首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eleven Landrace pigs (six boars and five gilts, 50 kg) representing lines selected for three generations for maximum weight at 200 d of age were compared to eight pigs (four boars and four gilts, 50 kg) representing contemporary randomly selected Landrace controls to determine the effect of selection for growth on the metabolic clearance rate (MCR) and plasma concentrations of porcine growth hormone (GH). To estimate MCR of GH, the disappearance of a bolus of porcine GH was monitored over 120 min following its i.v. injection. Blood samples also were collected every 15 min over a 6-h period before injecting GH to determine baseline and overall mean GH concentrations, mean peak amplitude and number of GH secretory episodes. Boars exhibited greater overall mean GH concentrations (4.80 vs 3.11 ng/ml; P less than .05) and had greater maximum GH concentrations associated with secretory episodes (16.11 vs 10.80 ng/ml; P less than .05) than did gilts. There were no differences between boars and pigs exhibited greater baseline GH concentrations (2.04 vs 1.25 ng/ml; P less than .01) than did those from the unselected Landrace line. Selected and control pigs exhibited similar (P greater than .15) overall mean concentrations of GH, frequency of secretory episodes, amplitude of GH peaks and MCR. These data demonstrate that pigs selected for heavier weight at 200 d of age had greater basal plasma GH concentrations than did unselected control pigs.  相似文献   

2.
Six Hereford bulls from a line selected with an index of body weight and muscling score were compared with six bulls from a control line to determine if increased growth in the selected line was associated with changes in plasma levels of growth hormone (GH), prolactin (PRL) and (or) thyrotropin (TSH). The predictive value of sire hormone data for growth rate of progeny was also evaluated. Bulls of the index line were heavier at birth (P less than .02) and had higher postweaning daily gains (P less than .01) than bulls of the control line. Blood samples were collected from bulls (ages 2 and 3 yr) at 15-min intervals for 8 h. Overall plasma GH concentrations were higher (P less than .03) in the index bulls than those in the control line. All characteristics of PRL secretion examined tended to be higher in the index bulls, but only mean overall and baseline differences approached significance (P less than .10). There were no significant differences in measures of TSH secretion between lines. Sire differences in hormone characteristics accounted for significant amounts of variation in birth weight and postweaning gain of progeny, but not in gain to weaning. Also, when considered jointly, hormone characteristics generally added significantly to predictions that used sire growth rate alone. The results suggest that serum hormone characteristics in parents may provide additional predictors of growth rates of progeny.  相似文献   

3.
In each of two experiments, 70 crossbred steers were blocked by BW and assigned to initial slaughter groups or to treatments in a 2 x 2 design. In Exp. 1, treatments were 168 d of photoperiod (8 h of light [L]:16 h of dark [D] or 16L:8D) and plane of nutrition (high energy [HPN] or low energy [LPN]). On d -22, 67 and 155, blood was sampled every 20 min for 8 h. Relative to LPN, HPN increased (P less than .01) ADG by 28%, carcass weight by 26% and accretion of carcass fat by 109% and carcass protein by 20%. On d 155, compared with LPN, HPN increased (P less than .01) serum insulin (INS; 1.09 vs .64 ng/ml) and lowered (P less than .05) growth hormone (GH; 2.14 vs 3.70 ng/ml), but prolactin was not affected. Photoperiod did not affect BW gains, carcass composition or serum hormones. In Exp. 2, treatments were 113 d of photoperiod (8L:16D or 16L:8D) and Synovex-S implant (presence [IMP] or absence [NONIMP]). On d 93, blood was sampled every 30 min for 10 h. Relative to NONIMP, IMP increased (P less than .01) ADG by 12% and accretion of carcass protein by 16%. Implants did not affect carcass weight or accretion of fat. Compared with NONIMP, IMP increased (P less than .05) GH (3.16 vs 2.39 ng/ml) and INS (.68 vs .46 ng/ml) but did not affect PRL. Photoperiod did not affect BW gain, carcass composition or serum hormones. We conclude that photoperiod fails to influence growth and carcass composition of steers.  相似文献   

4.
Fifteen cows (87 +/- 8 d in lactation; 641 +/- 33 kg BW) were randomly assigned to treatment and then subjected for 182 d to daily sc injection (1000 hr), in the cervical area, of saline (control), thyrotropin-releasing factor (TRF: 1 micrograms/kg BW), growth hormone-releasing factor (1-29)NH2 (GRF; 10 micrograms/kg BW) or GRF plus TRF (10 and 1 micrograms/kg BW, respectively) according to a 2 x 2 factorial design. On days 1, 31, 88 and 179, jugular blood samples were collected from 2 hr before to 6 hr after injection. Samples were also collected for 5 consecutive days after cessation of treatment. GRF always induced growth hormone (GH) release (600 vs 7925 ng.min/ml) with augmentation of response with time (interaction GRF * day; P less than .001). TRF did not affect (P greater than .25) GH release; there was no interaction (P greater than .25) with time. There was no significant interaction (P greater than .25) between GRF and TRF on GH release. However, the amount of GH release with GRF plus TRF was always greater than with GRF alone (9419 vs 6431 ng.min/ml). TRF induced a significant release of prolactin (23769 vs 42175 ng.min/ml) but GRF reduced the amount of prolactin release on the last day of sampling. TRF induced thyroid stimulating hormone (TSH) release only on the first day of injection while triiodothyronine (T3) and thyroxine (T4) continued to respond to TRF throughout the treatment period. Concentrations of T3 and T4 fell below control levels after cessation of TRF injection. In conclusion, GRF-induced GH release and TRF-induced Prl and thyroid hormone release were maintained over a 6-mo treatment period. TRF induced TSH release only on the first day of injection. Overall, these results raised the possibility of a direct effect of TRF on the thyroid gland.  相似文献   

5.
Endogenous opioid peptides mediate the effect of suckling on LH and PRL in the domestic pig. However, the role of opioids in modulating GH during lactation in swine is not known. Primiparous sows that had been immunized against GRF(1-29) conjugated to human serum albumin (GRF-HSA, n = 5) or HSA (n = 4) were used to determine changes in GH after naloxone. Treatments were imposed in all sows on day 21 of lactation when antibody titers were 9100 +/- 1629. All sows received (i.v.) naloxone (0.25 mg/kg) or saline (0.0125 ml/kg) at 15 min intervals for 165 min. Active immunization against GRF-HSA during lactation decreased (P less than 0.05) mean concentration (4.8 +/- 0.2 vs 2.6 +/- 0.1 ng/ml) and frequency (1.5 +/- 0.3 vs 0.4 +/- 0.2 peaks/4 hr). Concentrations of LH and PRL were similar in GRF-HSA and HSA immunized sows. Naloxone suppressed (P less than 0.05) GH in all sows. In HSA sows, naloxone abolished episodic release of GH and decreased average, but not basal, concentrations of GH. In sows immunized against GRF-HSA, naloxone decreased (P less than 0.05) average and basal GH but failed to decrease frequency of GH release. Naloxone failed to alter frequency of LH release. Concentrations of PRL decreased (P less than 0.05) after naloxone in all sows. In conclusion, immunization against GRF-HSA blocked most of the effect of lactation on GH. Blocking opioid receptors with naloxone decreased GH and PRL in all sows. In contrast to previous findings naloxone had no effect on LH. Opioids alter concentrations of GH through a GRF dependent and GRF independent pathway.  相似文献   

6.
The physiological bases for differences in milk production between breeds of cattle selected for beef or milk production are largely unknown. This study was conducted to determine concentrations of prolactin (PRL) and growth hormone (GH) in serum before and after teat stimulation in primiparous Hereford and Holstein heifers. Blood was collected from 6 beef and 9 dairy heifers at 115, 175, 230 and 250 d of gestation. Sampling times were -15, -10, -5, 0, 2, 4, 6, 8, 10, 12, 15, 20, 25 and 30 min relative to test stimulation. Mean areas under PRL response curves for beef and dairy heifers at 115, 175, 230 and 250 d of gestation were 427, 447, 556, 273 and 243, 189, 167, 343 ng/ml/30 min, respectively. Calculations of area (but not basal levels) excluded instances when no PRL response to test stimulation was obtained (22%). Neither stage of gestation nor breed affected PRL response. Basal PRL did not differ between breeds and was 1.8, 2.6, 2.4 and 9.2 ng/ml at 115, 175, 230 and 250 d of gestation. GH did not differ between breeds and was 6.6, 6.2, 5.5 and 7.4 ng/ml at 115, 175, 230 and 250 d. No difference between breeds was apparent with regard to PRL or GH secretion during first gestation.  相似文献   

7.
The influences of thermal environment and individual growth rate on somatotroph and lactotroph function were examined in 6-week-old barrows reared entirely in a hot (H: 27–32°C, n = 8) or cool (C: 21°C, n = 10) environment. Growth hormone (GH) and prolactin (PRL) cell contents and responses to growth hormone-releasing hormone (GHRH) or thyrotropin-releasing hormone (TRH) were evaluated in cultured pituitary cells from each animal. Plasma GH, PRL, and insulin-like growth factor-1 (IGF-1) concentrations also were monitored. Thermal environment did not affect in vitro GH secretion, cellular GH content, or plasma GH concentrations. Stimulated in vitro GH release (GHRH-basal) and plasma GH were inversely related to average daily gain (ADG, r = −.76, p < .005 and r = −.51, p < .05, respectively). Cellular GH content also declined as ADG increased (r = −.57, p < .05). Plasma IGF-1 concentrations were not affected by thermal environment and were not related to ADG. Pituitary cells from H animals secreted and contained more PRL than cells from C animals (p < .05). Plasma PRL values were correlated with ADG (r = .54, p < .05), but did not differ between thermal groups. Stimulated in vitro PRL (TRH-vehicle) secretion was positively related with ADG only in the H group (r = .97, p < .001). In contrast, cellular PRL content decreased with ADG in cells from the H barrows (r = −.8, p < .05). Lactotroph function was not related to growth in cells from C pigs. In summary, 1) heat enhanced PRL secretion and cell content; 2) growth and somatotroph function were inversely related; and 3) serum PRL and the PRL response to TRH in cells from H barrows were positively related to growth.  相似文献   

8.
In Exp. 1, early-weaned Targhee and Polypay crossbred lambs (60 ewes and 66 rams; initial BW 24 +/- 1.0 kg) were used in a 2 x 3 factorial experiment to determine the effects of corn processing (whole shelled corn [WSC] or ground and pelleted corn [GC]) in combination with supplemental fiber (none [control]; soybean hulls, SBH [highly digestible]; or peanut hulls, PH [highly indigestible]) on DMI, ADG, feed efficiency, and visceral organ weight. For the total trial, WSC resulted in a 4% increase (P < .01) in ADG vs GC, and supplemental fiber resulted in increased (P < .01) DMI and ADG vs the control diet. Experiment 2 was conducted using 12 Targhee and Polypay crossbred wether lambs (initial BW 25 +/- 7 kg) to determine the effects of corn processing and fiber source in high-concentrate diets on diet digestibility and N retention using the same diets as in Exp. 1. Lambs fed WSC had greater (P < .001) apparent N digestion, true N digestion, and N retention (P < .01) than those fed GC. The apparent digestibilities of DM, OM, and NDF were greater (P < .001) for WSC than for GC diets. Peanut hulls resulted in decreased (P < .01) DM, OM, and NDF apparent digestibilities compared with the control and SBH diets. Starch digestion was not affected (P > .10) by diet. Whole corn resulted in improved DM, OM, NDF, and N digestibility compared with GC. Overall, both the SBH and PH diets resulted in greater DMI and ADG than the control diet, which lacked supplemental fiber.  相似文献   

9.
In ruminants, nutrition is one of the exogenous inputs affecting reproductive function at different levels of the hypothalamic-hypophyseal-gonadal axis. However, the exact mechanisms or even the identification of the signalling metabolic compounds by which nutrition affects reproductive function still need further clarification. The role of static body condition (BC) and its interaction with a short-term protein supplementation (PL), on secretion of metabolic hormones [growth hormone (GH), insulin and insulin-like growth factor-1 (IGF-1)], as well as on secretion of LH and progesterone (P4) was evaluated in sheep. Twenty-four Rambouillet ewes divided into two groups, with lower (LBC) and higher body condition (HBC), were randomly assigned within BC to one of two PL levels: low (LPL, 24% of crude protein; 14 g/animal/day), and high (HPL, 44% of crude protein; 30 g/animal/day). The secretion of GH, insulin, IGF-1 and LH was evaluated on day 10 of the oestrous cycle; appearance and timing of oestrous behaviour were previously detected using rams. Progesterone secretion was evaluated on day 13 of the same cycle. No differences were found (p > 0.05) between PL groups on serum GH concentrations during the sampling period (overall mean of 4.0 +/- 0.3 ng/ml), but a trend for lower values in HBC sheep was found (3.6 +/- 0.4 vs 4.4 +/- 0.4 ng/ml, p = 0.06). A BC effect was observed (p < 0.05) on serum IGF-1 level, with higher values in HBC sheep (p < 0.05). Neither BC nor PL affected (p > 0.05) secretion of LH and the number of corpora lutea, nor serum P4 and insulin concentrations. Results indicate a predominance of the static component of nutrition on sheep metabolic hormone responses, GH and IGF-1, with no effect of short-term PL on secretion of pituitary and ovarian hormones as well as luteal number and activity.  相似文献   

10.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a hypothalamic neuropeptide that stimulates release of growth hormone (GH) from cultured bovine anterior pituitary gland cells, but the role of PACAP on the regulation of in vivo secretion of GH in cattle is not known. To test the hypothesis that PACAP induces secretion of GH in cattle, meal-fed Holstein steers were injected with incremental doses of PACAP (0, 0.1, 0.3, 1, 3, and 10 microg/kg BW) before feeding and concentrations of GH in serum were quantified. Compared with saline, injection of 3 and 10 microg PACAP/kg BW increased peak concentrations of GH in serum from 11.2 ng/ml to 23.7 and 21.8 ng/ml, respectively (P < 0.01). Peak concentrations of GH in serum were similar in steers injected with 3 or 10 microg PACAP/kg BW. Meal-fed Holstein steers were then injected with 3 microg/PACAP/kg BW either 1 hr before feeding or 1 hr after feeding to determine if PACAP-induced secretion of GH was suppressed after feeding. Feeding suppressed basal concentrations of GH in serum. Injection of PACAP before feeding induced greater peak concentrations of GH in serum (19.2 +/- 2.6 vs. 11.7 +/- 2.6 ng/ml) and area under the response curve (391 +/- 47 vs. 255 +/- 52 ng. ml(-1) min) than injection of PACAP after feeding, suggesting somatotropes become refractory to PACAP after feeding similar to that observed by us and others with growth hormone-releasing hormone (GHRH). We concluded that PACAP induces secretion of GH and could play a role in regulating endogenous secretion of GH in cattle, perhaps in concert with GHRH.  相似文献   

11.
The effects of crossbreeding, cattle type and dietary energy level on semitendinosus muscle (ST) development, feedlot performance, daily carcass protein and fat gain and serum anabolic hormone concentrations were studied. Over 3 consecutive years, 176 feedlot steers representing four cattle types - unselected Hereford (UH), selected Hereford (SH), Angus x Hereford x Charolais (AHC) and Angus x Hereford x Holstein (AHH) - were fed either an all-corn silage (HS) or a high grain (HG) diet. Steers were slaughtered on day 1 and at the end of the feedlot trial, and ST muscles were removed rapidly. During years 2 and 3, single blood samples were obtained from steers on days 1, 29, 57, 113 and 169, and analyzed for insulin and growth hormone (GH). Steers fed HG had a higher (P less than .005) average daily gain (ADG) than steers fed HS, and cattle type had an effect (P less than .005) on ADG. Cattle type and HG affected (P less than .005) daily carcass protein and fat gain. Weight of ST muscle and total muscle RNA, DNA and protein content increased with frame size, and HS steers had heavier (P less than .05) ST muscles than the HG steers. Steers fed HG had higher (P less than .01) serum insulin concentrations than steers fed HS, but there were no consistent cattle type effects. Serum GH concentrations were not affected by cattle type or diet. Serum insulin concentrations, combined across diet and cattle types, were correlated (P less than .01) with ADG; however, serum GH, assessed on the same basis, was not related to ADG. Average daily protein and fat gain were positively related to serum insulin and were negatively related to serum GH.  相似文献   

12.
This study was conducted to determine if growth hormone (GH) concentration in bovine seminal plasma would be proportional to but less variable than blood plasma GH. The relationship between GH in blood and seminal plasma was also examined critically. Blood samples were collected at 15-min intervals for 5.75 h, while semen was collected at 30-min intervals over the same time period. Average seminal plasma GH concentrations were 3.2 times higher (P less than .05) than blood plasma GH concentrations (40.4 +/- 15.8 ng/ml vs 12.6 +/- 1.2 ng/ml, respectively). The within animal correlation between blood and seminal plasma was consistently low and nonsignificant (P greater than .05). Overall blood plasma GH and seminal plasma GH concentrations were weakly correlated (r = .418; P greater than .05) among bulls. A predictable relationship between blood and seminal plasma GH concentration does not exist under the conditions of this study.  相似文献   

13.
Records on 276 progeny were collected in the final 2 yr (1984 and 1985) of an 8-yr Hereford cattle selection project. Selection was practiced using the top sires from the American Hereford Association's National Cattle Evaluation based on yearling weight expected progeny difference. An unselected control line was maintained to monitor environmental change. One-half of each line was creep-fed during the preweaning period for the last 2 yr to evaluate genotype x environment interactions. Direct response to yearling weight selection averaged 28 +/- 8 kg. Correlated response to selection amounted to .057 +/- .028 kg/d in preweaning ADG, 14 +/- 6 kg in weaning weight, .085 +/- .033 kg/d in postweaning ADG, 4.6 +/- 1.5 cm in yearling hip height and 11.2 +/- 3.0 cm2 in yearling pelvic area. Yearling fat thickness and scrotal circumference were not significantly affected by selection. Significant effects of creep feeding were observed for yearling weight (15 +/- 3 kg), preweaning ADG (.067 +/- .012 kg/d), weaning weight (13 +/- 2 kg), yearling hip height (1.2 +/- .5 cm) and yearling fat thickness (.07 +/- .03 cm). Postweaning ADG, yearling pelvic area and yearling scrotal circumference were not affected by creep feeding. No significant genetic group x creep feeding effects were found for any of the traits analyzed, indicating calves genetically superior for growth did not gain any additional advantage from creep feeding.  相似文献   

14.
Little information is available on the effects of growth hormone (GH) and growth hormone-releasing factor (GRF and GHRH) treatment on bone metabolism in pigs. Thus, tibial bending moments and ash contents were studied in 12, 6-wk-old pigs weighing 13 +/- .2 kg. Six pigs (GRF group) were injected s.c. twice daily with 75 micrograms GRF (hGRF [1-29] NH2)/kg BW for 52 d and six remained untreated (control group, C). Average daily gain was slightly (5%; P less than .10) increased in treated pigs. At slaughter, plasma measurements related to calcium homeostasis, such as concentrations of Ca, inorganic P, and vitamin D metabolites (25-OH and 1,25-(OH)2 vitamin D3), were not changed by GRF injection. At slaughter, plasma GH levels were 3.3 times greater in treated (11.3 +/- 3 ng/ml) than in untreated pigs (3.4 +/- .5 ng/ml, P less than .02), whereas those of insulin-like growth factor I were increased by approximately 38%. No difference was observed between the two groups at slaughter in tibial weight, density, bending moment, ash relative to bone volume (29 +/- 1 vs 30 +/- 2 g/100 cm3, GRF vs C), total ash content, or ash relative to dry matter in cortical or medullary bone. Our GRF treatment did not affect bone and mineral metabolism in young, growing pigs.  相似文献   

15.
The effects of fescue endophyte content (low, 16 or high, 44% of tillers examined) and of N fertilization rate (low, 134 kg N.ha-1.yr-1 or high, 336 kg N.ha-1.yr-1) upon serum prolactin (PRL) in Angus steers were examined. Jugular blood samples for serum PRL determination were taken before (basal) and after thyrotropin releasing hormone (TRH) administration (stimulated). Areas under both the basal and stimulated PRL curves were calculated. While areas under the PRL curves varied with length of photoperiod, high endophyte content resulted in a consistent PRL suppression during 1984. During four time periods in 1984 (May to October), areas under the PRL curves [basal and(or) TRH stimulated] were suppressed (P less than .05) with high endophyte on three dates. Although basal areas under the PRL curves in 1983 were nonsignificantly suppressed with high endophyte, there was a suppression (P less than .05) post-TRH in October with high endophyte. There was no effect of N on PRL areas in either year. No relationship was found to exist between basal PRL areas and average daily gains as computed to encompass a period 2 wk before and after a blood collection date. Mean basal growth hormone (GH) concentration as determined from one bleeding date were elevated (P less than .05) in steers on high compared with low endophyte (7.9 and 6.2 ng/ml +/- 1.1 overall SE, respectively). There was no effect of treatment on TRH-stimulated serum GH values. Mean basal serum insulin values ranged from 13.2 to 17.5 microU/ml (+/- 1.2 overall SE) and were not affected by treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Effects of daily injections of pituitary-derived bovine somatotropin (bST) for 6 wk were evaluated in 10 growing heifers and compared to 9 placebo-treated control animals. Bovine somatotropin was injected at 50 micrograms/kg BW each day. Body weight and growth, plasma concentrations of insulin-like growth factor I (IGF-I) and somatotropin (ST) were assessed. To measure plasma concentrations of IGF-I, we validated a RIA in which bovine plasma samples were extracted with acid-ethanol, a method that resulted in greater than 90% recovery of IGF-I. Average daily gain was similar during the first 4 wk of the experiment in both control and bST-treated groups; however, at the end of the experimental period (wk 4 and 6) ADG was greater (P less than .05) in bST-treated heifers (1.24 +/- .21 kg/d vs .75 +/- .25 kg/d). Plasma IGF-I from wk 2 to wk 6 were increased in bST-treated animals (452 +/- 97 ng/ml at wk 2; 683 +/- 106 ng/ml at wk 6) compared with controls (293 +/- 62 ng/ml at wk 2 (P less than .01) and 293 +/- 115 ng/ml at wk 6 (P less than .001). Moreover, ADG over the 6-wk experimental period was correlated with mean IGF-I concentrations determined over the same period (r = .55; P less than .01). As expected, mean plasma ST concentrations were increased in bST-injected animals from wk 1 to 6. Gel chromatographic profiles of bovine plasma exhibit a 150,000 molecular weight ST-dependent binding protein-IGF-I complex and a 30,000 molecular weight non-ST-dependent complex. This study validates a method for measuring IGF-I in cattle, and shows a positive relationship among IGF-I and ADG after ST treatment. No correlation, however, was found between plasma ST and growth performance.  相似文献   

17.
Studies were conducted to determine the specificity and cause of altered pituitary hormone secretion when ewes ingest endophyte-infected (Acremonium coenophialum) GI-307 tall fescue (toxic fescue). Plasma concentrations of prolactin (PRL) but not growth hormone (GH) or thyroid stimulating hormone (TSH) in ewes grazing toxic fescue were significantly lower (P < .01) than concentrations measured in ewes grazing orchardgrass (OG). Comparing hormone secretory responses of ewes grazing each grasstype, ewes on toxic fescue released less PRL following thyrotropin releasing hormone (TRH) challenge than ewes on OG. TSH responses to TRH were not affected by grasstype. At this dose of TRH, GH secretion was not significantly affected in either group of ewes. In a separate study, dopamine hydrochloride (DA) was infused into control ewes to define the effect of a pure dopamine agonist on basal and TRH-stimulated secretion of PRL, GH and TSH. DA depressed both basal and TRH-stimulated secretion of PRL without affecting the basal concentrations or responses of GH or TSH. Based on the assumption that the active agent in toxic fescue responsible for the observed hypoprolactinemia was a dopaminergic agonist, haloperidol (HAL), a DA receptor blocking drug, was administered to ewes grazing toxic fescue or OG. HAL evoked significant PRL secretion unaccompanied by any GH or TSH effect in both toxic fescue and OG ewes. Administration of HAL resulted in a gradual increase over 4 hr in PRL in toxic fescue ewes and prolonged the duration of the PRL response to TRH. No differences in circulating plasma concentrations of DA, epinephrine or norepinephrine were measured in ewes on troxic fescue or OG.

Alterations in pituitary hormone secretion due to toxic factors in fescue were confined to PRL. Hormone secretory responses to TRH and HAL suggest that the effects on PRL are mediated through dopamine-like activity in toxic fescue.  相似文献   


18.
Serum thyroid hormone concentrations were determined before and after thyrotropin (thyroid stimulating hormone [TSH]) stimulation in caged psittacine birds to determine whether the TSH stimulation test could be used to evaluate thyroid function in this class of birds. The mean (+/- SD) resting thyroxine concentrations (ng/ml) for the species studied were: cockatoos, 13.63 +/- 6.53 (n = 6); Amazon parrots, 8.19 +/- 6.90 (n = 8); scarlet macaws, 1.34 +/- 0.51 (n = 9); blue and gold macaws, 3.41 +/- 1.78 (n = 8); African gray parrots, 1.42 +/- 0.44 (n = 6); conures, 1.76 +/- 0.77 (n = 5); and cockatiels, 11.83 +/- 6.76 (n = 3). The mean (+/- SD) thyroxine concentrations (ng/ml) 4 to 6 hours after TSH stimulation were 35.10 +/- 13.16, 27.40 +/- 15.93, 6.46 +/- 3.10, 12.36 +/- 6.34, 9.30 +/- 2.90, 13.50 +/- 7.71, and 39.0 +/- 5.66, respectively. Serum tri-iodothyronine concentration did not increase significantly after TSH stimulation. The results demonstrated that the TSH stimulation test can be used to evaluate thyroid function in caged psittacine birds.  相似文献   

19.
The effect of recombinant porcine growth hormone (pGH) treatment on pituitary function was evaluated in young pigs. Piglets received intraperitoneal recombinant pGH implants (0.5 mg/d sustained release) or vehicle implants beginning at 3 d of age. Ten piglets were sacrificed at 4 and 6 wk of age (five piglets/treatment group) for the collection of pituitary glands, blood, and liver tissue. Blood samples also were drawn at 3 and 12 d of age. Serum concentrations of GH, prolactin (PRL), thyroid-stimulating hormone (TSH), insulin-like growth factor-1 (IGF-1) and IGF-2 were evaluated. Levels of IGF-1 and IGF-2 mRNA were determined in liver samples. Treatment with GH increased circulating levels of GH and IGF-1 (P < 0.01), but not PRL, TSH, or IGF-2. Hepatic IGF-1, but not IGF-2, mRNA levels were increased by pGH (P < 0.001). Cultured pituitary cells from each animal were challenged with 0.1, 1, and 10 nM GH-releasing hormone (GHRH); 2 mM 8-Br-cAMP; or 100 nM phorbol myristate acetate. The release of GH from cultured pituitary cells was stimulated by all secretagogues (P < 0.001). The secretion of GH, but not PRL or TSH, in culture was inhibited by previous in vivo GH treatment (P < 0.001). Similarly, cellular GH, but not PRL or TSH, content was lower in the GH-implant group (P = 0.005). Cell cultures from 6-wk-old piglets secreted more GH, but not PRL or TSH, than cultures from 4-wk-old piglets (P < 0.05). Likewise, cellular GH, but not PRL or TSH, content was greatest in cultures from 6-wk-old animals (P = 0.002). Piglet growth was not affected by exogenous GH treatment (P = 0.67). These results demonstrate that exogenous pGH treatment selectively down-regulates somatotroph function in young pigs.  相似文献   

20.
Effects of fiber vs starch energy supplements on endogenous growth hormone (GH), insulin-like growth factor (IGF-1) and animal performance from weaning to breeding age were evaluated in 18, 9-mo-old beef heifers. Heifers had ad libitum access to wheat silage plus an average daily supplement intake of 1) 4.08 kg corn-soybean meal (SBM) (high energy-starch, HS), 2) 4.54 kg soyhulls (SH)-SBM (high energy-fiber, HF) or 3) 1.36 kg SH-SBM (low energy-fiber, LE). Serum samples were collected via jugular puncture every 10 d and were analyzed for IGF-1 by RIA. On d 45 and d 176, four heifers per treatment were fasted 18 h and serial blood samples collected via jugular cannulas every 15 min for 6.5 h. Arginine (.5 g/kg BW) was administered intravenously (ARG) to induce release of GH, and four additional samples of blood were collected. Samples were analyzed by RIA for GH. Mean fasted GH (6.4 +/- .4, 8.3 +/- .4 and 13.8 +/- .4 ng/ml for HS, HF and LE, respectively) varied with energy source and level (P less than .01). Mean GH following ARG was higher (P less than .01) in heifers receiving LE (46.2 +/- 4.7) than in those receiving HS and HF (23.5 +/- 4.4 and 24.1 +/- 4.6 ng/ml). Basal GH concentration and peak amplitude were higher (P less than .05) in LE than in HS and HF treatments. Diet did not influence number or frequency of GH peaks.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号