygeal (Co1–Co2) extradural anaesthesia (lidocaine 2%, 0.18 mL kg?1) was administered 30 minutes later. Cardiopulmonary variables were obtained in the unsedated standing calves 10 minutes after xylazine, 15 and 30 minutes after X–G–K without O2, 15 and 30 minutes after X–G–K with O2 and 5, 15, 30, 45 and 60 minutes after extradural anaesthesia. Data were analysed using a repeated measurement analysis of variance including an autoregressive covariance structure of order 1 (correlations at different time intervals). Results Xylazine caused significant (p < 0.05) decreases in heart rate (HR), cardiac output (Qt) and index (CI), stroke volume and stroke index, mean, systolic and diastolic arterial blood pressure (MAP, SAP, DAP), left (LVWSI) and right ventricular stroke work index (RVWSI), mean, systolic and diastolic pulmonary arterial pressure (MPAP, SPAP, DPAP), arterial pH, arterial oxygen tension (PaO2), arterial base excess, arterial HCO3? concentration, arterial saturation, packed cell volume, arterial and venous oxygen content (CaO2, CvO2), O2 consumption and O2 delivery (V?O2, ?O2). Increases in systemic vascular resistance (SVR) and pulmonary vascular resistance (PVR) were observed. During X–G–K infusion without O2, HR, Qt and CI increased gradually while SVR, PVR and MAP decreased. Left ventricular stroke work index and PaO2 remained constant, while O2 supplementation improved PaO2. Coccygeal extradural anaesthesia had little effect on cardiopulmonary variables. Respiratory rate (f) and PaCO2 significantly increased over the experiment. Conclusions and clinical relevance Xylazine caused adverse cardiopulmonary effects in calves. Improvement occurred during xylazine–guiaphenesin–ketamine infusion. Cardiac index and arterial blood pressure remained below baseline values while sustained increases in respiration rate and PaCO2 were observed. Inter‐coccygeal extradural anaesthesia had only minor effects. Oxygen supplementation proved advantageous during guiaphenesin, ketamine and xylazine infusion in healthy calves in combination with coccygeal extradural anaesthesia induced persistent cardiopulmonary depression.  相似文献   

12.
ObjectiveTo describe the pharmacokinetics of detomidine and yohimbine when administered in combination.Study designRandomized crossover design.AnimalsNine healthy adult horses aged 9 ± 4 years and weighing of 561 ± 56 kg.MethodsThree dose regimens were employed in the current study. 1) 0.03 mg kg?1 detomidine IV (D), 2) 0.2 mg kg?1 yohimbine IV (Y) and 3) 0.03 mg kg?1 detomidine IV followed 15 minutes later by 0.2 mg kg?1 yohimbine IV (DY). Each horse received all three dose regimens with a minimum of 1 week in between subsequent regimens. Blood samples were obtained and plasma analyzed for detomidine and yohimbine concentrations by liquid chromatography-mass spectrometry. Data were analyzed using both non-compartmental and compartmental analysis.ResultsThe maximum measured detomidine concentrations were 76.0 and 129.9 ng mL?1 for the D and DY treatments, respectively. Systemic clearance and volume of distribution of detomidine were not significantly different for either treatment. There was a significant increase in the maximum measured yohimbine plasma concentrations from Y (173.9 ng mL?1) to DY (289.8 ng mL?1). Both the Cl and Vd for yohimbine were significantly less (6.8 mL minute?1 kg?1 (Cl) and 1.7 L kg?1 (Vd)) for the DY as compared to the Y treatments (13.9 mL minute?1 kg?1 (Cl) and 2.7 L kg?1 (Vd)). Plasma concentrations were below the limit of quantitation (0.05 and 0.5 ng mL?1) by 18 hours for both detomidine and yohimbine.Conclusion and clinical relevanceThe Cl and Vd of yohimbine were affected by prior administration of detomidine. The elimination half life of yohimbine remained unaffected when administered subsequent to detomidine. However, the increased plasma concentrations in the presence of detomidine has the potential to cause untoward effects and therefore further studies to assess the physiologic effects of this combination of drugs are warranted.  相似文献   

13.
Objectives To study in horses (1) the relationship between cardiovascular variables and muscle perfusion during propofol–ketamine anaesthesia, (2) the physiological effects of a single intravenous (IV) detomidine injection, (3) the metabolic response of muscle to anaesthesia, and (4) the effects of propofol–ketamine infusion on respiratory function. Study design Prospective experimental study. Animals Seven standardbred trotters, 5–12 years old, 416–581 kg. Methods Anaesthesia was induced with intravenous (IV) guaifenesin and propofol (2 mg kg?1) and maintained with a continuous IV infusion of propofol (0.15 mg kg?1 minute?1) and ketamine (0.05 mg kg?1 minute?1) with horses positioned in left lateral recumbency. After 1 hour, detomidine (0.01 mg kg?1) was administered IV and 40–50 minutes later anaesthesia was discontinued. Cardiovascular and respiratory variables (heart rate, cardiac output, systemic and pulmonary artery blood pressures, respiratory rate, tidal volume, and inspiratory and expiratory O2 and CO2) and muscle temperature were measured at pre‐determined times. Peripheral perfusion was measured continuously in the gluteal muscles and skin using laser Doppler flowmetry (LDF). Muscle biopsy samples from the left and right gluteal muscles were analysed for glycogen, creatine phosphate, creatine, adenine nucleotides, inosine monophosphate and lactate. Arterial blood was analysed for PO2, PCO2, pH, oxygen saturation and HCO3. Mixed venous blood was analysed for PO2, PCO2, pH, oxygen saturation, HCO3, cortisol, lactate, uric acid, hypoxanthine, xanthine, creatine kinase, creatinine, aspartate aminotransferase, electrolytes, total protein, haemoglobin, haematocrit and white blood cell count. Results Circulatory function was preserved during propofol–ketamine anaesthesia. Detomidine caused profound hypertension and bradycardia and decreased cardiac output and muscle perfusion. Ten minutes after detomidine injection muscle perfusion had recovered to pre‐injection levels, although heart rate and cardiac output had not. No difference in indices of muscle metabolism was found between dependent and independent muscles. Anaerobic muscle metabolism, indicated by decreased muscle and creatine phosphate levels was evident after anaesthesia. Conclusion Muscle perfusion was closely related to cardiac output but not arterial blood pressure. Total intravenous anaesthesia with propofol–ketamine deserves further study despite its respiratory depression effects, as the combination preserves cardiovascular function. Decreases in high‐energy phosphate stores during recovery show that muscle is vulnerable after anaesthesia. Continued research is required to clarify the course of muscle metabolic events during recovery.  相似文献   

14.
Acepromazine, a phenothiazine tranquilizer, causes hypotension in standing horses ( Parry et al. 1982 ). However, a retrospective study ( Taylor & Young 1993 ) showed that acepromazine pre‐anesthetic medication did not affect arterial blood pressure (MAP) in anaesthetized horses. This study examined the effects of acepromazine on MAP during romifidine–ketamine–halothane anaesthesia in horses anaesthetized for various surgical procedures. Forty‐four horses were allocated by block randomization to groups A and B. Group A received acepromazine 0.05 mg kg?1 IM 30 minutes before induction of anaesthesia, group B did not. All horses received romifidine 0.1 mg kg?1 IV 5 minutes before anaesthesia was induced with diazepam 0.05 mg kg?1 and 2.2 mg kg?1 ketamine IV. The horses' trachea were intubated and horses breathed 50% oxygen and 50% nitrous oxide plus halothane (concentration adjusted as required clinically) from a circle breathing system. Nitrous oxide was discontinued after 10 minutes and analgesics, flunixin 1.1 mg kg?1 and either morphine 0.1 mg kg?1 or butorphanol 0.05 mg kg?1 (matched for horses undergoing the same procedure) administered IV. The facial or dorsal metatarsal artery was catheterized for direct measurement of MAP (every 10 min) and withdrawal of blood for gas analysis (every 30 min). The electrocardiogram (ECG) was monitored continuously with a 10 seconds printout obtained every 10 minutes. Intermittent positive pressure ventilation (IPPV) was instigated if PaCO2 exceeded 9.3 kPa (70 mm Hg). Dobutamine was infused (1.0–5.0 kg?1minute?1) if MAP < 58 mm Hg and was continued until MAP > 70 mm Hg. Mean age, weight and duration of anaesthesia were compared between the groups using a t‐test for independent samples. Gender distribution and numbers of horses requiring IPPV or dobutamine were compared between groups using a chi‐squared test (with Yates correction). To compare MAP over time, the area under the curve (MAPAUC) was calculated and compared between groups using a t‐test. Horses receiving dobutamine were excluded from MAPAUC and MAP comparisons. The ECG printouts were examined for arrhythmias. There were no significant differences between groups (p > 0.05). Group A contained three stallions, 10 geldings and nine mares, aged 6.3 years (range 0.75–18). Group B comprised eight stallions, 11 geldings and three mares aged 7.3(1–16) years. Duration of anaesthesia was group A 97 (50–140) minutes, group B 99 (50–160) minutes. Eight horses in group A and three in group B required IPPV. Nine horses in group A and four in group B received dobutamine. Mean arterial pressure ranged from 60 to 128 mm Hg in group A and 58–96 mm Hg in group B. Mean MAPAUC was 5941 mm Hg minute?1 in group A, in B 6000 mm Hg minute?1. Atrial pre‐mature complexes were recorded from one horse in group B. No other arrhythmias were detected. Although MAP was lower in the acepromazine group, this appeared unlikely to cause a clinical problem. The incidence of arrhythmias was too low to determine the influence of acepromazine in this study.  相似文献   

15.
ObjectiveTo determine the pharmacokinetics and pharmacodynamics of the neurosteroidal anaesthetic, alfaxalone, in horses after a single intravenous (IV) injection of alfaxalone, following premedication with acepromazine, xylazine and guaiphenesin.Study designProspective experimental study.AnimalsTen (five male and five female), adult, healthy, Standardbred horses.MethodsHorses were premedicated with acepromazine (0.03 mg kg?1 IV). Twenty minutes later they received xylazine (1 mg kg?1 IV), then after 5 minutes, guaiphenesin (35 mg kg?1 IV) followed immediately by IV induction of anaesthesia with alfaxalone (1 mg kg?1). Cardiorespiratory variables (pulse rate, respiratory rate, pulse oximetry) and clinical signs of anaesthetic depth were evaluated throughout anaesthesia. Venous blood samples were collected at strategic time points and plasma concentrations of alfaxalone were assayed using liquid chromatography-mass spectrometry (LC/MS) and analysed by noncompartmental pharmacokinetic analysis. The quality of anaesthetic induction and recovery was scored on a scale of 1–5 (1 very poor, 5 excellent).ResultsThe median (range) induction and recovery scores were 4 (3–5) (good: horse slowly and moderately gently attained recumbency with minimal or no rigidity or paddling) and 4 (1–5) (good: horse stood on first attempt with some knuckling and ataxia) respectively. The monitored cardiopulmonary variables were within the range expected for clinical equine anaesthesia. The mean ± SD durations of anaesthesia from induction to sternal recumbency and from induction to standing were 42.7 ± 8.4 and 47 ± 9.6 minutes, respectively. The mean ± SD plasma elimination half life (t1/2), plasma clearance (Clp) and volume of distribution (Vd) for alfaxalone were 33.4 minutes, 37.1 ± 11.1 mL minute?1 kg?1 and 1.6 ± 0.4 L kg?1, respectively.Conclusions and clinical relevanceAlfaxalone, in a 2-hydroxypropyl-beta-cyclodextrin formulation, provides anaesthesia with a short duration of recumbency that is characterised by a smooth induction and satisfactory recovery in the horse. As in other species, alfaxalone is rapidly cleared from the plasma in the horse.  相似文献   

16.
Objective To measure the effects of dobutamine infusion on fetal oxygenation during isoflurane anaesthesia in pregnant ewes. Study design Prospective randomized experimental study. Animals Seven clinically normal adult pregnant Rambouillet‐Dorset cross ewes with fetuses of 117–122 days gestational age. Methods The ewes were anaesthetized with ketamine (2 mg kg?1) IM, and isoflurane (FE′ISO 2.0%) in oxygen. After instrumentation and stabilization, dobutamine was infused at 4 µg kg?1minute?1 for 60 minutes and 10 µg kg?1minute?1 for 60 minutes in random order, separated by a 20‐minute washout period. Catheters were placed in the maternal and fetal carotid arteries; these were used for continuous blood pressure measurement and intermittent blood sampling. Results Maternal mean systemic carotid arterial pressure was 60 mm Hg prior to dobutamine infusion. After 5 minutes of dobutamine infusion, fetal oxygen saturation increased (p < 0.05) from 0.62 (0.17–0.71, minimum–maximum) to 0.72 (0.28–0.78) at a dose of 4 µg kg?1minute?1 and to 0.70 (0.20–0.73) at a dose of 10 µg kg?1minute?1. These increases were maintained during the infusion and were not significantly different between doses. Maternal oxygen saturation remained constant at 1.0 before and during all infusions. Although maternal heart rate and blood pressure increased (p < 0.05) by 90% and 25%, respectively, with dobutamine, this stimulant effect was not evident in the corresponding fetal variables. Maternal haemoglobin concentration increased 30% (p < 0.05) with each infusion. Conclusions Dobutamine at 4 µg kg?1minute?1 increases fetal oxygenation that is not improved by a dose of 10 µg kg?1minute?1. This increase is largely due to an increase in maternal haemoglobin concentration that, in turn, increases oxygen delivery to the placenta. Clinical relevance The use of dobutamine to treat hypotension in pregnant sheep during isoflurane anaesthesia improves fetal oxygenation. This may be true in other species.  相似文献   

17.
ObjectiveTo test if the addition of butorphanol by constant rate infusion (CRI) to medetomidine–isoflurane anaesthesia reduced isoflurane requirements, and influenced cardiopulmonary function and/or recovery characteristics.Study designProspective blinded randomised clinical trial.Animals61 horses undergoing elective surgery.MethodsHorses were sedated with intravenous (IV) medetomidine (7 μg kg?1); anaesthesia was induced with IV ketamine (2.2 mg kg?1) and diazepam (0.02 mg kg?1) and maintained with isoflurane and a CRI of medetomidine (3.5 μg kg?1 hour?1). Group MB (n = 31) received butorphanol CRI (25 μg kg?1 IV bolus then 25 μg kg?1 hour?1); Group M (n = 30) an equal volume of saline. Artificial ventilation maintained end-tidal CO2 in the normal range. Horses received lactated Ringer’s solution 5 mL kg?1 hour?1, dobutamine <1.25 μg kg?1 minute?1 and colloids if required. Inspired and exhaled gases, heart rate and mean arterial blood pressure (MAP) were monitored continuously; pH and arterial blood gases were measured every 30 minutes. Recovery was timed and scored. Data were analyzed using two way repeated measures anova, independent t-tests or Mann–Whitney Rank Sum test (p < 0.05).ResultsThere was no difference between groups with respect to anaesthesia duration, end-tidal isoflurane (MB: mean 1.06 ± SD 0.11, M: 1.05 ± 0.1%), MAP (MB: 88 ± 9, M: 87 ± 7 mmHg), heart rate (MB: 33 ± 6, M: 35 ± 8 beats minute?1), pH, PaO2 (MB: 19.2 ± 6.6, M: 18.2 ± 6.6 kPa) or PaCO2. Recovery times and quality did not differ between groups, but the time to extubation was significantly longer in group MB (26.9 ± 10.9 minutes) than in group M (20.4 ± 9.4 minutes).Conclusion and clinical relevanceButorphanol CRI at the dose used does not decrease isoflurane requirements in horses anaesthetised with medetomidine–isoflurane and has no influence on cardiopulmonary function or recovery.  相似文献   

18.
As a result of anatomic and physiologic differences, draft breeds may be at greater risk of developing anesthetic complications. The aim of the study was to evaluate and compare anesthetic management of draft (DR) and light (LT) horses. A case‐matched retrospective study of 371 clinical case records of DR (124 cases) and LT (247 cases) horses presented for general anesthesia between 1991 and 1998 was performed. Data were tabulated and comparisons were made using Student's t‐test (significance p < 0.05). Prior to induction, there were significant differences in mean body weight, rectal temperature, PCV, RBC, and serum TP concentration between DR and LT breeds. There were differences in mean doses of pre‐operative butorphanol (LT 21 µg kg?1; DR 17 µg kg?1), induction guaifenesin (LT 99 mg kg?1; DR 88 mg kg?1), and intraoperative ketamine (LT 0.35 mg kg?1; DR 0.56 mg kg?1) required. There were no significant differences in the mean doses of pre‐operative xylazine, detomidine, or induction barbiturate administered. The mean, average, and maximum concentrations of inspired halothane were significantly higher for DR than for LT horses. Draft horses received 33% less intraoperative IV fluids (8.2 mL kg?1 hour?1) than LT horses. Mean anesthetic duration, time to extubation, and standing recovery were not significantly different. Induction complications were not reported for either group. Rates of occurrence of intraoperative bradycardia, hypercarbia, hypoxemia, and metabolic acidosis (SBE, TCO2, and bicarbonate concentration) did not differ significantly. Average MAP was greater in DR horses, but neither the degree nor the mean duration of hypotension differed between DR and LT horses. Mean PaO2 was significantly lower in DR (246 mm Hg, 32.8 kPa) than in LT (305 mm Hg, 40.7 kPa) breeds. Draft horses were at greater relative risk of hypoventilation than LT horses. The greater MAP and requirement for halothane and intraoperative ketamine may indicate problems in achieving and maintaining a surgical plane of anesthesia. Draft horses may be at a greater risk of ventilation–perfusion mismatching.  相似文献   

19.
Same‐day mass sterilization of feral cats requires rapid onset, short‐duration anesthesia. The purpose of this study was to compare our current anesthetic protocol, Telazol–ketamine–xylazine (TKX) with medetomidine–ketamine–buprenorphine (MKB). Feral female cats received either IM TKX (n = 68; 0.25 mL cat?1; tiletamine 12.5 mg, zolazepam 12.5 mg, K 20 mg, and X 5 mg per 0.25 mL) or MKB (n = 17; M 40 µg kg?1, K 15 mg kg?1, and B 10 µg kg?1). Intervals measured included time from injection to recumbency, time to surgery, duration of surgery, and time from reversal of anesthesia (TKX: yohimbine 0.50 mg cat?1 IV; MKB: atipamezole 0.50 mg cat?1 IM) to sternal recumbency. Following instrumentation (Vet/Ox 4403 and Vet/BP Plus 6500), physiological measurements were recorded at 5‐minute intervals, and included rectal temperature, heart rate (HR), respiratory rate (RR), SpO2 (lingual or rectal probes), and indirect mean arterial blood pressure (MAP) (oscillometric method). Nonparametric means were compared using Mann–Whitney U‐tests. Parametric means were compared using a two‐factorial anova with Bonferroni's t‐tests. The alpha‐priori significance level was p < 0.05. Values were mean ± SD. Body weight (TKX: 2.9 ± 0.5 kg, MKB: 2.7 ± 0.7 kg), time to recumbency (TKX: 4 ± 1 minutes, MKB: 3 ± 1 minutes), time to surgery (TKX: 28 ± 7 minutes, MKB: 28 ± 5 minutes), and duration of surgery (TKX: 11 ± 7 minutes, MKB: 8 ± 5 minutes) did not differ between groups. In contrast, MKB cats required less time from reversal to sternal recumbency (TKX: 68 ± 41 minutes, MKB: 7 ± 2 minutes) and were recumbent for shorter duration (TKX: 114 ± 39 minutes, MKB: 53 ± 6 minutes). Temperature decreased during the study in both groups, but overall temperature was higher in MKB cats (38.0 ± 0.95 °C) than in TKX cats (37.5 ± 0.95 °C). RR, HR, and SpO2 did not change during the study in either group. However, overall HR and RR were higher in TKX cats (RR: 18 ± 8 breaths minute?1, HR: 153 ± 30 beats minute?1) compared to MKB cats (RR: 15 ± 7 breaths minute?1, HR: 128 ± 19 beats minute?1). In contrast, overall SpO2 was lower in the TKX group (90 ± 6%) compared to the MKB group (94 ± 4%). MAP was also lower in the TKX group (112 ± 29 mm Hg) compared to that in the MKB group (122 ± 20 mm Hg). However, MAP increased in the TKX group during surgery compared to pre‐surgical values, but did not change in the MKB group. The results of this study suggested that MKB might be more suitable as an anesthetic for the purpose of mass sterilization of feral female cats.  相似文献   

20.
ObjectiveTo study the effects of oromucosal detomidine gel administered sublingually to calves prior to disbudding, and to compare its efficacy with intravenously (IV) administered detomidine.Study designRandomised, prospective clinical study.AnimalsTwenty dairy calves aged 12.4 ± 4.4days (mean ± SD), weight 50.5 ± 9.0 kg.MethodsDetomidine at 80 μg kg?1 was administered to ten calves sublingually (GEL) and at 30 μg kg?1 to ten control calves IV (V. jugularis). Meloxicam (0.5 mg kg?1) and local anaesthetic (lidocaine 3 mg kg?1) were administered before heat cauterization of horn buds. Heart rate (HR), body temperature and clinical sedation were monitored over 240 minutes. Blood was collected from the V. cephalica during the same period for drug concentration analysis. Pharmacokinetic variables were calculated from the plasma detomidine concentration-time data using non-compartmental methods. Statistical analyses compared routes of administration by Student’s t-test and linear mixed models as relevant.ResultsThe maximum plasma detomidine concentration after GEL was 2.1 ± 1.2 ng mL?1 (mean ±SD) and the time of maximum concentration was 66.0 ± 36.9 minutes. The bioavailability of detomidine was approximately 34% with GEL. Similar sedation scores were reached in both groups after administration of detomidine, but maximal sedation was reached earlier in the IV group (10 minutes) than in the GEL group (40 minutes). HR was lower after IV than GEL from 5 to 10 minutes after administration. All animals were adequately sedated, and we were able to administer local anaesthetic without resistance to all of the calves before disbudding.Conclusions and clinical relevanceOromucosally administered detomidine is an effective sedative agent for calves prior to disbudding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号