首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Evaluating irrigation performance in a Mediterranean environment   总被引:3,自引:0,他引:3  
Assessment of irrigation performance is a prerequisite for improving water use in the agricultural sector to respond to perceived water scarcity. Between 1996 and 2000, we conducted a comprehensive assessment of the performance of the Genil–Cabra irrigation scheme (GCIS) located in Andalusia, southern Spain. The area has about 7,000 ha of irrigated lands distributed in 843 parcels and devoted to a diverse crop mix, with cereals, sunflower, cotton, garlic and olive trees as principal crops. Irrigation is on demand from a pressurized system and hand-moved sprinkler irrigation is the most popular application method. Six performance indicators were used to assess the physical and economic performance of irrigation water use and management in the GCIS, using parcel water-use records and a simulation model. The model simulates the water-balance processes on every field and computes an optimal irrigation schedule, which is then checked against actual schedules. Among the performance indicators, the average irrigation water supply:demand ratio (the ratio of measured irrigation supply to the simulated optimum demand) varied among years from 0.45 to 0.64, indicating that the area is under deficit irrigation. When rainfall was included, the supply:demand ratio increased up to 0.87 in one year, although it was only 0.72 in the driest year, showing that farmers did not fully compensate for the low rainfall with sufficient irrigation water. Nevertheless, farmers in the area made an efficient use of rainfall, as indicated by the relatively high values (0.72–0.83) for the ratio of actual:attainable crop yields. Water productivity (WP) in the GCIS oscillated between 0.72 €/m3 and 1.99 €/m3 during the 4 years and averaged 1.42 €/m3 of water supplied for irrigation, while the irrigation water productivity (IWP) averaged 0.63 €/m3 for the period studied. WP is higher than IWP because WP includes production generated by rainfall, while IWP includes only the production generated by irrigation.Communicated by A. Kassam  相似文献   

2.
Irrigation performance assessments are required for hydrological planning and as a first step to improve water management. The objective of this work was to assess seasonal on-farm irrigation performance in the Ebro basin of Spain (0.8 million ha of irrigated land). The study was designed to address the differences between crops and irrigation systems using irrigation district data. Information was only available in districts located in large irrigation projects, accounting for 58% of the irrigated area in the basin. A total of 1617 records of plot water application (covering 10,475 ha) were obtained in the basin. Average net irrigation requirements (IRn) ranged from 2683 m3 ha−1 in regulated deficit irrigation (RDI) vineyards to 9517 m3 ha−1 in rice. Average irrigation water application ranged from 1491 m3 ha−1 in vineyards to 11,404 m3 ha−1 in rice. The annual relative irrigation supply index (ARIS) showed an overall average of 1.08. Variability in ARIS was large, with an overall standard deviation of 0.40. Crop ARIS ranged between 0.46 and 1.30. Regarding irrigation systems, surface, solid-set sprinkler and drip irrigated plots presented average ARIS values of 1.41, 1.16 and 0.65, respectively. Technical and economic water productivities were determined for the main crops and irrigation systems in the Aragón region. Rice and sunflower showed the lowest productivities. Under the local technological and economic constraints, farmers use water cautiously and obtain reasonable (yet very variable) productivities.  相似文献   

3.
Improvement of irrigation management in areas subjected to periods of water scarcity requires good knowledge of system performance over long time periods. We have conducted a study aimed at characterizing the behaviour of an irrigated area encompassing over 7000 ha in Southern Spain, since its inception in 1991. Detailed cropping pattern and plot water use records allowed the assessment of irrigation scheme performance using a simulation model that computed maximum irrigation requirements for every plot during the first 15 years of system operations. The ratio of irrigation water used to maximum irrigation requirements (Annual Relative Irrigation Supply, ARIS) was well below 1 and oscillated around 0.6 in the 12 years that there were no water supply restrictions in the district. The ARIS values varied among crops, however, from values between 0.2 and 0.3 for sunflower and wheat, to values approaching 1 for cotton and sugar beet. Farmer interviews revealed some of the causes for the low irrigation water usage which were mainly associated with the attempt to balance profitability and stability, and with the lack of incentives to achieve maximum yields in crops subsidized by the Common Agricultural Policy (CAP) of the European Union. The response to water scarcity was also documented through interviews and demonstrated that the change in crop choice is the primary reaction to an anticipated constraint in water supply. Water productivity (value of production divided by the volume of irrigation water delivered; WP) in the district was moderate and highly variable (around 2€ m−3) and did not increase with time. Irrigation water productivity (increase in production value due to irrigation divided by irrigation water delivered) was much lower (0.65€ m−3) and also, it did not increase with time. The lack of improvement in WP, the low irrigation water usage, and the changes in cropping patterns over the first 15 years of operation indicate that performance trends in irrigated agriculture are determined by a complex mix of technical, economic, and socio-cultural factors, as those that characterized the behaviour of the Genil-Cabra irrigation scheme.  相似文献   

4.
Borkhar district is located in an arid to semi-arid region in Iran and regularly faces widespread drought. Given current water scarcity, the limited available water should be used as efficient and productive as possible. To explore on-farm strategies which result in higher economic gains and water productivity (WP), a physically based agrohydrological model, Soil Water Atmosphere Plant (SWAP), was calibrated and validated using intensive measured data at eight selected farmer fields (wheat, fodder maize, sunflower and sugar beet) in the Borkhar district, Iran during the agricultural year 2004-2005. The WP values for the main crops were computed using the SWAP simulated water balance components, i.e. transpiration T, evapotranspiration ET, irrigation I, and the marketable yield YM in terms in terms of YMT−1, YM ET−1 and YM I−1.The average WP, expressed as $ T−1 (US $ m−3) was 0.19 for wheat, 0.5 for fodder maize, 0.06 for sunflower and 0.38 for sugar beet. This indicated that fodder maize provides the highest economic benefit in the Borkhar irrigation district. Soil evaporation caused the average WP values, expressed as YM ET−1 (kg m−3), to be significantly lower than the average WP, expressed as YMT−1, i.e. about 27% for wheat, 11% for fodder maize, 12% for sunflower and 0.18 for sugar beet. Furthermore, due to percolation from root zone and stored moisture content in the root zone, the average WP values, expressed as YMI−1 (kg m−3), had a 24-42% reduction as compared with WP, expressed as YM ET−1.The results indicated that during the limited water supply period, on-farm strategies like deficit irrigation scheduling and reduction of the cultivated area can result in higher economic gains. Improved irrigation practices in terms of irrigation timing and amount, increased WP in terms of YMI−1 (kg m−3) by a factor of 1.5 for wheat and maize, 1.3 for sunflower and 1.1 for sugar beet. Under water shortage conditions, reduction of the cultivated area yielded higher water productivity values as compared to deficit irrigation.  相似文献   

5.
This study compares the effects of different irrigation regimes on seed yield and oil yield quality and water productivity of sprinkler and drip irrigated sunflower (Helianthus annus L.) on silty-clay-loam soils in 2006 and 2007 in the Mediterranean region of Turkey. In sprinkler irrigation a line-source system was used in order to create gradually varying irrigation levels. Irrigation regimes consisted of full irrigation (I1) and three deficit irrigation treatments (I2, I3 and I4), and rain-fed treatment (I5). In the drip system, irrigation regimes included full irrigation (FI-100), three deficit irrigation treatments (DI-25, DI-50, DI-75), partial root zone drying (PRD-50) and rain-fed treatment (RF). Irrigations were scheduled at weekly intervals both in sprinkler and drip irrigation, based on soil water depletion within a 0.90 m root zone in FI-100 and I1 plots. Irrigation treatments influenced significantly (P < 0.01) sunflower seed and oil yields, and oil quality both with sprinkler and drip systems. Seed yields decreased with increasing water stress levels under drip and sprinkler irrigation in both experimental years. Seed yield response to irrigation varied considerably due to differences in soil water contents and spring rainfall distribution in the experimental years. Although PRD-50 received about 36% less irrigation water as compared to FI-100, sunflower yield was reduced by an average of 15%. PRD-50 produced greater seed and oil yields than DI-50 in the drip irrigation system. Yield reduction was mainly due to less number of seeds per head and lower seed mass. Soil water deficits significantly reduced crop evapotranspiration (ET), which mainly depends on irrigation amounts. Significant linear relationships (R2 = 0.96) between ET and oil yield (Y) were obtained in each season. The seed yield response factors (kyseed) were 1.24 and 0.86 for the sprinkler and 1.19 and 1.06 for the drip system in 2006 and 2007, respectively. The oil yield response factor (kyoil) for sunflower was found to be 1.08 and 1.49 for both growing seasons for the sprinkler and 1.36 and 1.25 for the drip systems, respectively. Oil content decreased with decreasing irrigation amount. Consistently greater values of oil content were obtained from the full irrigation treatment plots. The saturated (palmitic and stearic acid) and unsaturated (oleic and linoleic acid) fatty acid contents were significantly affected by water stress. Water stress caused an increase in oleic acid with a decrease in linoleic acid contents. The palmitic and stearic acid concentrations decreased under drought conditions. Water productivity (WP) values were significantly affected by irrigation amounts and ranged from 0.40 to 0.71 kg m−3 in 2006, and from 0.69 to 0.91 kg m−3 in 2007. The PRD-50 treatment resulted in the greatest WP (1.0 kg m−3) and irrigation water productivity (IWP) (1.4 kg m−3) in both growing seasons. The results revealed that under water scarcity situation, PRD-50 in drip and I2 in sprinkler system provide acceptable irrigation strategies to increase sunflower yield and quality.  相似文献   

6.
Summary Cotton was grown under sprinkler irrigation on a silty clay soil at Keiser, Arkansas, for the 1987, 1988 and 1989 growing seasons. Irrigation treatments consisted of maximum soil water deficits (SWD) of 25, 50 and 75 mm and a nonirrigated control. While the irrigated treatments were significantly different from the control for plant height and total seedcotton yield, significant differences among the three irrigated treatments were only observed for plant height. Yields were significantly lower in 1989 than in the other two years of the study, due in part to later planting. The 3-year averages for total seedcotton yield were 3280 and 2870 kg ha–1 for irrigated and nonirrigated, respectively, for an average increase corresponding to irrigation of 416 kg ha–1 or 14.5% of the nonirrigated yield. The maximum increase was observed in 1988 as 602 kg ha–1 or 20.6% of the nonirrigated yield for that year. The 75 mm allowable SWD was the most efficient treatment and resulted in a 3-year average of 3.85 kg ha–1 additional seedcotton (above the nonirrigated) harvested for each 1 mm of irrigation applied. Maintaining the SWD below a 75 mm maximum required an average of four irrigations and 110 mm of irrigation water per year.  相似文献   

7.
The analysis of irrigation and drainage management and their effects on the loading of salts is important for the control of on-site and off-site salinity effects of irrigated agriculture in semi-arid areas. We evaluated the irrigation management and performed the hydrosalinity balance in the D-XI hydrological basin of the Monegros II system (Aragón, Spain) by measuring or estimating the volume, salt concentration and salt mass in the water inputs (irrigation, precipitation and Canal seepage) and outputs (evapotranspiration and drainage) during the period June 1997–September 1998. This area is irrigated by solid-set sprinklers and center pivots, and corn and alfalfa account for 90% of the 470 ha irrigated land. The soils are low in salts (only 10% of the irrigated land is salt-affected), but shallow (<2 m) and impervious lutites high in salts (average ECe=10.8 dS m−1) and sodium (average SARe=20 (meq l−1)0.5) are present in about 30% of the study area.The global irrigation efficiency was high (Seasonal Irrigation Performance Index=92%), although the precipitation events were not sufficiently incorporated in the scheduling of irrigation and the low irrigation efficiencies (60%) obtained at the beginning of the irrigated season could be improved by minimising the large post-planting irrigation depths given to corn to promote its emergence. The salinity of the irrigation water was low (EC=0.36 dS m−1), but the drainage waters were saline (EC=7.5 dS m−1) and sodic (SAR=10.3 (meq l−1)0.5) (average values for the 1998 hydrological year) due to the dissolution and transport of the salts present in the lutites. The discharge salt loading was linearly correlated (P<0.001) with the volume of drainage. The slope of the daily mass of salts in the drainage waters versus the daily volume of drainage increased at a rate 25% higher in 1997 (7.6 kg m−3) than in 1998 (6.1 kg m−3) due to the higher precipitation in 1997 and the subsequent rising of the saline watertables in equilibrium with the saline lutites. Drainage volumes depended (P<0.001) on irrigation volumes and were very low (194 mm for the 1998 hydrological year), whereas the salt loading was moderate (13.5 Mg ha−1 for the 1998 hydrological year) taking into account the vast amount of salts stored within the lutites. We concluded that the efficient irrigation and the low salinity of the irrigation water in the study area allowed for a reasonable control of the salt loading conveyed by the irrigation return flows without compromising the salinization of the soil’s root-zone.  相似文献   

8.
In the Canary Islands, water scarcity is one of the constraints for agricultural activity. Non-conventional water resources generally represent more water volume than conventional ones. The distribution of these resources frequently permits the possibility of a conjunctive use of desalinated (DW) water and reclaimed municipal wastewater (RW). Field testing with both water qualities and different irrigation systems is necessary for optimal site-specific management. The objective of this work was to evaluate soil salinity and phosphorus distribution, and alfalfa yield in a 20 month field experiment carried out in the island of Gran Canaria, using municipal RW and freshwater (FW) under subsurface drip irrigation (SDI). Phosphorus speciation was performed both in irrigation waters and in soils (Olsen's inorganic, organic, and microbial). RW had large EC values (2.4 dS m−1) with a remarkable nutrient load contribution and an average total P around 3 mg L−1, predominantly hydrolysable forms, while FW had very low salinity and negligible amounts of P. For the RW treatment a salt gradient was established, causing plant mortality between the irrigation lines. The study of P speciation allows describing P distribution and plant uptake in terms of P forms. Large values of microbial P were produced for the two irrigation waters around the emitters, especially for FW.A faster P-cycling could have contributed to the significantly larger inorganic P contents observed in FW irrigated soils, in spite no external sources were added by the irrigation water.  相似文献   

9.
Production of halophytes using saline waters and soils and feeding them to livestock is one of the most sustainable methods of conservation in desert ecosystems, in addition to accomplishing food production for the people living in these areas. Therefore, to study the possibility of irrigating Kochia (Kochia scoparia L. Schrad) with minimum quantities of highly saline water for use as a fodder crop in arid environments stretching across saline waters, two experiments were carried out in the Research Farm of the Ferdowsi University of Mashhad, Iran. In the salinity experiments, two populations of Kochia, including the Sabzevar and Indian genotypes, were irrigated with ground water having electrical conductivity (EC) of 5, 15, and 20 dS m−1. In the irrigation-treatment experiments, two local populations of Kochia, including Sabzevar and Borujerd, were subjected to four irrigation regimes as follows: complete irrigation (100%), 80%, 60%, and 40% of the water requirements using a saline ground water with EC = 5 dS m−1. Because, the Indian genotype is preferred as an ornamental plant, it is not suitable for increased dry-matter production under high-salinity irrigation water compared to the local genotype (Sabzevar), which is suitable for forage. The Sabzevar genotype produced a large amount of dry matter (7530 kg ha−1), even when irrigated with 20 dS m−1 saline water. The best time for harvesting Kochia for fresh feeding is at the end of flowering (88 days after sowing or DAS), when the biomass is relatively high (6500 kg ha−1) and the leaf-to-shoot ratio, as a quality index, is approximately 50%. The highest green-area index was observed at 15 dS m−1 and decreased at high levels of salinity. Photosynthesis and transpiration rate did not decline significantly with increasing external salinity four weeks after salinization, but increased in both genotypes at 15 dS m−1, indicating that the salinity-tolerance threshold of Kochia for both photosynthesis and transpiration reduction is above this salinity level. The Indian genotype also showed a very low seed yield (210 kg ha−1) at low levels of salinity, whereas Sabzevar produced 1120 kg ha−1 seed under the same conditions. Different irrigation regimes had a significant effect on the biomass and seed production of Kochia. The highest forage yield was obtained from complete irrigation, with 11.1 Mg ha−1 dry material. Sabzevar local population represented a better performance in terms of all characteristics, except accumulation of inflorescence dry matter, and no significant effects were recorded. In conclusion, Kochia's high foliage production capacity in the presence of salinity and limited irrigation make this plant suitable for use as an alternative forage crop in harsh environmental conditions. There is a wide range of intraspecific variation in K. scoparia, but more investigation is needed to introduce it as a cash crop.  相似文献   

10.
The development of different tools to evaluate the performance of Water Users Associations (WUAs) is an important practice for improving water and energy management, together with other production costs. One of these tools is the Benchmarking technique, which is based on the comparison between different WUAs to determine the best practices in each of them.In this paper, a Benchmarking process is applied to seven WUAs located in Castilla-La Mancha (Spain) during three irrigation seasons (2006-2008). The performance indicators developed by the International Programme for Technology and Research in Irrigation and Drainage (IPTRID) are used, while new indicators dealing with production and energy are proposed. The goals of this paper are to group WUAs with the same characteristics, using performance and energy indicators, and to reduce the set of indicators using statistical methods. The most important indicators, easy to obtain and yielding result in maximum information are retained for further use.Three proposals reducing the initial number of indicators were proposed, with an aim of being useful for future applications based on characterizing WUAs. Indicators results highlighted that irrigable areas can be grouped based on the application of drip irrigation systems and those with sprinkler irrigation systems. When using groundwater resources, no significant differences were observed for energy consumption between these irrigation systems. This can be explained by the indicator energy load index (ICE, m), which had similar values in all WUAs analyzed. According to annual irrigation water supply per unit irrigated area (VTSr, m3 ha−1), the highest values (between 5200 m3 ha−1 and 6800 m3 ha−1) were obtained in WUAs with sprinkler irrigation systems, which contained crops characterized by high water requirements, compared to the VTSr (less than 1800 m3 ha−1) of WUAs with drip irrigation systems, with crops that required less volume of irrigation water. Regarding production efficiency indicators, in drip irrigation systems the high presence of vineyards, almond and olive trees, crops with low water requirements, explained high values of gross margin per unit irrigation delivery (MBVs, € m−3)(close to 0.82 € m−3) in comparison with sprinkler irrigation systems (close to 0.36 € m−3).  相似文献   

11.
Summary Canopy temperatures of wheat, barley, rape and perennial rye grass crops, grown under temperate humid climatic conditions at different irrigation regimes were measured during two growing seasons, 1986 and 1987, by determining the emission of radiation in the wavelength interval 8<<14 m. Global radiation, net radiation, air temperature, relative humidity and wind speed were measured simultaneously. The canopy temperature of the crops either fully irrigated or under water stress fluctuated up to 6 °C within a few minutes in response to rapid changes in global radiation. At high level of global radiation (800–1000 W m–2) canopy-air temperature differences up to 8 °C were measured whereas at low level of global radiation (100–200 W m–2) canopy-air temperature differences were found to approach zero or become negative even at severe crop water stress. Canopy temperature differences between water stressed and fully irrigated crops up to 6 °C were measured under conditions of high evaporative demand whereas under conditions of low evaporative demand canopy temperature differences between water stressed and fully irrigated crops approached zero even at severe crop water stress. For each crop the lower base line, i.e. the relationship between canopy-air temperature difference and vapor pressure deficit for a fully irrigated crop, was estimated by linear regression. In most cases a poor correlation was obtained which is attributed to considerable temporal variability in global radiation and wind speed and to the narrow range of prevailing values of vapor pressure deficit. However, from the base line for rape and barley it was possible to calculate apparent values of the aerodynamic resistance and the crop resistance which were of the same order of magnitude as those found for other crops by using this method under more arid climatic conditions.  相似文献   

12.
Nitrogen (N2) fixation in an irrigated white clover-grass sward was estimated using the 15N isotope dilution technique following the addition of K15NO3 at 0.5 gN m–2 and 80 atom % 15N in a field study during the 1990–91 season. Two water salinity treatments (channel water; ECw = 0.07 and groundwater; 2.4 dS m–1) and four irrigation frequencies were included in a factorial design with four replicates. The channel water treatments were irrigated when pan evaporation minus rainfall equalled 50 mm, whereas the groundwater treatments were irrigated at deficits of 40, 50, 65 or 80 mm. Cumulative dry matter of the clover was significantly less in treatments irrigated with saline groundwater compared to channel water at day 164, and soil salinities (ECe) increased on average from 2.3 to 5.07 dS m–1. In contrast, salinity of the irrigation water had no effect on the cumulative yield of grass. Cumulative dry matter of the grass and clover were not affected by groundwater irrigation frequency. Total N accumulation by the grass did not differ significantly between treatments. However, total N accumulation in white clover was significantly less (P < 0.05) in all treatments irrigated with groundwater compared to channel water. Neither the N concentrations of the grass nor the clover differed significantly between the salinity treatments. Salinity and irrigation frequency had no effect on the proportion of clover N (Patm) derived from N2 fixation. The values of Patm were high throughout, and increased progressively from 0.78 at day 39 to 0.91 at day 164 (P < 0.01). However, the yield of fixed N was lower in clover when watered with groundwater compared to channel water (P < 0.01). Thus low to moderate soil salinity did not affect the symbiotic dependence of clover, but the yield of biologically-fixed N was depressed through a reduction in the dry matter yield of the legume.  相似文献   

13.
The net volumetric (m3) irrigation water requirements for the main crop categories currently irrigated in England and Wales have been calculated and mapped within a geographic information system (GIS). The procedure developed by Knox et al. (1996, Agric. Water Manage., 31: 1–15) for maincrop potatoes (Solanum tuberosum) was extended to cater for the other crops currently irrigated. The annual irrigation needs (mm) for the eight major irrigated crop categories, grown on three contrasting soil types at 11 representative weather stations, were determined using a daily water balance irrigation scheduling model. The results were correlated with existing national datasets of climate, current land use, soils and irrigation practice, to generate volumetric (m3) irrigation water requirement maps at 2 km resolution.The total net volumetric irrigation water requirements for a UK ‘design’ dry year (defined as the requirement with a 20% probability of exceedance) are estimated to be 140 × 106 m3 for the eight main crop categories currently irrigated and the 1994 cropping pattern. Previous theoretical dry year demand estimates, using scheduling models and large agroclimatic areas, were 109 × 106 m3 and 222 × 106 m3. The irrigation demand for other crops grown in the open would typically add another 4%.The procedure has been validated nationally, by comparing the calculated dry year demand for 1990 against government irrigation survey returns for 1990, for each crop category, and regionally against National Rivers Authority (NRA) abstraction records for 1990, for each NRA Region. The estimates obtained agree well with the reported distribution between crops and between regions.The most recent actual ‘dry’ year for which comparative data are available is 1990. It is estimated that the dry year requirements for the 1990 land use would have been 148 × 106 m3. Although farmer demand, actual abstractions and crop requirements are not necessarily the same, irrigation survey returns to the Government indicated that 134 × 106 m3 were actually applied, and the NRA estimated from meter returns that 138 × 106 m3 were abstracted. It is noted, however, that some abstraction restrictions were in force, the scope of the data is slightly different and all figures contain inaccuracies. Potential applications for improving irrigation demand management and water conservation at regional and catchment levels are discussed with reference to two contrasting regions.  相似文献   

14.
Water demand for irrigation is increasing in olive orchards due to enhanced yields and profits. Because olive trees are considered moderately tolerant to salinity, irrigation water with salt concentrations that can be harmful for many of fruit tree crops is often used without considering the possible negative effects on olive tree growth and yield. We studied salt effects in mature olive trees in a long term field experiment (1998-2006). Eighteen-year-old olive trees (Olea europaea L.) cv. Picual were cultivated under drip irrigation with saline water composed of a mixture of NaCl and CaCl2. Three irrigation regimes (i. no irrigation; ii. water application considering soil water reserves, short irrigation; iii. water application without considering soil water reserves and adding a 20% more as a leaching fraction, long irrigation) and three salt concentrations (0.5, 5 or 10 dS m−1) were applied. Treatments were the result of the combination of three salt concentrations with two irrigation regimes, plus the non-irrigated treatment. Growth parameters, leaf and fruit nutrition, yield, oil content and fruit characteristics were annually studied. Annual leaf nutrient analyses indicate that all nutrients were within the adequate levels. After 8 years of treatment, salinity did not affect any growth measurement and leaf Na+ and Cl concentration were always below the toxicity threshold of 0.2 and 0.5%, respectively. Annual and accumulated yield, fruit size and pulp:stone ratio were also not affected by salts. However, oil content increased linearly with salinity, in most of the years studied. Soil salinity measurements showed that there was no accumulation of salts in the upper 30 cm of the soil (where most of the roots are present) because of leaching by rainfall at the end of the irrigation period. Results suggest that a proper management of saline water, supplying Ca2+ to the irrigation water, using drip irrigation until winter rest and seasonal rainfall typical of the Mediterranean climate leach the salts from the first 0-60 cm depth, and growing a tolerant cultivar, can allow using high saline irrigation water (up to 10 dS m−1) for a long time without affecting growth and yield in olive trees.  相似文献   

15.
Soil moisture availability is the main limiting factor for growing second crops in rainfed rice fallows of eastern India. Only rainfed rice is grown with traditional practices during the rainy season (June–October) with large areas (13 m ha−1) remaining fallow during the subsequent dry season (November–March) inspite of annual rainfall of the order 1000–2000 mm. In this study an attempt was made to improve productivity of rainfed rice during rainy season and to grow second crops in rice fallow during dry (winter) season with supplemental irrigation from harvested rainwater. Rice was grown as first crop with improved as well as traditional farmers’ management practices to compare the productivity between these two treatments. Study revealed that 87.1–95.6% higher yield of rice was obtained with improved management over farmers’ practices. Five crops viz., maize, groundnut, sunflower, wheat and potato were grown in rice fallow during dry (winter) season with two, three and four supplemental irrigations and improved management. Sufficient amount of excess rainwater (runoff) was available (381 mm at 75% probability level) to store and recycle for supplementary irrigation to second crops grown after rice. Study revealed that supplemental irrigation had significant effect (P < 0.001) on grain yield of dry season crops and with two irrigation mean yields of 1845, 785, 905, 1420, 8050 kg ha−1 were obtained with maize (grain), groundnut, sunflower, wheat and potato (tuber), respectively. With four irrigations 214, 89, 78, 81, 54% yield was enhanced over two irrigations in respective five crops. Water use efficiency (WUE) of 13.8, 3.35, 3.39, 5.85 and 28.7 kg ha−1 was obtained in maize, groundnut, sunflower, wheat, potato (tuber), respectively with four irrigations. The different plant growth parameters like maximum above ground biomass, leaf area index and root length were also recorded with different levels of supplemental irrigation. The study amply revealed that there was scope to improve productivity of rainfed rice during rainy season and to grow another profitable crops during winter/dry season in rice fallow with supplemental irrigation from harvested rainwater of rainy season.  相似文献   

16.
A significant portion of the irrigated acreage in the intermountain western U.S. is comprised of cool season grass pastures. Droughts, coupled with increasing demands for limited water supplies in the region, have decreased the water volumes available for irrigating these pastures and other crops. Consequently, relationship between crop yield and irrigation (water production functions) should be defined for various species and cultivars to help growers and water managers make appropriate selections based on water availability.During a 3-year study on the Colorado Plateau, a line-source irrigation system was used to evaluate the relationship between applied water and dry forage production of orchardgrass (Dactylis glomerata L.), tall fescue (Festuca arundinacea Schreb.), meadow brome (Bromus riparius Rehmann), smooth brome (Bromus inermis Leyss.), two cultivars of intermediate wheatgrass (Elytrigia intermedium [Host] Nevski), crested wheatgrass (Agropyron cristatum L. Gaertn. X desertorum [Fisch. ex Link] J.A. Schultes) and perennial ryegrass (Lolium perenne L.). Irrigation treatments, including precipitation, ranged from 457 to 970 mm in 1996, 427 to 754 mm in 1997 and 490 to 998 mm in 1998. There was a positive linear relationship between yield and irrigation for all cultivars when averaged over all years but the relationships varied between cultivars and years. Orchardgrass, meadow brome and tall fescue produced more dry forage than the other grasses at the highest irrigation levels in all years. These grasses also produced the greatest rates of yield increase per unit of irrigation (average of 0.0129 Mg ha−1 mm−1) and exhibited greater yield stability from year to year than the other grasses at irrigation levels above 700 mm. The intermediate wheatgrasses produced more forage than the other grasses under limited irrigation (less than 600 mm) but the average production rate with irrigation (0.0066 Mg ha−1 mm−1) was only about half that of the aforementioned grasses. The average rate of forage produced per mm of irrigation was intermediate in the smooth brome (0.0096 Mg ha−1) and lowest in the crested wheatgrass and perennial ryegrass (0.0048 and 0.0034 Mg ha−1, respectively). These results suggest that orchardgrass and meadow brome be included in irrigated pastures receiving more than 700 mm of water annually while the intermediate wheatgrasses be selected for pastures receiving an annual water application of less than 700 mm.  相似文献   

17.
This study was conducted in order to determine the effect of drip line spacing, irrigation regimes and planting geometries of tomato on yield, irrigation water use efficiency (IWUE) and net return. The experiments were carried out in the conditions of Eskisehir in Central Anatolian part of Turkey, between 2003 and 2005, with cv. Dual Large F1 tomatoes (Lycopercion esculentum L). The maximum yield of 121.1 t ha−1 was obtained from the treatment in which both the lateral and row spacing were 1 m, and irrigated with water amount based on the percentage of canopy cover. The seasonal irrigation water amount of the treatment was 551 mm. Tomatoes yield of 109.9 t ha−1 was obtained under conditions of 491 mm seasonal irrigation water applied for the 2-m lateral spacing in which two plant rows (twin rows) were planted 0.35 m on either side of the lateral with a row spacing of 0.70 m across the drip lateral and 1.30 m in the interrow between each set of twin rows. Although water saving of 60 mm and investments economy of 40% were provided from the twin-row design, the yearly return of the design including one lateral for each row was US$ 1590 ha−1 higher than that the return of the twin-row design. The method of determination of irrigation water amount based on the percentage of canopy cover appeared to be the most reasonable and effective one in terms of the yield and IWUE. On the other hand, the maximum irrigation water use efficiency (22.3 kg m3) was obtained from 2-m lateral spacing and the percentage of canopy cover for calculation of the amount of irrigation water applied. Thus, canopy cover may be used successfully at any lateral design conditions.  相似文献   

18.
Water productivity (WP) expresses the value or benefit derived from the use of water, and includes essential aspects of water management such as production for arid and semi-arid regions. A profound WP analysis was carried out at five selected farmer fields (two for wheat–rice and three for wheat–cotton) in Sirsa district, India during the agricultural year 2001–02. The ecohydrological soil–water–atmosphere–plant (SWAP) model, including detailed crop simulations in combination with field observations, was used to determine the required hydrological variables such as transpiration, evapotranspiration and percolation, and biophysical variables such as dry matter or grain yields. The use of observed soil moisture and salinity profiles was found successful to determine indirectly the soil hydraulic parameters through inverse modelling.Considerable spatial variation in WP values was observed not only for different crops but also for the same crop. For instance, the WPET, expressed in terms of crop grain (or seed) yield per unit amount of evapotranspiration, varied from 1.22 to 1.56 kg m−3 for wheat among different farmer fields. The corresponding value for cotton varied from 0.09 to 0.31 kg m−3. This indicates a considerable variation and scope for improvements in water productivity. The average WPET (kg m−3) was 1.39 for wheat, 0.94 for rice and 0.23 for cotton, and corresponds to average values for the climatic and growing conditions in Northwest India. Including percolation in the analysis, i.e. crop grain (or seed) yield per unit amount of evapotranspiration plus percolation, resulted in average WPETQ (kg m−3) values of 1.04 for wheat, 0.84 for rice and 0.21 for cotton. Factors responsible for low WP include the relative high amount of evaporation into evapotranspiration especially for rice, and percolation from field irrigations. Improving agronomic practices such as aerobic rice cultivation and soil mulching will reduce this non-beneficial loss of water through evaporation, and subsequently will improve the WPET at field scale. For wheat, the simulated water and salt limited yields were 20–60% higher than measured yields, and suggest substantial nutrition, pest, disease and/or weed stresses. Improved crop management in terms of timely sowing, optimum nutrient supply, and better pest, disease and weed control for wheat will multiply its WPET by a factor of 1.5! Moreover, severe water stress was observed on cotton (relative transpiration < 0.65) during the kharif (summer) season, which resulted in 1.4–3.3 times lower water and salt limited yields compared with simulated potential yields. Benefits in terms of increased cotton yields and improved water productivity will be gained by ensuring irrigation supply at cotton fields, especially during the dry years.  相似文献   

19.
The need for achieving efficient, equitable and sustainable use of water resources to meet water demands of different sectors is pressing, particularly in areas where water resources are dwindling. Along with this is the quest for having a good understanding of the value of water in its different uses. Using a simplified model derived from the residual imputation approach (the Change in Net Income Model) we assess the value of water in irrigated paddy and hydropower generation in the Great Ruaha River Catchment (GRRC) in Tanzania. The estimated productivity of water (PW) in irrigated paddy ranges from 0.059 to 0.250 kg/m3 (for withdrawn water) and 0.126 to 0.265 kg/m3 (for consumed water). The PW in hydropower generation is estimated to range from 0.45 to 1.68 kWh/m3. In monetary terms the value of water in irrigated paddy is estimated at 15.3 Tanzanian shilling (Tsh)/m3 (for water withdrawn) and 0.19 Tsh/m3 (for water consumed). The values of water for hydropower generation are relatively higher than for irrigated paddy, ranging from 59 to 226 Tsh/m3. Yet, irrigated paddy also supports livelihoods of about 30,000 agrarian families in the GRRC, with gross revenue of about Tsh 15.9 million per annum and GRCC paddy contributes about 14–24% of national rice production. We conclude that understanding the value of water in its alternative uses is key to fostering informed debate on water management and allocation, identifying the basis for making ‘agreeable’ trade-offs, the potential for improvement and creating linkages with water allocation options particularly in agricultural-based economies, where agriculture competes with other sectors and where water re-allocation decisions may involve large transfers of water from the sector generating the highest pro-poor returns (agriculture for this case) to the sectors generating the highest economic returns (hydropower generation and industrial uses).  相似文献   

20.
In Marlborough, New Zealand, olives are becoming an important crop alongside grapes. However, despite olives being drought resistant, they are generally planted on the poorer free-draining soils. Also, with the strong increase in cropping area, the demand for irrigation water has increased dramatically. In this research, we investigate the impact of short-term water stress on plant physiological processes, crop yield and oil quality in Marlborough, New Zealand. For that purpose, during the dry summer of 2000–2001, two trees were kept without irrigation for 64 days while two neighbouring trees were irrigated following standard practice. The trees were measured for transpiration (E), leaf and stem water potential (ΨL and ΨS), every other day, from dawn to dusk for three weeks from just before irrigation was started up again. All four trees were wired up for measuring stem sap flow (T) which was recorded hourly and a basic meteorological station provided weather data. Fruit and shoot development was measured weekly. It was found that under the short period of dry conditions with soil moisture (() dropping to <5%, olive trees kept functioning at a very low level with ΨL and ΨS reduced from −1 to <−4.0 MPa (T) reduced from 20 to 5 mm/h and (E) reduced from 1.5 to 1.0 mmol m−2 s−1. Within 10 days of restarting irrigation all these parameters were back to pre-drought levels. Both fruit and shoot growth came to a standstill within a week after drought was induced. During the first few days after re-watering, a high variability in ΨL was found between leaves from the same trees. This variability disappeared after six days. Shoot growth did not recover after re-watering but fruit growth rate, became the same as for continuously irrigated trees within days, but fruit size did not manage to recover before harvest. Yield from the dry trees was low because berry and pit weight were reduced by almost 50% at harvest, had a lower oil and percentage and were lower in phenolics. Stem sap flow was found to give a very good continuous measurement for the hydration status of the olive trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号