首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
大豆SSR技术反应体系的优化   总被引:3,自引:0,他引:3  
以大豆为材料,研究了PCR反应体系的主要成分模板DNA浓度、dNTP浓度、引物浓度、Taq酶浓度及退火温度对大豆SSR扩增结果的影响,探索影响SSR扩增结果的各因素的最佳用量及引物的退火温度。结果表明:在试验设计范围内,DNA浓度和dNTP浓度对扩增影响较大,引物浓度在0.05~0.2μmol/L范围内对扩增影响较小,Taq酶浓度对扩增有一定影响,引物要有其扩增适宜的退火温度。确立了适合大豆SSR分子标记研究的优化体系。最终确定总反应体系为20μL,模板DNA 20 ng,dNTP 200μmol/L,引物0.15μmol/L,Taq酶0.5 U,10×Taq Buffer 1.5 mmol/L,ddH2O补至20μL。  相似文献   

2.
为有效利用SSR-PCR技术分析国家一级重点保护植物银缕梅的遗传多样性,采用正交试验设计L16(43),即3因素4水平,对影响SSR-PCR扩增结果的因素(引物,模板DNA浓度和循环数)进行优化筛选,并在此基础上对聚丙烯酰胺凝胶上样量进行优化,建立了适合银缕梅的最佳SSR-PCR反应体系:10μL 2×PCR Mix、40 ng模板DNA、10μmol/L引物,其余用dd H_2O补齐至20μL。PCR扩增程序为:95℃预变性15 min,95℃变性30 s,57.5℃退火1.5 min,72℃延伸1 min,30个循环,循环结束后,60℃延伸30 min,扩增产物4℃保存。聚丙烯酰胺凝胶电泳上样量以1.5~2.0μL为最佳。利用优化后体系进行引物筛选,从18对引物中筛选出11对具有多态性引物,说明该反应体系具有良好的稳定性。该体系的建立可以为今后利用SSR标记对银缕梅遗传多样性分析、系统发育研究、遗传图谱构建、基因定位和分子标记辅助育种等研究提供基础。  相似文献   

3.
SSR-PCR反应体系的建立与优化是凤仙花属植物(Impatiens L.) SSR标记研究的基础,本研究以8种凤仙花属植物为试材,对Mg~(2+)、Taq酶、dNTPs浓度、DNA模板、引物浓度等5因素进行L_(16)(4~5)正交试验,探讨适合凤仙花属植物的SSR-PCR反应体系,并对主要因素进行优化。结果表明:Mg~(2+)、Taq酶和dNTPs浓度3个因素对凤仙花属SSR-PCR扩增结果有显著影响,影响程度为Mg2+Taq酶dNTPs浓度DNA模板引物浓度;20μL为最佳反应体系,其中,2.6 mmol/L (含10×PCR Buffer)的Mg~(2+),1.6 mmol/L的dNTPs,2μmol/L的引物,60 ng的DNA,0.1 U的Taq酶,ddH_2O补齐剩余部分。利用优化后的反应体系对同属54种材料进行PCR扩增,扩增产物在130~200 bp,具4个等位基因,目标条带清晰,多态性良好。该体系的建立可为今后利用SSR标记对凤仙花种质鉴定、遗传多样性分析、系统发育研究、遗传图谱构建、基因定位和分子标记辅助育种等研究提供了依据。  相似文献   

4.
药用菊花SSR-PCR反应体系优化及引物筛选   总被引:5,自引:0,他引:5  
为进一步开发利用药用菊花种质资源和开展分子标记辅助选择育种,本研究利用L25(56)正交设计对影响药用菊花SSR-PCR反应的模板DNA、Mg2+、d NTPs、Taq酶、引物等5个因素进行优化,并对SSR引物进行筛选。结果建立了药用菊花SSR-PCR最佳反应体系(20μL):模板DNA 60 ng,正、反向引物0.25μmol/L,d NTPs 0.3 mmol/L,Mg2+3.0 mmol/L,Taq酶1.5 U。运用优化后的反应体系,从136对引物中成功筛选出了扩增条带清晰、多态性丰富的SSR引物57对,大多数条带大小集中在100~500 bp,不同引物扩增的条带数为5~15条。优化的SSR-PCR反应体系在多个药用菊花品种遗传多样性研究中得到了验证,获得了稳定性、重复性良好和多态性丰富的扩增图谱。该体系的建立可为今后利用SSR标记对药用菊花种质鉴定、遗传多样性分析、系统发育研究、遗传图谱构建、基因定位和分子标记辅助育种等研究提供了依据。  相似文献   

5.
SCoT-PCR是一种单引物扩增分子标记。为了将SCoT分子标记应用于海南油茶的分子鉴定和遗传多样性评价中,本研究采用单因素试验和正交试验结合方法,分析模板DNA、dNTPs、Taq DNA聚合酶及引物4种因素对海南油茶SCoT-PCR扩增结果的影响,构建海南油茶SCoT-PCR体系,并筛选多态性引物。单因素试验结果表明:DNA浓度对海南油茶扩增效率影响不大,高浓度dNTPs利于扩增产物,而Taq酶和引物扩增高效率偏于中浓度。正交试验结果表明:各因素对海南油茶SCoT-PCR扩增影响大小依次为引物>Taq DNA聚合酶>dNTPs>模板DNA;总体系为20μL时,最佳反应体系中模板DNA用量为30 ng,dNTPs浓度为0.30 mmol/L,引物浓度为0.60μmol/L,Taq DNA聚合酶用量为1.00 U。利用构建的SCoT-pcr体系对80条SCoT单引物进行筛选,最终筛选出16条SCoT条带清晰的多态性引物,多态性比率平均值达到76.25%。本试验结果可为海南油茶的遗传多样性分析和种质资源鉴定等研究提供参考数据。  相似文献   

6.
先运用正交设计进行初步筛选,再用单因素设计逐一优化对ISSR-PCR扩增效果有影响的Mg2+、Taq DNA聚合酶、dNTP、引物、模板DNA、循环次数及退火温度.建立了黄枝油杉的最佳反应体系和程序,即25μL体系中含2.0mmol/L的Mg2+、1.5U Taq DNA聚合酶、0.10mmol/L的dNTP、1.0μmol/L的引物、30ng的模板DNA以及2.5μL10×PCR buffer,其余的用灭菌的ddH2O补够25μL.扩增程序:94℃预变性5min;94℃变性30s,48~56℃(不同的引物,其退火温度不同,根据具体引物而定)退火45s,72℃延伸90s,以上3个步骤循环50次;最后72℃延伸7min;扩增产物放在4℃冰箱中保存.该体系和程序稳定性良好,结果可靠,可用于黄枝油杉遗传多样性分析.  相似文献   

7.
通过单因素与中心复合设计相结合的方法建立优化红芪ISSR-PCR反应体系,并筛选引物,优化电泳时间及扩增循环数。建立的红芪ISSR-PCR反应体系为:25μL反应体系中10×PCR Buffer(Mg~(2+))3.5μL、模板DNA(30 ng/μL)2μL、PCR扩增引物2μL、Taq DNA聚合酶为1.25 U、d NTPs为2μL,dd H_2O 14.5μL,建立的扩增程序:94℃预变性5 min,开始34个循环;94℃变性30 s,后据不同退火温度的引物复性45 s,72℃延伸2 min,循环结束后72℃延伸7 min。本研究筛选出红芪扩增的引物17条;PCR反应产物电泳时间为120 min,最佳循环数为34,建立了稳定的体系,为进一步研究红芪的遗传多样性及遗传结构提供了帮助。  相似文献   

8.
风信子ISSR-PCR体系的优化及引物筛选   总被引:1,自引:0,他引:1  
以风信子基因组DNA为ISSR-PCR扩增模板,采用单因素试验方法,对影响PCR扩增体系中Mg2+浓度、dNTPs、模板DNA及引物浓度、Taq酶的用量5个因素进行研究,建立了风信子ISSR-PCR扩增最佳反应体系,即:20μL反应体系中分别加入2μL10×Buffer、1.4μL Mg2+(25mmol/L)、1.5μL dNTPs(2.5mmol/L)、1.5μL引物(10pmol/μL),0.2μLTaq酶(5U/μL),1.2μL模板(30ng/μL),ddH2O补足体积。并以此体系对110条引物进行筛选,最终获得了多态性高,重复性好的引物12条。  相似文献   

9.
本研究以催吐萝芙木为材料,利用正交试验设计对影响SRAP-PCR反应的不同浓度模板DNA、Taq DNA聚合酶、引物和d NTP进行优化,建立催吐萝芙木的SRAP-PCR最佳反应体系。20μL反应体系包括:10×Taq Plus Buffer(含1.5 mmol/L Mg2+)2μL,d NTP 0.2 mmo1/L,Taq DNA聚合酶0.75 U,模板DNA 40 ng、正/反引物各1.2μmo1/L。在此条件下,对能够在催吐萝芙木、四叶萝芙、蛇根木、苏门答腊萝芙木、云南萝芙木中扩增的引物进行了筛选,获得30对具有通用性扩增的引物,为后续通过SRAP探讨其遗传多样性和亲缘关系方面的研究提供参考。  相似文献   

10.
《分子植物育种》2021,19(7):2279-2285
本研究采用改良的CTAB法提取元宝枫基因组DNA,并使用L_(16)(4~5)正交试验设计。通过5因素4水平实验,筛选Taq DNA聚合酶、dNTPs、引物浓度、Mg~(2+)、模板DNA浓度及其用量,建立并优化元宝枫(Acer truncatum)的最佳SSR-PCR反应体系,即总体积20μL,Taq DNA聚合酶、dNTPs、引物、Mg~(2+)和模板DNA浓度分别为1 U/20μL、0.2 mmol/L、0.6 mmol/L、1.25 mmol/L和75 ng/20μL。扩增实验结果表明,该反应体系稳定性较好,可重复性高,具有较好的分辨率。可从59对引物中筛选出14对适用于元宝枫并具有较明显的多态性的SSR引物,为进一步研究元宝枫的分子标记辅助育种、SSR遗传多样性分析和遗传图谱构建提供了良好的基础。  相似文献   

11.
食用向日葵SSR-PCR反应体系的优化   总被引:1,自引:0,他引:1  
为建立食用向日葵分子标记反应体系,以食用向日葵四叶期叶片为DNA模板提取材料,采用单因素试验和正交试验设计,对SSR-PCR反应体系中的6因素(10×PCR Buffer、Mg2+、d NTPs、引物、Taq DNA聚合酶和DNA模板)在5水平上进行正交优化试验,并比较了不同浓度Mg2+、Taq DNA聚合酶、模板DNA对扩增效果的影响,结果表明,各因素水平变化对反应体系的影响为Mg2+Taq DNA聚合酶(引物)DNA模板10×PCR Bufferd NTPs。最终建立食用向日葵SSR-PCR最佳反应体系为:在总体系为20μL的SSR-PCR反应体系中包括10×PCR Buffer 0.2mmol/L、Mg2+2.0 mmol/L、d NTPs 1.8 mmol/L、Taq DNA聚合酶0.2 U、DNA 50 ng、引物1.5 mmol/L。  相似文献   

12.
黄瓜SRAP反应体系的正交设计优化   总被引:16,自引:0,他引:16  
采用正交试验设计方法,对影响黄瓜SRAP反应体系的5种因素(dNTP、模板DNA、引物、Taq聚合酶及变性剂)4个水平进行优化筛选,确立了适合黄瓜SRAP分析的优化反应体系,即在10μL PCR反应体系中含有1μL 10×PCR buffer,150μmol/L dNTP,30 ng模板DNA,0.3μmol/L引物、1.5 U Taq聚合酶,PCR产物变性时用10μL变性剂。  相似文献   

13.
本研究采用均匀设计和单因素试验相结合的方法,探寻淫羊藿ISSR-PCR的各组分(即引物, 2×Taq Master Mix,模板DNA)的最佳用量及退火温度对ISSR-PCR扩增的影响,为进一步使用ISSR分子标记分析淫羊藿的遗传多样性提供科学依据。结果表明,筛选的最佳体系为:在20μL的体系中,模板DNA的量为30ng,2×Taq Master Mix的量为9.8μL,引物为0.325μmol/L。此外,筛选出7条多态性较好、条带稳定的引物(UBC-808, UBC814, UBC826, UBC827, UBC840, UBC846及UBC856),并对其进行温度梯度PCR,结果表明,所选引物的最佳退火温度介于46.8℃~65℃之间。在此基础上,对13份淫羊藿种质资源进行ISSR扩增验证,结果表明建立的最佳反应体系扩增效果较好,稳定性强,对淫羊藿的遗传多样性分析、鉴定等具有较好的应用价值。  相似文献   

14.
为了对玉米弯孢病菌的鉴定、区域发生关系以及遗传多样性等进行研究,采用单因素试验优化玉米弯孢叶斑病菌ISSR-PCR反应体系中模板DNA、引物、dNTPs、Taq酶、Mg~(2+)的用量,并确定每条引物的最佳退火温度。结果表明,最佳反应体系为:模板DNA 1.6μL(25 ng/μL)、引物1.4μL(5μmol/L)、dNTPs 0.25μL(2.5 mmol/L)、Taq酶0.4μL(2.5 U/μL)、Mg~(2+)0.8μL(25 mmol/L)、10×Taq Buffer 2μL、dd H2O 13.55μL。在该体系下选用3个玉米弯孢病菌的全基因组DNA,分别对52条ISSR引物进行筛选,筛选出16条多态性高、扩增稳定的ISSR引物。玉米弯孢病菌ISSR-PCR反应体系的建立为利用ISSR分子标记技术对该病原菌进行遗传分析奠定了基础。  相似文献   

15.
利用两轮混合均匀设计的方法,研究引物、2×Taq master mix、模板DNA以及退火温度对ISSR-PCR扩增的影响,在此基础上获得优化的川续断ISSR反应体系,为后续开展川续断的遗传多样性分析奠定基础。试验显示川续断ISSR-PCR最佳反应体系为:在18μL的反应体系中含有2×Taq Master Mix 10.44μL,模板DNA 45 ng,引物0.35μmol/L。在此基础上,从100条引物中筛选出5条扩增较稳定、多态性丰富的引物,随后进行的温度梯度PCR实验发现引物最佳退火温度介于45℃~58℃之间。该试验表明采用混合均匀设计和单因素试验相结合的方法,可以减少实验处理次数,快速建立ISSR反应体系,经过对9份川续断种质资源进行ISSR扩增检测,证明该体系稳定可靠,可用于川续断遗传多样性分析。  相似文献   

16.
正交设计优化大豆SSR-PCR反应体系及引物筛选   总被引:5,自引:0,他引:5  
以大豆(Glycine max L.)为材料,研究了PCR反应体系的主要成分对大豆SSR扩增结果的影响,并确定影响SSR扩增结果的各因素的最佳用量.以CTAB法提取的大豆叶片DNA为模板,应用L16(44)正交设计对影响大豆SSR-PCR的主要参数进行优化,建立适合大豆SSR-PCR反应的最佳体系.结果表明:各因素不同水平浓度对PCR反应结果均有显著影响.大豆SSR-PCR优化反应体系为:2.0 μL 10×PCR Buffer,30 ng模板DNA,150μmol/L dNTP,0.4 μmol/LSSR引物,1.5 U Taq DNA聚合酶,2.0 mmoL/L Mg2+,加ddH2O至终体积20.0μL.优化的PCR扩增程序为:94℃预变性5 min.94℃变性30 s,50℃退火1 min,72℃延伸1 min,共35个循环,72℃延伸5 min,4℃保存.同时选用200对大豆引物对2份材料进行扩增,筛选出条带清晰,多态性好的引物74对,用于大豆SSR标记的进一步研究.  相似文献   

17.
刘冲  杨丽  杨伟俊  徐建国  廖晶晶 《种子》2013,32(2):38-41
对药用植物刺山柑遗传多样性研究分析,建立了刺山柑ISSR-PCR稳定的反应体系,利用植物基因组试剂盒提取刺山柑药材DNA;根据此引物采用正交实验设计考察影响PCR扩增的4个主要因素,筛选出最佳反应条件:25μL ISSR-PCR的最佳浓度为10×buffer 2.5μL、引物0.2μmol/L、模板40 ng/μL、dNTPs 0.4 mmol/L、Taq/DNA聚合酶0.5 U,利用梯度筛选获得U 808引物最佳退火温度。为利用这一分子标记对药用植物刺山柑进行遗传多样性分析奠定了基础。  相似文献   

18.
枣树RAPD分析体系优化研究   总被引:4,自引:1,他引:3  
利用随机引物扩增多态性(RAPD)分子标记技术研究不同枣树品系之间遗传多态性,建立起一个基于PCR技术的分子遗传标记RAPD分析的优化体系.设置不同的浓度梯度,从dNTPs、随机引物、Taq酶、Mg2 、缓冲液Buffe,的浓度及模板DNA的质量和用量方面考察,建立了枣树RAPD技术最优体系.结果表明:20μL反应体系组分含量为10×Taq酶Buffer 2μL,Mg2 浓度2.0 mmol/L,dNTPs浓度200μmol/L,引物浓度0.2 μmol/L,Taq DNA聚合酶浓度0.06 U/μL,DNA模板浓度1.5 ng/μL.最佳扩增程序为94℃预变性4 min,94℃变性30 s,36℃退火40 s,72℃延伸1min,50个循环,最后72℃延伸8 min.  相似文献   

19.
为通过ISSR分子标记研究桃儿七遗传多样性,建立并优化桃儿七的ISSR-PCR反应体系。使用正交设计辅以单因素试验,对桃儿七ISSR-PCR反应体系中的5种主要因素(模板DNA,Mg~(2+),Taq DNA酶,d NTPs及ISSR引物)进行筛选优化,选取甘肃碌曲县西仓神山山顶桃儿七居群样本验证该反应体系。正交试验各因素显著性为引物Taq DNA酶DNA浓度dNTPsMg~(2+),桃儿七ISSR-PCR反应的最佳体系为(25μL):2.5 mmol/L Mg~(2+),0.2 mol/L dNTP,0.4μmol/L引物,0.5 U Taq DNA酶,40 ng DNA,2.5μL 10×Buffer。该体系具有高稳定性,多态性丰富的特点,为野生桃儿七遗传多样性及保护策略研究提供了技术支持。  相似文献   

20.
以尾叶桉、细叶桉、粗皮桉为材料,采用L16(45)正交设计对SSR-PCR反应体系中的引物浓度、DNA浓度、Mg2+浓度、d NTP浓度和Taq酶含量5种因素的4个水平进行优化实验,确立了适合细叶桉、粗皮桉、尾叶桉SSR-PCR最佳反应体系,最终优化的SSR-PCR反应体系为:0.25μmol/L引物、5 ng模板DNA、3.75 mmol/L Mg2+、0.4 mmol/L d NTP、1.5 U Taq酶、1 m L 10×PCR Buffer,双蒸水补齐10μL;并利用优化的体系从74对SSR引物中筛选出12对多态性较高的引物,12对引物在3种桉树中均能扩增出条带,在尾叶桉、细叶桉、粗皮桉中的多态率分别为100%、92.86%、64.29%,为尾叶桉、细叶桉、粗皮桉的遗传多样性分析、品种鉴定、亲缘关系分析等提供了分子技术基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号