首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 96 毫秒
1.
LysM结构域包含蛋白(lysM domain containing protein)为植物中公认的病原菌信号受体蛋白。本研究在水稻雌性不育基因FST遗传调控网中筛选获得一个关键靶基因,暂命名为OsEMSA1,该基因编码包含一个LysM结构域的未知功能蛋白质。蛋白质序列分析表明,OsEMSA1蛋白N端包含一个信号肽序列,具备跨膜结构,LysM结构域位于蛋白C端,为胞外结构。启动子顺式作用元件分析表明,光响应元件、激素应答元件、生长调节元件在OsEMSA1启动子区有很高的分布。电子表达谱分析表明,OsEMSA1基因在野生型水稻日本晴多组织中均有不同程度的表达,而根中和开花前的胚囊中表达量相对较高,可能参与调控水稻根和雌配子发育,同时逆境胁迫、激素信号以及病菌侵害也能不同程度的诱导OsEMSA1基因的表达。基因共表达分析显示,OsEMSA1基因与激素信号传导响应、逆境胁迫应答以及抵御真菌病害的基因存在互作。本研究成功构建了由OsEMSA1基因自身启动子驱动的过表达转基因水稻株系,为进一步分析OsEMSA1基因功能奠定了实验基础,并为发掘LysM结构域包含蛋白的潜在功能提供了一定的理论依据。  相似文献   

2.
甜菜碱作为植物体内一种重要的渗透调节物,对调节逆境下植物细胞的渗透压起着十分重要的作用,而甜菜碱醛脱氢酶(BADH)在植物甜菜碱合成过程中起了关键的催化作用。本研究中,通过分析西瓜BADH基因的结构和功能,结果表明:ClBADH基因启动子区结构中含有15个外显子和14个内含子,其含有包括乙烯响应元件在内的20多种顺式响应元件;ClBADH基因编码的蛋白含有503个氨基酸,该蛋白分子量约为54.5 kD;蛋白亚细胞定位预测显示其可能定位在细胞质中,具有氧化还原酶活性。通过对系统进化树的分析发现西瓜在同源关系上与同科的黄瓜和甜瓜更近,而与藜科的甜菜的同源关系相对较远。此外,以茉莉酸甲酯和乙烯两种物质模拟逆境信号处理西瓜细胞,发现两种信号物质诱导后,西瓜ClBADH基因的表达量均有上调的趋势,但其上调的速度和幅度却存在明显的差异。本研究为通过逆境信号诱导提高西瓜抗逆性提供参考,也为利用基因工程技术提高西瓜抗逆性提供支持。  相似文献   

3.
转甜菜碱醛脱氢酶基因提高烟草抗旱及耐盐性   总被引:9,自引:0,他引:9  
司怀军  张宁  王蒂 《作物学报》2007,33(8):1335-1340
将甜菜碱醛脱氢酶(BADH)基因与组成型启动子CaMV 35S启动子融合,构建了植物表达质粒pBIBB。通过根癌农杆菌介导将BADH基因导入烟草,经PCR、Southern杂交、Northern杂交证明BADH基因已整合到烟草基因组中并在转基因植株中转录和表达。测定转基因植株叶片中甜菜碱醛脱氢酶活性,结果显示对照植株没有BADH酶活性,转基因植株的各个株系间甜菜碱醛脱氢酶比活力差异较大,范围在0.1~1.0 U mg-1间。转BADH基因的烟草在盐胁迫和聚乙二醇(PEG)胁迫条件下生长状态良好,生长势强于未转基因植株,说明BADH基因能在异源植物中正常翻译、表达和用于植物抗旱、耐盐基因工程的研究。  相似文献   

4.
陈翠萍 《分子植物育种》2023,(19):6276-6284
耐盐性是藜麦重要的优良特征之一,甜菜碱醛脱氢酶(BADH)基因是参与藜麦耐盐胁迫途径的关键酶。然而,关于藜麦BADH基因家族的研究却很少。本研究基于藜麦基因组数据库,进行藜麦BADH基因家族筛选及生物信息学分析。结果表明,藜麦共筛选到3个BADH基因成员,BADH蛋白氨基酸长度分别为500 aa和501 aa,蛋白分子量为54.47~54.80 kD,理论等电点为5.26~5.44,呈酸性,蛋白性质稳定,为疏水性蛋白;预测BADH蛋白亚细胞定位于叶绿体、线粒体和过氧物酶体,且无跨膜结构域,均属于ALDH-SF super family (醛脱氢酶超家族);基因结构分析表明,藜麦BADH基因家族均含有15个外显子和14个内含子,基因结构相似;系统进化分析表明,藜麦BADH与中亚滨藜、菠菜和籽粒苋同属一分支;启动子顺式作用元件分析显示,BADH基因启动子含有多个与光响应、植物激素、胁迫和植物生长相关的顺式作用元件。本研究通过生物信息学对藜麦BADH基因家族进行分析,为进一步研究BADH基因功能提供参考。  相似文献   

5.
采用RT-PCR技术克隆了播娘蒿的甜菜碱醛脱氢酶基因全长cDNA序列(DsBADH)。DsBADHcD-NA序列全长1653bp,其中开放阅读框长1503bp,编码一个由501个氨基酸残基组成的蛋白质,推测的蛋白质相对分子质量为54kD,pI为5.5。序列比对结果表明DsBADH与其它物种的BADHs无论在核酸水平还是在蛋白质水平上都表现较高的同源性,表明BADH基因家族具有较高的保守性。DsBADH基因的氨基酸序列在进化上与同属十字花科植物BADH基因距离较近。蛋白质序列存在一个编码十肽的高度保守序列,该结构在醛脱氢酶中是高度保守的,这些残基可能包含NAD 结合位点及酶催化位点,而且含有与酶功能有关的醛脱氢酶高度保守的氨基酸残基Cys,表明DsBADH可编码活性蛋白。N端存在信号肽,初步将该酶定位于叶绿体。半定量RT-PCR分析表明,DsBADH在根、茎、叶以及角果中均表达,但在角果中的表达显著高于其它组织,而且表明DsBADH受盐诱导正调节表达。  相似文献   

6.
通过用不同浓度外源甜菜碱预处理香蕉幼苗后,置于人工气候箱中模拟低温胁迫,分别测定香蕉叶片和根系内源甜菜碱的含量和甜菜碱合成关键酶甜菜碱醛脱氢酶(BADH)活性,以研究外源甜菜碱对香蕉叶片和根系内源甜菜碱合成的影响。结果表明,一定浓度的外源甜菜碱可极显著提高香蕉幼苗叶片BADH活性,极显著促进叶片内源BT的积累,胁迫24 h后根系内源甜菜碱的含量虽显著高于常温对照,但BADH活性却无显著提升。结论:外源甜菜碱可促进低温胁迫下香蕉内源甜菜碱的合成和积累,叶片是其主要合成器官,根系可作为甜菜碱的贮存场所。  相似文献   

7.
WRKY蛋白属于锌指型转录调控因子,参与植物生长发育及耐逆响应。以陆地棉遗传标准系TM-1为材料,克隆Gh WRKY64(KF031101)基因上游1064 bp的启动子序列,并对其调控元件及功能进行分析。生物信息学分析表明,该区域含18个组织器官表达及诱导表达关键元件,分别为6个ROOTMOTIFTAPOX1根特异调控元件,4个CACTFTPPCA1叶肉特异性调控元件、4个OSE2ROOTNODULE病菌诱导元件、2个GTIGMSCAM4盐调控元件和2个W-box胁迫应答响应元件。将该启动子与GUS基因融合,构建p BIW64:GUS植物表达载体,通过农杆菌介导叶盘转化法获得12个转基因烟草株系。选择GUS表达量最高的p BIW64-5进行转基因不同组织器官表达及诱导表达分析。GUS组织化学染色显示,苗期的转基因烟草植株在叶和根部均具有GUS活性,开花期在转基因烟草植株根、叶及叶柄均检测到GUS活性,特别在转基因烟草的根及根尖部分染色更深,在茎和花组织上未检测到GUS活性。对该转基因烟草幼苗进行黄萎病菌诱导处理,诱导48 h后,转基因烟草幼苗根和叶片的GUS染色比未诱导处理的对照明显加深。结果表明,Gh WRKY64上游1064 bp长度的DNA序列,具有启动子的相关顺式作用元件,且为病原菌诱导型启动子。该启动子可为开展棉花抗黄萎病转基因研究提供调控元件。  相似文献   

8.
刘峰  汪小东  赵彦鹏  孙杰 《棉花学报》2014,26(4):310-317
以棉花品种新陆早33号为材料,克隆获得其胚胎发育晚期丰富蛋白LEA基因的种子特异性启动子。启动子序列全长为1228bp;作用元件分析表明该区域除了具有启动子核心调控序列外,还含有多个与组织特异性、激素、逆境等表达相关的顺式作用元件,如E-box、ABRE元件、A-box等。与已报道的棉花品种Coker 201的LEA基因D34的5'端上游调控序列1212bp相比,两者具有97%的一致性。拟南芥遗传转化的功能分析结果表明,所克隆的序列能驱动GUS基因在种子中特异表达,且GUS主要在转基因植物的种子发育后期表达;其表达强度要弱于组成型的CaMV35S启动子。研究结果不仅有助于进一步深入认识棉花LEA基因功能及其表达调控规律,也为植物遗传转化提供组织特异性的启动子。  相似文献   

9.
对盐、旱逆境下转BADH基因小麦品系99T6的生长发育、甜菜碱醛脱氢酶活性及甜菜碱积累等进行了研究分析,结果表明,转BADH基因株系在盐逆境下具有明显的生长优势,耐盐能力达到100mmol/L;电导率和质膜相对透性表明转基因株系抗膜损伤能力增强;甜菜碱醛脱氢酶活性的增强和甜菜碱积累的增加,说明转基因株系的盐旱逆境抗性是通过甜菜碱积累这一长期、持久的方式解除渗透胁迫,而不是通过脯氨酸积累这种临时的应急反应;以甜菜碱作为靶标性状采用基因工程方法提高植物盐旱耐性是可行的.  相似文献   

10.
PIPs(plasmamembrane intrinsic proteins)是质膜内在蛋白,属于水通道蛋白的一个亚类,因其广泛参与植物逆境胁迫应答过程而备受关注。本研究对大豆GmPIPs基因进行了全基因组分析,主要包括成员鉴定、蛋白特性、保守结构域、进化关系、顺式作用元件、组织表达特性、干旱表达谱以及亚细胞定位分析。结果表明:从全基因组水平共鉴定到22个GmPIPs。多序列比对显示所有GmPIPs基因编码的氨基酸均含有高度保守的特征结构域:6个跨膜螺旋(TM-TM6)和2个氨基酸元件NPA盒(Asp-Pro-Ala box)。进化分析显示大豆GmPIPs主要划分为2个亚家族。顺式作用元件分析显示多数GmPIPs基因上游启动子区含有逆境和激素应答元件。组织表达分析显示多数GmPIPs基因在各个组织中广泛表达。QRT-PCR分析发现在根中高表达的8个GmPIPs候选基因均受干旱胁迫的诱导表达。其中,GmPIP2;6干旱应答最为明显。进一步的亚细胞定位显示GmPIP2;6蛋白定位在细胞膜上。以上研究结果为后续GmPIPs基因抗旱功能的研究及生产利用提供了理论依据。  相似文献   

11.
海南省是菠萝蜜的重要产区之一。自2016年起对海南省11个菠萝蜜规模化种植地区的果园进行了菠萝蜜锈病普查,对发病较严重的5个市县进行了连续两年的固定点监测。结果表明:万宁、定安、澄迈、琼海等地的菠萝蜜锈病发病率极显著高于其他地区;除琼海外,其它市县菠萝蜜果锈病发病率4~6月的均高于9~11月;发病率最高的是2017年五指山,达20.00%,最低的是2018年澄迈,为9.33%;病情指数方面五个监测点2017年均大于2018年。单苞和单果锈病严重度均为5级。综上,4~6月是菠萝蜜锈病发病的高峰期;综合两年比较,各地区的平均发病率与平均病情指数均有所下降,病果数量也在下降。通过提出锈病分级标准,为明确锈病害发生规律,提高防治水平提供参考依据。  相似文献   

12.
法尼基焦磷酸(farnesyl diphosphate, FPP)是植物萜类化合物合成途径的重要前体之一,经不同的酶催化可形成各类萜类化合物,Vetispiradiene合酶可催化FPP形成Solavetivone和Lubimin的前体Vetispiradiene。本研究利用白木香转录组数据,首次克隆了编码白木香Vetispiradiene合酶的基因(命名为As VS, Genbank登录号为MH378283),AsVS基因序列全长为1 632 bp,编码543个氨基酸,该氨基酸序列与马来沉香倍半萜合酶聚类于同一分支,具有较近的亲缘关系,该蛋白植物倍半萜的保守性结构域DDXXD,NST/DTE和R(R)X8W,相对分子量为62.73 kD,理论等电点为5.51,包含40个磷酸化位点;二级结构以α螺旋和无规则卷曲为主;不含跨膜结构域。RT-qPCR分析结果表明AsVS基因在结香剂处理过程中于白木香茎干样品中持续上调表达,其第6天及第9天的表达量分别为对照处理的2.36和5.02倍。此结果为进一步研究As VS基因在白木香萜类化合物的合成及沉香致香成分富集中的功能提供了理论基础。  相似文献   

13.
为了获取良好的剑麻悬浮细胞体系,以剑麻无菌幼苗嫩叶为诱导材料,对剑麻胚性愈伤组织的获得,建立细胞悬浮系和影响悬浮细胞增殖的主要影响因子进行了探讨。结果表明:幼叶在培养基为MS+2.0 mg/L 2,4-D+1.0 mg/L 6-BA上诱导的愈伤组织,经1~2次继代培养后获得了颗粒状、浅黄色的胚性愈伤组织;接种于液体培养基接种量为2 g (鲜重),继代周期为7 d,经4~5次继代震荡培养建立了细胞悬浮系,细胞生长符合"S"型曲线,细胞浓度可达6.1×105~4.6×106个/m L以上;在悬浮细胞生长前期,pH值明显下降,在细胞对数生长期,pH值略有升高,并趋于平缓;最适宜的细胞悬浮培养基为(MS+1.5 mg/L 2,4-D+4.0 mg/L6-BA+350 mg/L水解酪蛋白, 30 g/L蔗糖, pH值为5.8)。通过建立剑麻悬浮细胞培养体系的方法,为进一步应用于剑麻悬浮细胞转化体系和多倍体育种等研究。  相似文献   

14.
STERILE APETALA (SAP)是调节花序、花和胚珠发育,调控分生组织细胞的增殖和器官大小的多功能基因。本研究利用生物信息学的方法对菠萝SAP转录因子进行序列分析,并通过qRT-PCR技术研究了非生物胁迫和生物胁迫对菠萝SAP基因表达的影响。结果表明,菠萝SAP蛋白为稳定疏水酸性蛋白且含有3个WD40重复区域,蛋白质二级结构显示,菠萝SAP蛋白主要结构元件为延伸链和无规则卷曲;qRT-PCR分析显示,逆境胁迫下,AcSAP的表达量与对照差异显著。在H2O2、NaCl、SA、ABA、Eth、低温(4℃)和病菌侵染胁迫下,AcSAP的表达量显著升高。研究表明,逆境胁迫能使AcSAP基因的表达受到影响,进而直接或间接影响植物生长发育,为今后菠萝的抗逆研究和分子育种提供了理论依据。  相似文献   

15.
卵形家族蛋白(ovate family proteins, OFPs)是仅存在于植物且具有保守OVATE结构域的一类转录抑制因子。Ovate最早在番茄中克隆并定位于2号染色体上。GTA496-TTA493的单核苷酸突变使得终止密码子提早出现而导致果实由圆形变为梨形。后来在拟南芥、水稻、辣椒、香蕉等植物中陆续开展了其功能研究。发现它是通过直接调控靶基因的表达或者与其它转录因子的相互作用来调控植物生长发育过程的。本文综述了其对果实形状、果实成熟及品质形成、胚珠发育、维管束发育、次生细胞壁的形成等方面的研究进展及可能的调控作用机制,以期为采用生物技术手段利用该蛋白调控植物生长发育提供理论依据。  相似文献   

16.
芒果炭疽病、蒂腐病和疮痂病是芒果种质的重要病害,给中国各芒果产区造成严重的危害,而抗病品种选育是防治芒果病害最经济有效的途径。为评价新引进的芒果种质对炭疽病、蒂腐病、疮痂病的抗性水平,采用田间抗病性鉴定方法对56份芒果种质果实的3种病害进行抗性评价。结果表明,56份种质资源中,高抗炭疽病种质5份、中抗炭疽病19份、高感炭疽病4份,高抗蒂腐病16份、中抗蒂腐病26份、高感蒂腐病1份,高抗疮痂病1份、中抗疮痂病17份、高感疮痂病4份,对3种病害均有抗性的种质资源7份。本研究结果初步揭示新引进的一些种质资源对芒果炭疽病、蒂腐病、疮痂病的抗性情况,为进一步地依托供试种质开展抗病性育种提供参考。  相似文献   

17.
以红花文殊兰的鳞茎为外植体,研究不同培养基对其腋芽启动、不定芽增殖及生根培养的影响。研究表明,腋芽启动的最适培养基为5.0 mg/L MS+6-BA+0.2 mg/L NAA+活性炭1 g/L,腋芽的诱导萌发率为88%;不定芽增殖的最适培养基为MS+2.0 mg/L 6-BA+0.5 mg/L TDZ+0.1 mg/L NAA+活性炭0.5 g/L,40 d的增殖系数可达7.16;壮苗培养基为1/2 MS+0.5 mg/L 6-BA+0.1 mg/L NAA+10%椰子水(CW)+活性炭0.5 g/L;生根的最适培养基为MS+0.5 mg/L NAA+0.5 mg/L IBA+活性炭0.5 g/L,生根率达100%,根系发达,植株生长健壮。生根苗经一段时间炼苗后,移栽到基质为树皮∶椰糠∶河砂=1∶1∶1的苗钵上,红花文殊兰的假植成活率达95%。该研究建立了红花文殊兰的快繁体系,为其工厂化生产提供技术支持。  相似文献   

18.
蔗糖磷酸合成酶(sucrose phosphate synthase, SPS)既是调控蔗糖合成的关键酶又是限速酶,为了研究其在芒果果实中蔗糖合成的作用机理,本研究从芒果果肉中克隆得到一个与蔗糖合成相关的基因,将其命名为MinSPS1,其cDNA全长序列为3 344 bp,开放阅读框为3 168 bp,编码1 055个氨基酸,蛋白质分子量为118.13 k D,等电点为6.08,对MinSPS1基因编码的蛋白进行系统发育分析,发现其与柑橘具有较近的亲缘关系。采用qRT-PCR对该基因在后熟处理的贵妃芒果肉中的表达量进行分析,结果显示在完熟期贵妃芒果肉中表达量较高,而在青熟期表达量较低。本研究为深入了解芒果蔗糖合成的分子机理,进一步构建了p CAMBIA1301-MiSPS1过表达载体,为MinSPS1的功能鉴定提供理论依据。  相似文献   

19.
为研究漆酶在牛大力生长发育过程中的生物学功能,本实验以牛大力叶片为材料,从反转录PCR获得的cDNA中扩增出漆酶基因CsLAC17全长。序列分析表明,CsLAC17 c DNA全长为2 010 bp,开放阅读框大小为1 755 bp,编码一个由584个氨基酸组成的蛋白质。结构域分析表明,Cs LAC17蛋白的保守结构域具有漆酶典型结构域的特征——铜离子结合域(Cu-oxidase和Cu-oxidase-2)。同源序列分析表明,Cs LAC17蛋白序列与绿豆(Vigna radiata var. radiata)和野生大豆(Glycine soja)同源性为88%、藜豆(Mucuna pruriens)87%、蒺藜苜蓿(Medicago truncatula) 85%。组织特异性表达分析显示,CsLAC17在茎中表达量最高,叶中表达量次之,根中较少。此外,进一步构建了pBI121-CsLAC17过表达载体并转入农杆菌。本研究为日后CsLAC17基因的功能验证以及为牛大力开展分子生物学研究提供帮助。  相似文献   

20.
铁线蕨属(Adiantum L.)隶属于铁线蕨科(Adiantaceae),属内植物为多年生中小型蕨类,适应性强,分布广泛。本属有200多种植物,中国现已发现30余种。铁线蕨属植物多数具有良好的抗菌、抗癌、抗氧化等药理作用,在临床上有诸多应用。此外,铁线蕨属植物外形美观,多用于室内盆栽和园林设计,具有良好的观赏价值。为了探究出更有效地保护及繁殖方法以及更高效地利用铁线蕨属植物的观赏及药用价值,本综述就繁殖技术、形态特征、园林及医药应用等方面对该属植物的研究进展进行了概述,以期为后续的栽培管理及开发利用提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号