首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 106 毫秒
1.
G. Ogner 《Geoderma》1983,29(3):215-219
Humic acids have been prepared from four Norwegian forest soils, namely crust, felty, greasy and granular raw humus. 31P-NMR spectra demonstrated the presence of a variety of phosphorus esters and diesters in all the humic acids investigated. Alkylphosphonic acids and/or esters were present in humic acids from crust and felty raw humus.  相似文献   

2.
Two forest soils (Typic Dystrochrept, Entic Haplorthod) with mor and moder were investigated by chemical degradation, IR and CPMAS 13C NMR spectroscopy and pyrolysis (Py) field ionization (FI) mass spectrometry (MS). Chemical analyses show that during litter decomposition, humification, and podzolisation, cellulose and lignin structures decrease considerably, whereas no distinct changes were found for the hemicellulose and protein fractions. These results are consistent with current hypotheses on the conversion of plant residues to stable humic substances, but the sum of chemically identified organic soil components of the litter layers only accounts for 40–50% of total organic carbon. The amounts of different carbon types were estimated by the integration of CPMAS 13C NMR spectra. For the L layers this calculation assigns 56–58% as O-alkyl-C, 20–22% as alkyl-C, 14–16% as aryl-C, and 6–8% as carboxyl-C. With increasing soil depth O-alkyl-C (with polysaccharides as main source) decrease to 31–42%, aliphatic C increases to 36–43%, and aryl- and carboxyl-C show no distinct changes. The hypothesis of an increasing aromaticity during humification in soils therefore is questionable. Data from Py-FIMS confirm and extend the results' of chemical methods as well as IR and 13C NMR spectroscopy. In particular, the Fi mass spectra of the generated pyrolysates show that the increase in polymethylene carbon during the biodegradation and humification of beech and spruce litter is partly due to an increase of saturated fatty acids. This means, Py-FIMS is able to describe the structure of wet-chemically unaccounted, individual humus constituents and thus improves the knowledge about the genesis of humic substances.  相似文献   

3.
Eleven samples of terrestrial humus from different vegetational backgrounds were examined with solid-state 13C NMR using cross-polarization and magic-angle spinning (CP-MAS). In addition, all the samples were run with a dipolar dephasing pulse sequence for non-quarternary carbon suppression (NQS). The humus samples all appeared to contain small amounts of aromatic substances and larger amounts of aliphatic compounds. Most of the samples contained considerable amounts of hydroxyl groups and acetals, which originate mainly from carbohydrates. No correlations were found between vegetational background and chemical structure.  相似文献   

4.
为探究生物炭对土壤腐殖质组成和团聚体特征的影响,以东北黑土区植烟土壤为研究对象,设置了3个处理,2019-2020年连续施用低量生物炭5t/hm2(C1);高量生物炭25t/hm2(C2)和不施生物炭(CK),分析了不同用量生物炭对土壤腐殖质组分及水稳性团聚体分布的影响,并利用傅里叶红外光谱(FTIR)和13C核磁共振光谱(13C-NMR)对土壤胡敏酸化学结构进行表征。结果表明:C1和C2处理分别使富里酸减少了16.90%和40.85%,胡敏酸含量显著增加了14.86%和33.78%,胡敏酸在腐殖酸中所占比例(PQ值)也显著增加;FTIR和13C-NMR分析表明,C2处理的土壤胡敏酸的2920/1620值降低了11.82%,脂族C/芳香C比值降低了13.04%,表明高量生物炭使胡敏酸芳构化程度增强,脂肪结构比例降低;生物炭的添加促使土壤大团聚体(>0.25mm)比例增加,C2处理提升大团聚体的作用更显著。结合相关性分析发现,胡敏酸含量与2~0.25mm大团聚体含量显著正相关,胡敏酸分子的脂肪族官能团特征与>2mm粒级团聚体显著正相关。此外,C1和C2处理显著提高了烟叶产量。从而表明,生物炭能提升土壤腐殖质中胡敏酸含量和结构,有利于土壤大团聚体形成,提高土壤固碳潜力,对作物有一定的增产效果。  相似文献   

5.
Decomposition and humification were studied within three types of forest humus (mull, moder, and mor) by means of CPMAS 13C NMR spectroscopy combined with degradative methods. The NMR data show that O-alkyl carbon decreases in all soils, and alkyl as well as carboxyl carbon increase as depth and decomposition increase; the percentage of aromatic carbon remains constant at about 25%. With increasing depth the amount of carbon that can be identified as belonging to specific compound classes by wet chemical methods decreases from 60% to 40%. Microbial polysaccharides and the proportion of non polysaccharide O-alkyl carbon increase with depth. A selective preservation of recalcitrant, condensed lignin structural units is also observed. In order to relate the spectroscopic and chemical data from investigations of whole soils with studies of humification, samples were fractionated into fulvic acid, humic acid, and humin fractions. The fulvic acid fraction contains large concentrations of carbohydrates irrespective of the soil horizon. The humic acid fraction contains less polysaccharides, but high amounts of alkyl carbon and aromatic structures. The percentage of aromatic carbon existing in the humic acid fraction increases with depth, probably reflecting the amount and degree of oxidative decomposition of lignin. A loss of methoxyl and phenolic groups is evident in the 13C NMR spectra of the humic acid fraction. The humin fraction resembles relatively unchanged plant-derived materials as evident from the lignin parameters and carbohydrate contents. All the observed data seem to indicate that humic acids originate form oxidative degradation of humin or plant litter.  相似文献   

6.
We studied quantitative and qualitative changes in soil organic matter (SOM) due to different land uses (reference woodland versus cultivated) on six soils from Tanzania (Mkindo and Mafiga), Zimbabwe (Domboshawa and Chickwaka), and South Africa (Hertzog and Guquka). Structural characteristics of the humic acids (HAs) were measured by Curie-point pyrolysis–gas chromatography/mass spectrometry (Py–GC/MS) and solid-state 13C nuclear magnetic resonance (CPMAS 13C NMR) spectroscopy. Significant changes in concentration and composition of SOM were observed between land uses. Losses of organic carbon after cultivation ranged from 35% to 50%. Virgin soils showed large proportions of colloidal humus fractions: humic acids (HAs) and fulvic acids (FAs) but negligible amounts of not-yet decomposed organic residues. The change in land use produced a contrasting effect on the composition of the HAs: a noteworthy “alkyl enhancement” in Mkindo soil and “alkyl depletion” in Chikwaka and to a lesser extent in Domwoshawa. The remaining soils displayed only minor alterations.  相似文献   

7.
Calcium-bound and iron- and aluminium-bound humus extracted from different soils collected from north to south of China were characterized by chemical and spectroscopic methods. Meaningful differences in the composition and structure between them were revealed by 13C NMR, visible spectroscopy and elemental analysis. Results showed that the contents of carbon, hydrogen and nitrogen were higher in iron- and aluminium-bound humus than in calcium-bound humus while oxygen content in calcium-bound humus was shown to be higher. The calcium-bound humus had higher C/N and O/C ratios than iron- and aluminium-bound humus. The calcium-bound humic acid (HA1) showed higher E4/E6 ratios than iron- and aluminum-bound humic acid (HA2) while iron- and aluminum-bound fulvic acid (FA2) showed higher E4/E6 ratios than calcium-bound fulvic acid (FA1). An inverse relationship between E4/E6 ratios and aromaticity as determined by 13C NMR spectra was observed for HA and FA from black soil. The 13C NMR spectroscopy revealed that HA2 was more aromatic than HA1. On the other hand, FA1 exhibited a higher aromaticity than FA2.  相似文献   

8.
Composition of humic acids (HA) is a function of plant-derived inputs, degradation processes regulated by microorganisms, organo-mineral interactions and age. Characterization of different origin humic substances is important for evaluation of their contribution to stabile and labile carbon pool in the environment. The relative abundance of chemical components in HA isolated from soils, compost, commercial lignohumates, alginite, acadiane and lignite was studied with aim to quantify content of important biomarkers such as amino acid, lipids and polyphenols. HA were considered as a heterogeneous complex and high concentration of peptides, polyphenols and lipids was determined in acadian-HA to compare with soil-HA. Compost-HA contained much more amino acids to compare with soil-HA samples. Alginite-HA and lignite-HA were similar in biomarkers content to soil-HA. Fourier transform infrared spectroscopy confirmed that chemical composition and functional groups content differs with the origin, humification degree and the age of studied samples. Soil-HA are typically composed of a variety of ?OH, COOH?, C–O, C–H2, (aliphatic and aromatic) groups, quinines, lignin fragments, polysaccharide, monosaccharide and proteins fragments, which are linked together by ?O?, ?NH?, ?H=, >C=O, metal ions and –S? groups. 13C NMR spectroscopy showed that aromatic carbon content was the highest in lignite-HA and soil-HA.  相似文献   

9.
Abstract

Fulvic acids (FAs) are an important dynamic component of soils that may be affected by soil management. Carbon‐13 cross‐polarization total sideband suppression nuclear magnetic resonance (CP‐TOSS 13C NMR) was used to examine the effect of cover crop systems on the characteristics of fulvic acid fractions. FA was isolated from soils with the following treatments: 1) vetch/rye, 2) rye alone, and 3) check (no cover crops) with varying nitrogen fertilizers. Preliminary NMR results indicate that FA from the rye alone system both with and without nitrogen fertilizers contains less aliphatic carbon (0–108 ppm) than that from the other two treatments. Based on the elemental composition analysis result, C∶N ratio of FA from rye alone cover with or without nitrogen fertilizer is lower than FA from vetch/rye cover system. These data suggest that farming systems affect the FA compositions.  相似文献   

10.
To investigate the chemical heterogeneity of humic substances in relation to molecular size, fulvic and humic acids were extracted and purified from the surface horizon of a Humic Gleysol in northern Switzerland. A fractionation scheme using hollow‐fibre ultrafiltration cartridges was developed and used to obtain four size fractions of the humic acid with nominal molecular weight ranges > 300 kDa, 100–300 kDa, 30–100 kDa, and 10–30 kDa. The fulvic acid and all humic acid fractions were characterized by size exclusion chromatography, elemental analysis (C, H, N, S), as well as spectroscopic techniques including UV‐VIS, CP‐MAS 13C‐NMR, FT‐IR, and fluorescence spectroscopy. Clear chemical differences between the humic acid size fractions were observed. Smaller size fractions of the soil humic acid contained more chargeable functional groups and a larger percentage of aromatic carbon than the larger size fractions. Conversely, the percentage of aliphatic carbon increased with increasing apparent molecular weight. The chemical composition of the smallest humic acid fraction differed clearly from the fulvic acid fraction, despite similar apparent molecular size and carboxyl carbon content. Small humic acids contained much more aromatic carbon and less aliphatic carbon than the fulvic acid fraction. Apparently, humic size fractions differ in their chemical composition, which can have important implications for their environmental behaviour.  相似文献   

11.
G. Ogner  E.T. Gjessing 《Geoderma》1975,14(2):139-145
The chemical composition of aquatic humus was investigated by permanganate oxidation. Both methylated and non-methylated samples were investigated and the results compared with those of different soil humic fractions investigated earlier.The total amount of oxidation products identified from the methylated sample was 2%, and from the non-methylated sample 0.9%. The composition of the oxidation products from methylated aquatic humus was 42% benzenecarboxylic acid methyl esters (8 different compounds), 43% methoxy-benzenecarboxylic acid methyl esters (12 compounds), 10% dimethoxy-benzenecarboxylic acid methyl esters (4 compounds), and 5% of 1, 2, 3-propanetricarboxylic acid trimethyl ester. The unmethylated aquatic humus yielded 84% benzenecarboxylic acid methyl ester (7 compounds), 7% methoxy-benzenecarboxylic acid methyl esters (2 compounds), and 9% of 1, 2, 3-propanetricarboxylic acid trimethyl ester. Three diazines isolated from methylated material were believed to be artefacts from diazomethane treatment. Two of the diazines have earlier been found by oxidation of methylated soil samples, the third, C10H12N2O6, is an oxidation product of methylated aquatic humus only.Oxidation of aquatic humus yielded more benzenecarboxylic acids and methoxy-benzenecarboxylic acids than soil humic fractions, and less dimethoxy-benzenecarboxylic acids. No aliphatic dicarboxylic acids were detected among the oxidation products of the aquatic humus.The compounds identified are mainly the same as those found by oxidation of different soil humic fractions, although their yields clearly demonstrated that the aquatic humus differed in composition from the soil fractions.  相似文献   

12.
The aim of this work was to characterize the humic acids during composting using both chemical and spectroscopic analytical methods. Humic acids (HA) were extracted from olive mill pomace (OMP) after 5, 10, 21, 32, 48, 60, 84, 95, 109 and 153 days of composting and their elemental composition, functional groups, molecular weight, 13C CP-MAS NMR and FTIR spectra were determined. Elemental composition of HA showed a decrease of carbon content from 56.8% to 47.1% and an increase of oxygen content from 32.7 % to 43.3%. A slight increase of carboxylic groups was observed with no variation of phenolic groups. The molecular weight of HA determined by gel chromatography showed that after 95 days of composting the molecular weight of about 40% of the polymers was greater than 102 KDalton. The 13C CPMAS NMR and FTIR spectra of HA showed compositional and structural changes indicating a slight increase of polysaccharides and aromatic groups and a decrease of long aliphatic chains during the composting.  相似文献   

13.
The structure of humic acids (HAs) in zonal soil types—soddy-podzolic soils (two samples), gray forest soil (one sample), and chernozems (two samples)—was quantitatively studied by 13C NMR spectros-copy. In the series considered, the content of unsubstituted carbon in the aromatic fragments of HAs increased, and the fraction of unsubstituted aliphatic structures decreased. HAs of soddy-podzolic soils were found to be enriched with carbohydrate fragments compared to HAs of chernozems and gray forest soil. The carbon skeleton of HAs from typical rich chernozem contained significantly more aliphatic and carbohydrate fragments compared to typical chernozem, which probably reflected the lower degree of HA transformation in rich chernozem.  相似文献   

14.
Traditional chemical methods and 13C-NMR spectroscopy were used to study the humus in chestnut paleosols buried under kurgans of different ages (the 16th–15th centuries BC; the 1st, 2nd–3rd, and 13th–14th centuries AD) and under the Anna Ioanovna Rampart (1718–1720) and in their recent analogues on virgin plots. It was found that the decrease in the humus content of the paleosols as a result of the diagenetic processes is exponentially related to the age of the soil burial. The loss of humus from the upper 30 cm of the paleosol buried 3500 yrs ago amounted to 76 ± 14%, and this system did not reach a stationary state. The constants of the humus mineralization in the paleosols were determined. A tendency for an increase in the degree of the organic matter humification in the chestnut soils during the past 3500 yrs was found. With an increase in the age of the burial, the portion of aromatic structures in the structure of the humic acids increased and the portion of aliphatic fragments decreased. The cyclic changes in the composition of the humus related to the secular variations in the climatic humidity were identified.  相似文献   

15.
Seeking to quantify the amount of refractory organic matter (ROM), which includes black carbon‐like material (BC), in marine sediments, we have applied a two‐step procedure that consists of a chemical oxidation with sodium chlorite of the demineralized sediments followed by integration of the aromatic C region in the remaining residues by solid‐state 13C nuclear magnetic resonance (NMR) spectroscopy. The efficacy for lignin removal was tested by analytical pyrolysis in the presence of tetramethyl ammonium hydroxide (TMAH). Riverine, estuarine and offshore marine sediment samples were collected from the southwest Atlantic coast of Spain, a site of geological and environmental interest. Measured contents of BC‐like material ranged between 3.0 and 45.7% of the total organic carbon. Greater relative BC contents were found in riverine sediments close to urban areas, which show an elevated input of anthropogenic organic material. The contents of BC‐like material in offshore marine sediments (5.5–6.1%) were similar to those previously reported for these kinds of samples. However, NMR and pyrolysis‐GC/MS of the isolated ROM reveals that abundant refractory aliphatic organic material remains in most of the marine samples after chlorite oxidation. We suggest that this pool of aliphatic carbon may play an important role as a stable carbon pool within the global C cycle.  相似文献   

16.
Abstract

The effects of different management systems on the level and composition of humified organic matter in an entic Haplustoll from the semiarid Pampean region were studied. The systems were: TPc, wheat‐mixed pasture; TV, wheat (Triticum aestivum), oat (Avena sativa), corn (Zea mays) and triticale grasses; TP, wheat‐cattle grazing; and V, virgin, non cultivated. Humic acids were extracted, fractionated, and analyzed for their organic carbon (OC) content, elemental composition, and E4:E6 spectral ratios. The infrared (IR), electron spin resonance (ESR). and 13C‐NMR spectra were registered on these humic acids. The TP rotation showed the lowest humic acid‐carbon to fulvic acid‐carbon (HA‐C:FA‐C) ratio. The lower O:C ratio of humic acids from the cropped soils indicates a higher level of oxidation than that of the virgin one. The comparison of the different methodologies allowed us to conclude that crop rotations and conservation tillage were adequate to mantain the level and composition of the soil organic matter and humus which affected the soil fertility and level of productivity  相似文献   

17.
In-source pyrolysis field ionization mass spectrometry (Py-FIMS) and Curie–point pyrolysis gas chromatography/mass spectrometry (Py-GC/MS) have been applied to the characterization of whole soils methylated off–line and on–line by two methylation reagents. Samples of a gleysolic Ap–horizon and a podzolic Bh horizon (Corg concentrations 2–3%) were investigated by conventional on–line and developed off–line methylation with tetramethylammonium hydroxide (TMAH) and by off–line methylation with diazomethane. For the first method, the soils were dried, milled and pretreated with TMAH for 10 min at 250°C at ambient pressure outside the pyrolyzers. For the second method, the dried and milled soils were methylated with an ether solution of diazomethane for 12 h at room temperature (~20°C). Pyrolysis methylation with TMAH enabled aliphatic C2–C39 monocarboxylic acid methyl esters, C4–C30 dicarboxylic acid dimethyl esters and benzenecarboxylic acid methyl esters to be detected. Methoxybenzenes from phenols, benzenediols and benzenetriols, methoxybenzenecarboxylic acid methyl esters from phenolic acids and furancarboxylic acid methyl esters from carbohydrates were also identified. Nitrogen–containing compounds in soil organic matter were obtained as N,N–dimethylamides. Using diazomethane as methylation reagent, distinct Py-FIMS signals were observed for aliphatic C2–C32 monocarboxylic acid methyl esters and C3–C24 dicarboxylic acid dimethyl esters. Additionally, methoxybenzenes originating from lignins, methoxybenzenecarboxylic acid methyl esters from phenolic acids and N,N–dimethylamides from amides were detected. The more acid podzolic Bh horizon showed higher relative intensities for dicarboxylic acid dimethyl esters and methylated phenolic acids compared to the gleysolic Ap horizon. Similarly, benzenecarboxylic acids are connected mainly by ester linkages to the macromolecular network of soil organic matter. Both methylation procedures support conventional Py-FIMS and Py-GC/MS and give valuable additional information on the occurrence of aliphatic and aromatic carboxylic acids, substituted phenols, benzenediols, benzenetriols, phenolic acids and amides in soil organic matter.  相似文献   

18.
We investigated the effect of continuous compost application on humus composition and N fertility of soils in a field subjected to double cropping (paddy rice and barley) for 25 years. Soil samples were collected from three different plots: (a) No-NF, fertilizer containing P and K but no N; (b) F, fertilizer containing N, P, and K; and (c) F+C, fertilizer plus compost. The amounts of total humus, extracted humus, and humic and fulvic acids increased in the order No-NF<F≪F+C. The amounts of humic and fulvic acids were 2.7 and 1.7 times larger in the F+C plot than in the F plot, respectively. The degree of humification of the humic acids decreased in the order No-NF<F<F+C. The absorption curves and 13C-NMR spectra (TOSS method) of the humic acids indicated the presence of lignin-like structure, and its degree was the strongest in the F+C plot. The 13C-NMR spectra showed distinct differences in the distribution of carbon species between humic and fulvic acids. In humic acids, the content of aromatic-C, ranging from 37 to 44%, was the highest among carbon species. In fulvic acids, the content of O-alkyl-C, ranging from 45 to 51%, was the highest. The amounts of phosphate buffer-extractable N (PEON) and total N (TN) increased in the order No-NF<F<F+C. The amounts of PEON and TN were 1.2 and 1.7 times larger in the F+C plot than in the F plot, respectively. Present and previous findings indicated that continuous compost application could improve various properties of soils in a field subjected to long-term double cropping.  相似文献   

19.
Although condensed aromatic components are considered to be one of the major structural units of soil humic acids (HAs) and to be responsible for the dark colour of HAs, their amount and composition remain largely unknown. In ruthenium tetroxide oxidation (RTO), condensed aromatic components are detectable as their degradation products, mainly benzenepolycarboxylic acids (BPCAs). We applied this technique to soil HAs with various degrees of humification (darkening). The yields of water‐ and dichloromethane‐soluble products from HAs upon RTO after methylation ranged from 210 to 430 mg g−1 and 10–40 mg g−1, respectively. Eight kinds of BPCAs with two to six carboxyl groups, and seven kinds of BPCAs with additional side chains (tentative assignment) were obtained as methylated counterparts. The yield of each BPCA and the sum of the yields of BPCAs (12–85 mg g−1 HAs) increased with increasing degree of humification and aromatic C content. The compositions of BPCAs indicated that the degree of condensation was greater in the HAs with greater degrees of humification. The sum of the yields of aliphatic compounds ranged from 0.1 to 6.5 mg g−1, and decreased with increasing degree of humification. The C12 to C30 monocarboxylic acid methyl esters accounted for > 56% of the aliphatic compounds assigned, which may be present mainly as end alkyl groups in the HA molecules. We also obtained the methylated counterparts of C14 to C24 dicarboxylic acids; these were possibly derived from polymethylene bridges between adjacent aromatic rings.  相似文献   

20.
Fresh and decomposed spruce and pine litter and the Klason lignin fraction of spruce needles at different stages of decomposition were studied by CPMAS 13C NMR and IR spectroscopy as well as by chemical methods. It was shown that decomposition of needles is accompanied by an increase in aliphatic substances and carboxyl group content; the amount of polysaccharides is reduced. It is assumed that stable aliphatic compounds like cutin and lipids of microbial origin will accumulate during litter decomposition and humification. Aromaticity is low and does not alter drastically. The NMR spectra of the Klason lignin fraction show pronounced peaks at 30, 55, 115, 130, 150 and 175 ppm. Obviously, this fraction contains appreciable amounts of aliphatic and carboxyl carbon besides the typical aromatic units of lignin. During decomposition aromaticity decreases whereas the relative amounts of aliphatic substances and carboxyl groups increase. This is probably due to splitting of aromatic ring structures and side chains. The findings agree with the results from chemical analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号