首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
A novel photoperiod response gene, designated Ppd-B2, was mapped to wheat chromosome arm 7BS, using a set of lines carrying various segments of 7BS from the early flowering breeding line ‘F26-70 7B’ in a background of the variety ‘Favorit’. The gene was 4.4 cM distal of the microsatellite locus Xgwm0537 and 20.7 cM proximal to Xgwm0255. In contrast to the well-characterized Ppd-1 genes, which require short days for expression, Ppd-B2 was detected when plants were exposed to a long photoperiod. The accelerated flowering produced by Ppd-B2 was correlated with increased grain protein content.  相似文献   

2.
Lengthening the late reproductive phase (LRP) of stem elongation in wheat (Triticum aestivumL.), by changing its photoperiod sensitivity independently of the preceding phases, would improve the yield potential through increasing spike weight and the number of fertile florets at anthesis. This paper presents results of a two-year field experiment designed to determine the impact of Ppd-D1and Ppd-B1on (i) the duration of three pre-anthesis developmental phases, and (ii) spike weight and the number of fertile florets at anthesis under two photoperiods during the LRP (natural and an extension of six hours over that). Near isogenic lines of Mercia and single chromosome recombinant lines of Cappelle Desprez were used. Under natural photoperiod, Ppd-D1hastened time to anthesis ca. 500C d in both backgrounds by reducing each of the three pre-anthesis phases. Ppd-B1hastened the time to anthesis under natural photoperiod by 178C d, mainly by reducing the early reproductive phase. The response to photoperiod of the LRP under extended daylength depended on the Ppdlocus present: Ppd-D1was insensitive while Ppd-B1and the recessive controls were sensitive. For all lines, photoperiod treatments and years, the number of fertile florets was associated with spike dry weight at anthesis (R 2≅ 80%, p< 0.01) which, in turn, was positively related to the intercepted radiation accumulated during the LRP (R 2 45%, p< 0.05). Changing the duration of the LRP through extended photoperiod or through Ppd-D1produced similar results in both backgrounds and years. Thus, altering the duration of the LRP by manipulating photoperiod sensitivity may be an alternative to changing the fertile floret number in wheat. Nevertheless, as no particular allele was responsible for the photoperiod sensitivity only during the LRP, new alleles should be studied to identify the control of photoperiod sensitivity of individual phases to fine-tune the pre-anthesis wheat development.  相似文献   

3.
It has been hypothesised that wheat yields may be increased by lengthening the duration of the stemelongation phase. This paper reports studies on the effects of chromosomes carrying major photoperiod genes (Ppd-A1, Ppd-B1, Ppd-D1) in different genetic backgrounds, on responses to photoperiod before and after jointing, when the onset of stem elongation occurs, and on number of grains per spike. A field experiment considered the effects of two photoperiods on Chinese Spring and 12 substitution lines, in which chromosomes 2A, 2B or 2D had been substituted by those from four contrasting cultivars. The phase from seedling emergence to jointing (EM-JO) was more responsive than that from jointing to anthesis (JO-ANT), but no relationship was found between the duration of these phases. EM-JO length affected leaf and spikelet number and consequently grains per spike, but this component was further influenced by JO-ANT duration. Our results confirmed that the phases are independent in sensitivity, supporting the hypothesis that genetic manipulation of phase duration could enhance yield, but no evidence was found of any particular Ppd allele being responsible for major responses to photoperiod during stem elongation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Molecular markers for genic male sterility in Chinese cabbage   总被引:8,自引:1,他引:8  
M. Ying  F. Dreyer  D. Cai  C. Jung 《Euphytica》2003,132(2):227-234
The gms gene of Chinese cabbage (Brassica campestris ssp. chinensis) conferring a recessivegenic male sterility was mapped with AFLPmarkers. Four markers were found to betightly linked to the gene with a distanceof <1 cM using a mapping population of327 individuals. The AFLPs were cloned andsequenced. Sequence derived primers yieldedclearly distinguishable PCR fragmentsrepresenting sequences tightly linked tothe gms gene. The sequence taggedsite (STS) markers can be used for markerassisted selection of male sterile plantsamong segregating populations.  相似文献   

5.
The genotypes of photoperiod response genes Ppd-B1 and Ppd-D1 in Japanese wheat cultivars were determined by a PCR-based method, and heading times were compared among genotypes. Most of the Japanese wheat cultivars, except those from the Hokkaido region, carried the photoperiod-insensitive allele Ppd-D1a, and heading was accelerated 10.3 days compared with the Ppd-D1b genotype. Early cultivars with Ppd-D1a may have been selected to avoid damage from preharvest rain. In the Hokkaido region, Ppd-D1a frequency was lower and heading date was late regardless of Ppd-D1 genotype, suggesting another genetic mechanism for late heading in Hokkaido cultivars. In this study, only 11 cultivars proved to carry Ppd-B1a, and all of them carried another photoperiod-insensitive allele, Ppd-D1a. The Ppd-B1a/Ppd-D1a genotype headed 6.7 days earlier than the Ppd-B1b/Ppd-D1a genotype, indicating a significant effect of Ppd-B1a in the genetic background with Ppd-D1a. Early-maturity breeding in Japan is believed to be accelerated by the introduction of the Ppd-B1a allele into medium-heading cultivars carrying Ppd-D1a. Pedigree analysis showed that Ppd-B1a in three extra-early commercial cultivars was inherited from ‘Shiroboro 21’ by early-heading Chugoku lines bred at the Chugoku Agriculture Experimental Station.  相似文献   

6.
Summary Photoperiod response of flowering in common bean (Phaseolus vulgaris L.) is thought to be controlled by the genes Ppd and Hr. However, cultivars also vary in the degree that cooler temperatures reduces their sensitivity to photoperiod. To examine the inheritance of this temperature sensitivity, crosses of cvs. Gordo x de Celaya and Flor de Mayo × Rojo 70 were evaluated at two sites differing in mean temperature and using 12.5-h natural photoperiod or 18-h artificially extended photoperiod. Under 18-h photoperiod at the warmer site, Palmira, no plants of the parents or of the F2 populations flowered, confirming that the parents were sensitive to photoperiod. Under 12.5-h photoperiod at the cooler site, Popayan, the parents for each cross flowered at similar dates and no segregation for days to flower was observed. However, under 18-h photoperiod, de Celaya and Rojo 70 and the F1 populations did not flower within 100 days after planting, while the F2 and F3 populations showed segregation that was consistent with single gene inheritance, late flowering being dominant. Late flowering at Popayan under 18-h photoperiod indicates a lack of temperature sensitivity, so temperature insensitivity of the photoperiod response was dominant to sensitivity. The name Tip, for temperature insensitivity of photoperiod response, is proposed for this gene, with the recessive form of this gene conditioning earlier flowering at cooler temperatures with long daylengths. It is recognized that the observed segregation patterns could represent the effect of multiple alleles at the Ppd or Hr loci, and studies are proposed to test this possibility with molecular markers and recombinant inbred lines.  相似文献   

7.
Resistance of chickpea against the disease caused by the ascomycete Ascochyta rabiei is encoded by two or three quantitative trait loci, QTL1, QTL2 and QTL3. A total of 94 recombinant inbred lines developed from a wide cross between a resistant chickpea line and a susceptible accession of Cicer reticulatum, a close relative of cultivated chickpea, was used to identify markers closely linked to QTL1 by DNA amplification fingerprinting in combination with bulked segregant analysis. Of 312 random 10mer oligonucleotides, 3 produced five polymorphic bands between the parents and bulks. Two of them were transferred to the population on which the recent genetic map of chickpea is based, and mapped to linkage group 4. These markers, OPS06-1 and OPS03-1, were linked at LOD-scores above 5 to markers UBC733B and UBC181A flanking the major ascochyta resistance locus. OPS06-1 mapped at the peak of the QTL between markers UBC733B (distance 4.1 cM) and UBC181A (distance 9.6 cM), while OPS03-1 mapped 25.1 cM away from marker UBC733B on the other flank of the resistance locus. STMS markers localised on this linkage group were transferred to the population segregating for ascochyta resistance. Three of these markers were closely linked to QTL1. Twelve of 14 STMS markers could be used in both populations. The order of STMS markers was essentially similar in both populations, with differences in map distances between them. The availability of flanking STMS markers for the major resistance locus QTL1 will help to elucidate the complex resistance against different Ascochyta pathotypes in future. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
Resistance to Fusarium oxysporum f.sp. melonis race 2 is conferred by a single dominant gene, Fom-1 in melon. Here, we identified DNA markers tightly linked to Fom-1 that could be used for marker assisted selection in breeding programs. First, we developed 125 F2 plants derived from the cross between melon lines P11 (fom-1fom-1) and MR-1 (Fom-1Fom-1). Using the F2 population, we constructed a linkage map including 14 SSR markers which had not been mapped previously. Fom-1 was confirmed to be allocated to linkage group 7. Then, we identified four AFLP markers using bulked segregant analysis. The AFLP marker TAG/GCC-470 was completely linked to Fom-1 and other three markers were mapped near Fom-1. TAG/GCC-470 and TCG/GGT-400 were respectively converted to STS and CAPS markers. Usefulness of DNA markers was confirmed in the analysis with several melon cultivars and lines.  相似文献   

9.
Heterosis is an important way to improve yield and quality for many crops. Hybrid rice and hybrid maize contributed to enhanced productivity which is essential to supply enough food for the increasing world population. The success of hybrid rice in China has led to a continuous interest in hybrid wheat, even when most research on hybrid wheat has been discontinued in other countries for various reasons including low heterosis and high seed production costs. The Timopheevii cytoplasmic male sterile system is ideal for producing hybrid wheat seeds when fertility restoration lines with strong fertility restoration ability are available. To develop PCR-based molecular markers for use in marker-assisted selection of fertility restorer lines, two F2 populations derived from crosses R18/ND36 and R9034/ND36 were used to map fertility restoration genes in the two elite fertility restorer lines (R-lines) R18 and R9034. Over 678 SSR markers were analyzed, and markers closely linked to fertility restoration genes were identified. Using SSR markers, a major fertility restoration gene, Rf3, was located on the 1B chromosome in both populations. This gene was partially dominant in conferring fertility restoration in the two restorer lines. SSR markers Xbarc207, Xgwm131, and Xbarc61 are close to this gene. These markers may be useful in marker-assisted selection of new restorer lines with T. timopheevii cytoplasm. Two minor QTL conferring fertility restoration were also identified on chromosomes 5A (in R18) and 7D (in R9034) in two R-lines.  相似文献   

10.
Summary The classical genetic map and molecular map of rice chromosome 11 were oriented to facilitate the use of these maps for genetic studies and rice improvement. Three morphological markers (d-27, z-2, and la) were crossed to a rice breeding line, IRBB21, which has the Xa-21 gene for bacterial blight resistance. Three F2 populations were analyzed with RFLP markers known to be located on chromosome 11. Segregation analysis of molecular markers and morphological markers was used to construct an RFLP map for each population. The recombination frequency between markers varied from population to population although the marker order on the maps was the same for all three populations. Based on a common set of markers mapped in the three populations, an integrated map was generated consisting of both RFLP and morphological markers. The genetic distance between markers on this map was determined by taking a weighted average of the data from the three populations. The oriented map serves as a bridge to understand the relationship between the classical and molecular linkage maps. Based on this information, the location of several genes on the classical map can be approximated with respect to RFLP markers without having to map them directly.  相似文献   

11.
Halo-blight is an important worldwide bacterial disease of common bean (Phaseolus vulgaris L.) caused by Pseudomonas syringae pv. phaseolicola. Nine races of the pathogen and five race-specific resistance genes have been previously described. However, a quantitative response to this pathogen has also been described. The objective of this study was to identify halo-blight resistance loci linked to molecular markers that could be used in resistance breeding. Chromosomal regions related to race 5 halo-blight resistance were localized on a genetic map of RAPD and AFLP molecular markers and constructed by the analysis of a “Jules” × “Canela” F2 progeny. “Jules” shows quantitative resistance to halo-blight and “Canela” is a very appreciated but susceptible Spanish bean landrace. Two QTL for resistance to halo-blight were mapped in two linkage groups. There were four large groups, with 14–22 molecular markers each, five with 4–8 markers each, and three with 2 or 3 markers each.  相似文献   

12.
郭志爱  赵光耀  任正隆  贾继增 《作物学报》2009,35(10):1764-1770
为深入认识光周期基因Ppd-B1的功能,在转录水平上研究其表达特点,通过cDNA与基因组DNA序列对比,发现Ppd-B1 mRNA加工存在选择性剪接,3个可选择剪接位点分别以外显子增加、5'剪接位点改变和内含子保留形式分布在5'UTR、第5外显子和第6内含子,其中前两种方式不引起蛋白保守结构域的改变,后种方式却导致基因移码突变。Ppd-B1选择性剪接可产生8种不同形式的转录本,其中4种含有完整的编码序列,能够翻译成功能蛋白,另4种表达丰度较低,不翻译或翻译时被提前终止。Ppd-B1不同转录本的相对表达量不同,而且这种差异受材料光周期反应特性和外界光周期环境的影响。  相似文献   

13.
A doubled haploid barley (Hordeum vulgare L.) population from a cross between the cultivar `Ingrid' and the Ethiopian landrace `Abyssinian' was mapped by AFLP, RFLP, SSR and STS markers and tested for resistance to isolates`4004', `2', `16-6', `17', `22' and `WRS 1872' of Rhynchosporium secalis (Oudem.) J.J. Davis, the causal agent of leaf scald. Resistance tests were conducted on parents, DH-lines, a near-isogenic line of `Abyssinian' (NIL) into `Ingrid', and an F2 population descended from the same F1 plants as the DHs. The DH population segregated for at least two major R. secalis resistance QTL. All isolates tested identified a major QTL on chromosome 3 (3H) associated with R. secalis resistance, in a 4 cM support interval between the co-segregating markers Bmac0209/Falc666 and MWG680. The QTL was linked with the markers Falc666 (2.3 cM), YLM/ylp (0.3 cM), MWG680 (1.7 cM), cttaca2 (2.5 cM) and agtc17 (9.8 cM). The second QTL was located on chromosome 1 (7H).However, this QTL was only detected by one isolate and was located in an interval of 16 cM in the distal part of the chromosome. At this QTL the allele for improved scald resistance originated from the parent `Ingrid'. There were a number of minor QTL on chromosomes 2 (2H), 4 (4H) and 6 (6H) that were not repeatable either across replications or analysis methods. The importance of checking QTL-models by cross-validation is stressed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
Flowering time is the most critical developmental stage in wheat, as it determines environmental conditions during grain filling. Thirty-five spring durum genotypes carrying all known allele variants at Ppd-1 loci were evaluated in fully irrigated field experiments for three years at latitudes of 41°N (Spain), 27°N (northern Mexico) and 19°N (southern Mexico). Relationships between weight of central grains of main spikes (W) and thermal time from flowering to maturity were described by a logistic equation. Differences in flowering time between the allele combination causing the earliest (GS100/Ppd-B1a) and the latest (Ppd-A1b/Ppd-B1a) flowering were 7, 20 and 18 days in Spain, northern Mexico and southern Mexico, respectively. Flowering delay drastically reduced the mean grain filling rate (R) and W at all sites. At autumn-sowing sites, an increase of 1°C in mean temperature during the first half of the grain filling period decreased W by 5.2 mg per grain. At these sites, W was strongly dependent on R. At the spring-sowing site (southern Mexico), W depended on both R and grain filling duration. Our results suggest that incorporating the allele combinations GS100/Ppd-B1a and GS105/Ppd-B1a (alleles conferring photoperiod insensitivity) in newly released varieties can reduce the negative effects of climate change on grain filling at the studied latitudes.  相似文献   

15.
Marker‐assisted selection may be useful for combining specific vernalization response (Vrn) alleles into a single wheat genotype for yield enhancement; however, DNA markers are only available for two of the three genes identified to date. The objectives of this study were to investigate reciprocal effects on days to heading using F2 populations generated by cross‐hybridizing near‐isogenic lines (NILs) carrying spring (Vrn‐B1; TDB) and winter (vrn‐B1; TDC) alleles, and to identify markers linked to Vrn‐B1 through genetic linkage analysis. Heading data were recorded for 91 and 89 progeny from reciprocal mapping populations TDB/TDC and TDC/TDB, respectively, and significant (P < 0.0001) reciprocal and dominance effects were detected. Among 207 amplified fragment length polymorphisms primer pairs and seven wheat microsatellite markers screened, two and one, respectively, were linked distally to Vrn‐B1 on wheat chromosome 5BL. Microsatellite Xgwm408 was most closely linked to Vrn‐B1 at 3.9 and 1.1 cM in the TDB/TDC and TDC/TDB map, respectively. Reciprocal differences in recombination distances emphasize the importance of female parent choice when generating mapping populations. Molecular markers are now available for three Vrn loci in wheat.  相似文献   

16.
Wheat landraces carry abundant genetic variation in heading and flowering times. Here, we studied flowering-related traits of two Nepalese varieties, KU-4770 and KU-180 and a Japanese wheat cultivar, Shiroganekomugi (SGK). These three wheat varieties showed similar flowering time in a common garden experiment. In total, five significant quantitative trait loci (QTLs) for three examined traits, the heading, flowering and maturation times, were detected using an F2 population of SGK/KU-4770. The QTLs were found at the Ppd-1 loci on chromosomes 2B and 2D and the 2B QTL was also confirmed in another F2 population of SGK/KU-180. The Ppd-D1 allele from SGK and the Ppd-B1 alleles from the two Nepalese varieties might be causal for early-flowering phenotype. The SGK Ppd-D1 allele contained a 2-kb deletion in the 5′ upstream region, indicating a photoperiod-insensitive Ppd-D1a allele. Real-time PCR analysis estimating the Ppd-B1 copy number revealed that the two Nepalese varieties included two intact Ppd-B1 copies, putatively resulting in photoperiod insensitivity and an early-flowering phenotype. The two photoperiod-insensitive Ppd-1 homoeoalleles could independently contribute to segregation of early-flowering individuals in the two F2 populations. Therefore, wheat landraces are genetic resources for discovery of alleles useful for improving wheat heading or flowering times.  相似文献   

17.
The Triticum dicoccoides-derived wheat line Zecoi-1 provides effective protection against powdery mildew. F3 segregation analysis of Chinese Spring × Zecoi-1 hybrids showed that resistance in line Zecoi-1 is controlled by a single dominant gene. Amplified fragment length polymorphism (AFLP) analysis of bulked segregants from F3s showing the homozygous resistant and susceptible phenotypes identified eight markers, of which four were associated with the resistance allele in repulsion phase. Following the assignment of these four repulsion phase AFLP markers to wheat chromosome 2B with the aid of Chinese Spring nulli-tetrasomic lines, they were physically mapped in the terminal breakpoint interval 0.89 (2BL-6)–1.00 (telomere) of chromosome 2BL. Genetic and physical mapping of simple sequence repeat markers from the distal half of chromosome 2BL located the wild emmer-derived powdery mildew resistance gene distal of breakpoint 0.89 in deletion line 2BL-6. Based on disease response patterns, genomic origin and chromosomal location the resistance gene in Zecoi-1 is temporarily designated MlZec1.  相似文献   

18.
The genetic basis of the photoperiod response in common bean (Phaseolus vulgaris L.) was investigated using DNA markers and recombinant inbred populations. Two loci affecting photoperiod response were resolved, the previously defined primary locus (Ppd), at which the dominant allele confers sensitivity to photoperiod, and a second locus (herein defined as Hr), which influences the degree to which a plant responds to photoperiod. The DNA marker P51600 cosegregated with the recessive allele, ppd, displaying a recombination frequency with the photoperiod locus of about 3%. A second marker, B303600, was linked to the recessive allele at Hr and mapped approximately 13 cM from this locus. The markers demonstrated that in crosses involving Redkloud and several photoperiod sensitive lines, insensitivity to photoperiod is primarily controlled by ppd and that Hr does not significantly affect flowering time in ppd/ppd plants under the environmental conditions used. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Fertility restoration by dominant nuclear genes is essential for hybrid breeding based on cytoplasmic male sterility (CMS) to obtain heterotic effects and high seed yields. In sunflower, only the PET1 sterility inducing cytoplasm has been used in commercial hybrid breeding until now. This particular male sterility was derived from an interspecific hybrid Helianthus petiolaris × H. annuus. For the recent work we used the segregating population RHA325(CMS) × HA342, based on the PET1 cytoplasm. Molecular markers were mapped within 1.1 cM around the restoration locus Rf1. At the distal side, the marker OP-K13_454 mapped at a distance of 0.9 cM and E32M36-155R at 0.7 cM from Rf1. At the proximal side the markers E44M70-275A, E42M76-125A and E33M61-136R were mapped at 0.1, 0.2, and 0.3 cM from the restorer locus, respectively. These markers provide an excellent basis for a map based cloning approach and for marker-assisted sunflower breeding.  相似文献   

20.
This study was conducted to determine the genetic control of resistance to loose smut caused by Ustilago tritici race T33 in two durum recombinant inbred line populations (DT662 × D93213 and Sceptre × P9162-BJ08*B) and to identify molecular markers linked to the resistance. Resistance in both populations was controlled by single genes. Two SSR markers were linked with loose smut resistance in the Sceptre × P9162-BJ08*B population. In DT662 × D93213, two AFLP, two wheat SSRs and one SCAR markers were linked to resistance. The SCAR marker, 3.2 cM distal to the smut resistance locus (Utd1) on chromosome 5BS, accounted for up to 64% of the variability in disease reaction; the other markers were proximal to Utd1 at genetic distances ranging from 5.9 to 35.9 cM. SSR markers Xgwm234 and Xgwm443 segregated in both crosses suggesting a common resistance gene. The SCAR and SSR markers can be used effectively for marker assisted selection to incorporate loose smut resistance into durum cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号