首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A mathematical model of litter size in swine was developed from ovulation rate, potential embryonic viability and uterine capacity. The model assumed that ovulation rate was reduced to potentially viable embryos by factors innate to the ovum and embryo. Potentially viable embryos then could be further reduced to uterine capacity, the maximum number of fetuses that a female can carry to term. Consequently, litter size can be no greater than either ovulation rate or uterine capacity. Means and variances of ovulation rate and potential embryonic viability used in the model were based on experimental results. The mean and variance of uterine capacity were varied until the simulated mean and variance of litter size were equal to experimental results. Simulated results of relationships among ovulation rate, embryo survival and litter size were similar to observed experimental relationships. Heritabilities of simulated litter size and embryo survival were similar to literature values when the heritability of ovulation rate was set at .25 and the heritability of uterine capacity was set at either .15 or .20. Litter size was simulated for 25 combinations of average ovulation rate and uterine capacity to develop equations relating mean ovulation rate and uterine capacity to litter size, embryo survival and correlations among them. Results suggest that changing either ovulation rate or uterine capacity independently will not result in large changes in litter size. Consequently, the model suggests that a single gene, hormonal manipulation or nutritional change will not result in large increases in litter size and that combinations of factors will be needed to increase litter size.  相似文献   

2.
An experiment of selection for ovulation rate was carried out. Animals were derived from a synthetic line first selected 12 generations for litter size, then 10 generations for uterine capacity. Selection was relaxed for 6 generations. Selection was based on the phenotypic value of ovulation rate with a selection pressure on does of 30%. Males were selected from litters of does with the highest ovulation rate. Males were selected within sire families in order to reduce inbreeding. Ovulation rate was measured in the second gestation by a laparoscopy, 12 days after mating. Each generation had about 80 females and 20 males. Results of three generations of selection were analyzed using Bayesian methods. Marginal posterior distributions of all unknowns were estimated by Gibbs sampling. Heritabilities of ovulation rate (OR), number of implanted embryos (IE), litter size (LS), embryo survival (ES), fetal survival (FS), and prenatal survival (PS) were 0.44, 0.32, 0.11, 0.26, 0.35, and 0.14, respectively. Genetic correlation between OR and LS was 0.56, indicating that selection for ovulation rate can augment litter size. Response to selection for OR was 1.80 ova. Correlated responses in IE and LS were 1.44 and 0.49, respectively. Selection for ovulation rate may be an alternative to improve litter size.  相似文献   

3.
The response per generation to 10 generations of mass selection for ovulation were 0.49 ova, ?1.6% in embryo survival and 0.06 piglets per litter at birth. Line differences (select-control) in generation 9 and 10 gilts and sows ranged from 3.4 to 5 ova. Control line gilts and sows had 5.4 to 10.6% higher embryo survival to days 30 and 70 of gestation than did select line females. One generation of random selection followed by four generations of litter size selection, selection for decreased age at puberty or relaxed ovulation rate selection in the high ovulation rate line has resulted in lines that differed from the control line in litter size at birth by 0.78 ± 0.22, 0.37 ± 0.39 and 0.84 ± 0.52 pigs per litter at first, second and third parity, respectively. These results were used to derive a selection index to increase litter size by selection for its components (ovulation rate, OR, and embryo survival, ES). A technique of selection based on laparotomy to increase the number of females tested with a given set of farrowing places is presented. Rate of response in LS from use of the selection index, I = 10.6 OR + 72.6 ES, in a population of 40 farrowing females and 15 males per generation, is expected to increase litter size 2.5 times faster than selection on LS due to higher selection intensity and optimum emphasis on the component traits.  相似文献   

4.
Studies on a base population of mice were used to establish an index of components of litter size and a physiological model for measuring uterine capacity to be used subsequently in a selection experiment evaluating alternative methods for practicing selection to increase litter size. Heritability estimates of litter size, ovulation rate and ova success (fraction of ova resulting in fully formed pups) were .18, .33 and .15, respectively. No significant genetic or phenotypic correlation was found between overall ovulation rate and ova success. Phenotypic means and genetic variances were higher for characteristics measured on the right than on the left side of the reproductive tract. Linear and quadratic selection indexes, derived for a quadratic definition of breeding value, were compared. The linear index was predicted to be .99 as efficient as the quadratic one. Due to simplicity, the linear index (I = 1.21 x ovulation rate + 9.05 x ova success), scaled to have variance the same as litter size, was chosen for use. Ovulation rate in unilaterally ovariectomized females was .95 of that in females with both ovaries. No hypertrophy of the ipsilateral uterine horn in unilaterally ovariectomized females was found before implantation of embryos. Thus, unilateral ovariectomy appears to provide a physiological state to measure uterine capacity (as litter size) in the mouse.  相似文献   

5.
A simulation model of litter size in swine based on ovulation rate, uterine capacity and potential embryo viability was compared to three genetic models to clarify its genetic characteristics. The simulation model is equivalent to independent culling based on fixed levels of potentially viable embryos and uterine capacity. Litter size also can be described by a combination of additive, additive x additive, mean environment x additive, random environment and additive x random environment effects. A third genetic model that can describe the simulation model is the associative effects model, in which litter size is the result of grouping two genotypes. The fixed independent culling levels model predicts that genetic parameters will change as the component means change. This genetic model also predicts that selection on an index of ovulation rate and uterine capacity would improve selection response for litter size. This genetic model predicts asymmetry of correlated responses in ovulation rate and uterine capacity when selecting for high and low litter size. The nonadditive genetic model predicts covariances among relatives that are different from their additive relationships; however, simulated results did not detect any differences. The nonadditive genetic model also predicts that heterosis for litter size will differ among crosses based on the mean environment and on additive x additive genetic interaction. The associative effects model predicts that selection for litter size will always lead to a positive response in litter size.  相似文献   

6.
The variance and covariance components estimated from an experimental flock of Rambouillet sheep were used to predict response in litter size to direct and indirect selection. Indirect traits considered were ovulation rate and scrotal circumference. Ovulation rate was the most useful indirect selection criterion for genetic improvement of litter size. Expected response in litter size to indirect selection on ovulation rate was 93% as large as the expected response to direct selection on litter size. Selection based on an index of litter size and ovulation rate was estimated to produce 123% as much response in litter size as selection on litter size alone, and selection on an index of litter size, ovulation rate, and scrotal circumference resulted in 133% as much response in litter size as direct selection on litter size.  相似文献   

7.
Selection was conducted on an index of components of litter size (I = 1.21 x ovulation rate + 9.05 x ova success; ovulation rate measured by number of corpora lutea and ova success measured as number of pups born + number of corpora lutea), on uterine capacity (measured as number of pups born to unilaterally ovariectomized dams) and on litter size concurrent with an unselected control for 13 generations. Selection criteria (IX = index, UT = uterine capacity, LS = litter size and LC = control) were applied in each of three replicates. In an evaluation after five generations, IX and LS each exceeded LC by about .5 pups, with no response in UT. After 13 generations, mean ovulation rate, ova success and litter size (measured as number of fetuses at 17 d gestation in intact females) were, for IX, 14.25, .84, 11.95; for LS, 14.15, .82, 11.64; for UT, 12.61, .86, 10.77; and for LC, 12.27, .82, 9.98. The regression of number born (litter size in IX, LS and LC; uterine capacity with only a functional left uterine horn in UT) on cumulative selection differential across 13 generations was .12 +/- .01, .09 +/- .02 and .08 +/- .02 for IX, LS and UT, respectively. The regression of breeding value for litter size on each selection criterion, estimated as response in the generation-13 evaluation divided by cumulative selection differential, was .11 +/- .02, .08 +/- .01 and .05 +/- .03 for IX, LS and UT, respectively. Regression of response in number born on generation number was .17 +/- .01, .15 +/- .04 and .10 +/- .02 for IX, LS and UT, respectively. Selection in IX was promising relative to LS, and selection in UT changed number born.  相似文献   

8.
Data on ovulation rate, litter size and embryo survival of 364 Sardi (S), D'man (D), S x DS, DS x S, S x D, D X S (F1), F2, D x DS and DS x D ewes mated for first and second lambing to F1 rams were analyzed. Breed group, birth group and season had significant effects on ovulation rate and litter size but not on embryo survival. D'man ewes had the highest ovulation rate (2.79) and litter size (2.00), with an essentially linear increase in each of these variables with percentage of D'man inheritance in the ewe (b = .017 +/- .001 CL and .009 +/- .001 lambs born). Embryo survival was influenced only by the number of ova shed. D'man direct genetic effects were higher (P less than .01) than those of Sardi for ovulation rate (+1.78) and litter size (+1.08) but did not differ for embryo survival (-.07). Maternal effects differed little for any of the three traits. Individual heterosis estimates were negative and significant for ovulation rate but not significant for litter size and embryo survival. Maternal heterosis and epistatic recombination effects were small and not significant for any trait.  相似文献   

9.
A 10-generation divergent selection experiment for uterine capacity (UC) measured as litter size in unilaterally ovariectomized females was carried out in rabbits. A total of 2,996 observations on uterine capacity of does (up to four parities) was recorded. Laparoscopy was performed at d 12 of their second gestation, and ovulation rate (OR) and number of implanted embryos (IE) were recorded in 735 does. Prenatal survival (PS) was assessed as UC/OR, embryo survival (ES) as IE/OR, and fetal survival (FS) as UC/IE. Genetic parameters and genetic trends were inferred using Bayesian methods. Marginal posterior distributions of all unknowns were estimated by Gibbs sampling. Heritabilities of UC, OR, IE, ES, FS, and PS were 0.11, 0.32, 0.22, 0.04, 0.14, and 0.09, respectively. Genetic and phenotypic correlations between FS and ES were low, suggesting different biological mechanisms for the two periods of survival. After 10 generations of selection, the divergence was approximately 1.5 rabbits, or approximately 1% per generation. Approximately one-half of this response was obtained in the first two generations of selection, which may suggest the presence of a major gene segregating in the base population.  相似文献   

10.
Eleven generations of selection for increased index of ovulation rate and embryonal survival rate, followed by three generations of selection for litter size, were practiced. Laparotomy was used to count corpora lutea and fetuses at 50 d of gestation. High-indexing gilts, approximately 30%, were farrowed. Sons of dams in the upper 10% of the distribution were selected. Selection from Generations 12 to 14 was for increased number of fully formed pigs; replacements were from the largest 25% of the litters. A randomly selected control line was maintained. Responses at Generation 11 were approximately 7.4 ova and 3.8 fetuses at 50 d of gestation (P < .01) and 2.3 fully formed pigs (P < .01) and 1.1 live pigs at birth (P < .05). Responses at Generation 14 were three fully formed pigs (P < .01) and 1.4 live pigs (P < .05) per litter. Number of pigs weaned declined (P < .05) in the index line. Total litter weight weaned did not change significantly. Ovulation rate and number of fetuses had positive genetic correlations with number of stillborn pigs per litter. Significantly greater rate of inbreeding and increased litter size at 50 d of gestation in the select line may have contributed to greater fetal losses in late gestation, greater number of stillborn pigs, and lighter pigs at birth, leading to lower preweaning viability. Heritabilities of traits were between 8 and 25%. Genetic improvement programs should emphasize live-born pigs and perhaps weight of live-born pigs because of undesirable genetic relationships of ovulation rate and number of fetuses with numbers of stillborn and mummified pigs and because birth weight decreased as litter size increased.  相似文献   

11.
A population of chimeras was made by aggregating 8- and 16-cell embryos from two mouse strains: a randomly bred line (C) and a selected line characterized by large litters (JU), with litter sizes of 7.7 and 13.5, respectively. The two genotypes were developmentally "balanced", as judged by the high frequency (90%) of chimeras with an intermediate or high degree of coat-color chimerism, a chimeric sex ratio of 2.2:1 males:females, and a high percentage of chimeras (31% of males, 71% of females) with germ cells of both strains. Litter size characteristics, including ovulation rate, implantation rate, rates of pre- and postimplantation embryo survival and number born were studied in the female chimeras and compared with the performance of both parent lines and to the genetic cross of the two lines. Values for JU females exceeded those for C females for all parameters studied except postimplantation embryo survival, which was the same for both lines in second litters and was lower for JU's third litters. For most traits, means for genetic crossbreds and chimeras were similar, regardless of whether the means were at or above the midparent average. In contrast, for ovulation rate and body weight, genetic crossbreds and chimeras clearly differed, with chimeric females being similar to the JU line and genetic crossbred females exhibiting additive inheritance. Because of phenotypic differences between experimental chimeras and crossbreds produced from the same two lines, chimeras may provide a useful model for studying the physiologic basis for expression of genetic differences in quantitative traits.  相似文献   

12.
Three breeds of Javanese sheep are described briefly and data suggesting the segregation of a gene with large effect on ovulation rate and litter size are presented. The three breeds are Javanese Thin Tail (JTT), Javanese Fat Tail (JFT) and Semarang (SEM), the last possibly a substrain of JTT. All three breeds have mean mature ewe weights under 30 kg. Ovulation rate and litter size did not differ significantly among the three; all had litter sizes of up to 4 or 5 with a mean for mature ewes of approximately 2. Ovulation rate ranged from 1 to 5 and had an average within-breed repeatability of .8 within season and .65 between seasons. Within-breed repeatability of litter size was .35 +/- .06. Prenatal survival in pregnant ewes with two, three and four or more ovulations averaged 93, 88 and 86% over two seasons. Dams that had at least one ovulation rate or litter size record greater than or equal to 3 produced two groups of daughters in approximately equal numbers: one group with many records greater than or equal to 3 and mean ovulation rate and litter size of 2.73 and 2.31, respectively, and one group with ovulation rates and litter sizes of 1 or 2 and corresponding means of 1.39 and 1.38. Dams with ovulation rate or litter size records of only 1 or 2 produced daughters in which over 90% had records of only 1 or 2. Estimated heritabilities for the mean of approximately three ovulation rate or litter size records from these daughter-dam comparisons exceeded .7. These results suggest segregation of a Booroola-type gene, one copy of which increases ovulation rate by about 1.3 and litter size by .9 to 1.0. Relationships between duration of estrus and ovulation rate, and between timing of release of luteinizing hormone and number of eggs shed, resemble the pattern in Booroola Merino more closely than that in Finnish Landrace or Romanov, supporting the hypothesis of a major gene.  相似文献   

13.
Genetic parameters for the splayleg (SL) condition were estimated from 37,673 records of pigs from six lines derived from a Large White-Land-race base population. Random selection for 22 generations was practiced in Lines C1 and C2. Line C2 was derived from C1 at Generation 8. Selection lines were as follows: 1) Line I, selected 11 generations for an index of ovulation rate and embryonic survival followed by 11 generations of selection for litter size; 2) Line IOL, derived from Line I at Generation 8 and which underwent eight generations of two-stage selection for ovulation rate and number of fully formed pigs per litter followed by four generations of litter size selection; 3) Line COL, derived from Line C1 at Generation 8 and selected eight generations in two stages for ovulation rate and number of fully formed pigs followed by four generations of litter size selection; and 4) Line T, selected 12 generations for increased testis size. From logistic models, it was found that boars were 224% more likely to have SL than gilts (P < 0.01). Decreases in birth weight, dam age at puberty, dam nipple number, and dam embryonic survival, and increases in dam litter size and inbreeding increased the odds of SL (P < 0.05). Direct and maternal heritabilities of SL were 0.07 and 0.16, respectively, and the correlation between direct and maternal effects was -0.24. Correlations between direct genetic effects for SL and number born alive, nipple number, birth weight, age at puberty, and embryonic survival were -0.19, -0.36, 0.23, -0.19, and -0.32, respectively. Except for the correlation of 0.32 between maternal effects for SL and direct effects for number of live pigs, correlations of SL maternal genetic effects with direct genetic effects of other traits were less than 0.11. Annual direct genetic trends (%) for SL in I, IOL, COL, T, C1, and C2 were -0.003 +/- 0.003, 0.121 +/- 0.012, -0.273 +/-0.009, 0.243 +/-0.014, -0.274 +/-0.004, and 0.086 +/-0.008, respectively; annual maternal genetic trends (%) were 0.106 +/-0.004, 0.508 +/-0.019, 0.383 +/-0.015, 0.527 +/-0.024, 0.188 +/-0.005, and 0.113 +/-0.012, respectively. Annual genetic maternal trend in Line I after Generation 12 was 0.339 +/-0.014. Maternal breeding value for SL is expected to increase as a correlated response to selection for increased litter size and increased size of testes.  相似文献   

14.
Effects of a high-energy diet on reproduction were studied in 300 mice from lines selected for litter size and(or) 6-wk BW (L+, increased litter size; W+, increased body weight; L+W-, increased litter size and decreased body weight; L-W+, decreased litter size and increased body weight; and K, randomly selected control). Mice received a high-energy diet (HED; 3.8 kcal/g of ME) or a standard diet (STD; 3.3 kcal/g of ME) from 8 to 11 wk of age and were then mated and evaluated for ovulation rate and embryo survival through 17 d of gestation. The HED increased ovulation rate in all lines (P less than .05). The line x diet interaction was significant, with increased ovulation rate due to HED ranging from 9.9% in W+ to 24.2% in L-W+. Within-line regression coefficients of ovulation rate on ME intake (kilocalories from 10 to 11 wk) varied from .08 +/- .04 (P less than .05) in L+W- to .177 +/- .05 (P less than .01) in L+. In contrast, nonsignificant increases were observed in litter size (live fetuses at 17 d of gestation) due to HED. Effects of HED on embryo survival rate were significantly negative in L+ and L+W-; the decrease in L+ was a result of preimplantation losses, and the decrease in L+W- was due to postimplantation losses. The line x diet interaction was significant for postimplantation embryo survival. The results indicate significant genetic variation in reproductive responses to a high-energy diet in mice.  相似文献   

15.
Progesterone supplementation during early pregnancy may increase embryo survival in pigs. The current study evaluated whether oral supplementation with an analogue of progesterone, altrenogest (ALT), affects embryo survival. A first experiment evaluated the effect of a daily 20-mg dosage of ALT during days 1-4 or 2-4 after onset of oestrus on embryo survival at day 42 of pregnancy. A control group (CTR1) was not treated. The time of ovulation was estimated by transrectal ultrasound at 12-h intervals. Altrenogest treatment significantly reduced pregnancy rate when start of treatment was before or at ovulation: 25% (5/20) compared to later start of treatment [85% (28/33)] and non-treated CTR1 [100% (23/23)]. Altrenogest treatment also reduced (p < 0.05) number of foetuses, from 14.6 ± 2.6 in CTR1 to 12.5 ± 2.5 when ALT started 1-1.5 days from ovulation and 10.7 ± 2.9 when ALT started 0-0.5 days from ovulation. In a second experiment, sows with a weaning-to-oestrous interval (WOI) of 6, 7 or 8-14 days were given ALT [either 20 mg (ALT20; n = 49) or 10 mg (ALT10; n = 48)] at day 4 and day 6 after onset of oestrus or were not treated (CTR2; n = 49), and farrowing rate and litter size were evaluated. Weaning-to-oestrous interval did not affect farrowing rate or litter size. ALT did not affect farrowing rate (86% vs 90% in CTR2), but ALT20 tended to have a lower litter size compared with CTR2 (11.7 ± 4.1 vs 13.3 ± 3.1; p = 0.07) and ALT10 was intermediate (12.3 ± 2.9). In conclusion, altrenogest supplementation too soon after ovulation reduces fertilization rate and embryo survival rate and altrenogest supplementation at 4-6 days of pregnancy reduces litter size. As a consequence, altrenogest supplementation during early pregnancy may reduce both farrowing rate and litter size and cannot be applied at this stage in practice as a remedy against low litter size.  相似文献   

16.
The aim of this work was to evaluate the response in 10 generations of selection for ovulation rate in rabbits using a cryopreserved control population. Selection was based on the phenotypic value of ovulation rate estimated at d 12 of second gestation by laparoscopy. To produce the control population, embryos from 50 donor females and 18 males, belonging to the base generation of the line selected for ovulation rate, were recovered. A total of 467 embryos (72-h embryos) were vitrified and stored in liquid N(2) for 10 generations. The size of both populations was approximately 10 males and 50 females. The number of records used to analyze the different traits ranged from 99 to 340. Data were analyzed using Bayesian methodology. A difference between the selected and the control populations of 2.1 ova (highest posterior density interval (HPD(95%))[1.3, 2.9]) was observed in ovulation rate (OR), but it was not accompanied by a correlated response in litter size (LS; -0.3; HPD(95%) [-1.1, 0.5]). The number of implanted embryos (IE) increased with selection in 1.0 embryo (HPD(95%) [-0.6, 2.0]), but this increase was not relevant. Prenatal survival, embryonic survival, and fetal survival (FS) were calculated as LS/OR, IE/OR, and LS/IE, respectively. Prenatal survival was reduced with selection (-0.12; HPD(95%) [-0.20, -0.04]), basically because of a decrease in FS (-0.12; HPD(95%) [-0.19, -0.06]). Embryonic survival could have slightly decreased (-0.05; HPD(95%) [-0.12, 0.02]). In summary, comparison with a control population showed that ovulation rate in rabbits increased with selection without any correlated response in litter size, basically because of a decrease in fetal survival.  相似文献   

17.
The aim of this work was to evaluate the response to 10 generations of selection for ovulation rate. Selection was based on the phenotypic value of ovulation rate, estimated at d 12 of the second gestation by laparoscopy. Selection pressure was approximately 30%. Line size was approximately 20 males and 80 females per generation. Traits recorded were ovulation rate at the second gestation, estimated by laparoscopy as the number of corpora lutea in both ovaries; ovulation rate at the last gestation, estimated postmortem; ovulation rate, analyzed as a single trait including ovulation rate at the second gestation and ovulation rate at the last gestation; right and left ovulation rates; ovulatory difference, estimated as the difference between the right and left ovulation rates; litter size, estimated as the total number of kits born and the number of kits born alive, both recorded at each parity. Totals of 1,477 and 3,031 records from 900 females were used to analyze ovulation rate and litter size, respectively, whereas 1,471 records were used to analyze ovulatory difference, right ovulation rate, and left ovulation rate. Data were analyzed using Bayesian methodology. Heritabilities of ovulation rate, litter size, number of kits born alive, right ovulation rate, left ovulation rate, and ovulatory difference were 0.16, 0.09, 0.08, 0.09, 0.04 and 0.03, respectively. Phenotypic correlations of ovulation rate with litter size, number of kits born alive, and ovulatory difference were 0.09, 0.01, and 0.14, respectively. Genetic correlations of ovulation rate with litter size and with number of kits born alive were estimated with low accuracy, and there was not much evidence for the sign of the correlation. The genetic correlation between ovulation rate and ovulatory difference was positive (P = 0.91). In 10 generations of selection, ovulation rate increased in 1.32 oocytes, with most of the response taking place in the right ovary (1.06 oocytes), but there was no correlated response on litter size (-0.15 kits). In summary, the direct response to selection for ovulation rate was relevant, but it did not modify litter size because of an increase in prenatal mortality.  相似文献   

18.
The aim of this work is to study early embryo survival and development in 2 lines divergently selected for high and low uterine capacity throughout 10 generations. A total of 162 female rabbits from the high line and 133 from the low line were slaughtered at 25, 48, or 62 h of gestation. There were no differences in ovulation rate and fertilization rate between lines in any of the 3 stages of gestation. Embryo survival, estimated as the number of normal embryos recovered at a constant ovulation rate, was similar in both lines at 25 and 48 h. Embryo survival was greater in the high line [D (posterior mean of the difference between the high and low lines) = 0.57 embryos] at 62 h of gestation. There was no difference in embryonic stage of development at 25 h, but at 48 and 62 h of gestation, the high line, compared with the low line, had a greater percentage of early morulae (83 vs. 72%) and compacted morulae (55 vs. 38%). Divergent selection for uterine capacity appeared to modify embryo development, at least from 48 h of gestation, and embryo survival from 62 h.  相似文献   

19.
Our objective was to evaluate the correlated responses to selection for litter size and its components after 10 generations of divergent selection for uterine capacity (UC). A total of 294 intact females from the 11th and 12th generations of divergent selection for high and low UC and from a cryopreserved control population was used (139, 112, and 43 females, respectively). Uterine capacity was assessed as litter size in unilaterally ovariectomized females. Traits recorded on females for up to five parities were litter size (LS) and number born alive (NBA). Laparoscopy was performed in all females at d 12 of their second parity, and the ovulation rate (OR) and number of implanted embryos (IE) were recorded in these females. Embryo survival (ES = IE/OR), fetal survival (FS = LS/IE), and prenatal survival (PS = LS/OR) were computed. Correlated responses in LS and in its components were inferred using Bayesian methods. Correlated responses in LS were asymmetric. The divergence between high and low lines was 2.35 kits, mainly because of a higher correlated response in the low line (1.88 kits). The lower LS in the low line was associated with a lower PS (control - low = 0.14), because of decreases in ES and FS.  相似文献   

20.
Plasma follicle-stimulating hormone (FSH) was evaluated in gilts from two studies in which ovulation rate was increased through direct selection for number of corpora lutea (CL) to determine whether selection for ovulation rate affected FSH secretion during prepubertal development. In the first study, 76 control and 110 selected gilts of University of Nebraska gene pool lines were bled twice during prepubertal development. Plasma FSH concentrations were greater (P < 0.05) at 53 (13.5%) and 75 (21.3%) d of age in selected than in control gilts. In the second study, 254 control gilts, 261 gilts from a line selected for ovulation rate, and 256 gilts from a line selected for uterine capacity were bled at three prepubertal ages. Plasma FSH was greater (P < 0.05), relative to controls, on d 34 (> 24%), 55 (> 13%), and 85 (> 10%) in White Composite gilts selected for either increased ovulation rate or for greater uterine capacity. Unilateral ovariectomy and hysterectomy were performed at 160 d of age on random gilts in these three lines (n = 377); weights of these organs were evaluated to determine whether selection affected their development. Ovarian and uterine weights were less (P < 0.01) in the control than in the ovulation rate line. Subsequently, ovulation rate was determined during pregnancy (n > or = 130 gilts/line). Controls had fewer (P < 0.01) CL (14.6) than gilts of the ovulation rate line (17.7) but numbers similar (P > 0.10) to those of gilts of the uterine capacity line (14.7). Within each line, plasma FSH only on d 85 correlated positively with subsequent ovulation rate (P < 0.03, 0.001, and 0.08; r = 0.17, 0.30, and 0.15 for control, ovulation rate, and uterine capacity lines, respectively). Ovarian weight at 160 d of age also correlated with subsequent ovulation rate (P < 0.03 and 0.001; r = 0.23 and 0.38) in control and ovulation rate gilts but not in uterine capacity gilts (P > 0.10; r = 0.11). Gilts selected for increased number of CL, in two independent studies, had greater concentrations of FSH during prepubertal development than respective controls. The modest but significant, positive association of FSH at 85 d of age with subsequent ovulation rate provides additional support for using plasma FSH in prepubertal gilts to indirectly select for ovulation rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号