首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CropSyst, a cropping systems simulation model   总被引:11,自引:0,他引:11  
CropSyst is a multi-year, multi-crop, daily time step cropping systems simulation model developed to serve as an analytical tool to study the effect of climate, soils, and management on cropping systems productivity and the environment. CropSyst simulates the soil water and nitrogen budgets, crop growth and development, crop yield, residue production and decomposition, soil erosion by water, and salinity. The development of CropSyst started in the early 1990s, evolving to a suite of programs including a cropping systems simulator (CropSyst), a weather generator (ClimGen), GIS-CropSyst cooperator program (ArcCS), a watershed model (CropSyst Watershed), and several miscellaneous utility programs. CropSyst and associated programs can be downloaded free of charge over the Internet. One key feature of CropSyst is the implementation of a generic crop simulator that enables the simulation of both yearly and multi-year crops and crop rotations via a single set of parameters. Simulations can last a fraction of a year to hundreds of years. The model has been evaluated in many world locations by comparing model estimates to data collected in field experiments. CropSyst has been applied to perform risk and economic analyses of scenarios involving different cropping systems, management options, and soil and climatic conditions. An extensive list of references related to model development, evaluation, and application is provided.  相似文献   

2.
There has been continuous change in the systems of cereal production in southern Australia where the climate is semi-arid with moderately wet winters and hot dry summers. At the outset wheat (c. 1840) was grown in continuous culture as the land was gradually cleared for cropping, but yields declined to uneconomic levels by 1900. That system was then replaced with fallow-wheat rotations, and using phosphorus fertilizer, yields recovered, but not to the original level. From 1945, the high profitability of sheep production encouraged improvement of legume-based pastures and the introduction of pasture-crop sequences – ley-farming. Productivity was greatly increased and the yield of wheat crops regained the original level. But such were the rates of acidification and salinization of soil that reduced productivity and, in the case of salinity, reduced stream quality and threatened adjacent natural ecosystems. This ley-farming system was used until the late 1980s when prices for wool fell dramatically, and farmers reduced sheep numbers and intensified cropping. The thrust since then has been to design cropping systems that are economically as well as environmentally acceptable with salinity control as the major objective. There is now a search for systems that use more water to reduce drainage through the soil and lower saline water tables. A major contribution is the much restricted use of fallow but summer active plants are also required to provide a soil water storage buffer to retain autumn–winter rainfall. New systems under evaluation include herbaceous perennials such as lucerne that are readily integrated into a crop-livestock system and agroforestry combinations with various trees. The design and appropriate distribution of the new systems is aided by remote sensing techniques to locate areas of saline discharge and linkages to zones of groundwater recharge, geographical information systems to arrange the data for land system analysis, and computer models of crops and cropping systems. There is a substantial challenge for farmers, agronomists and others to identify and assess suitable new systems and to bring the public into the debate and into the solution.  相似文献   

3.
Mediterranean cropping systems in rainfed conditions are generally based on rotations with a very high frequency of winter wheat and, therefore, they are at risk of declining trends for yield and soil health in the long-term. In order to quantify this risk, a long-term experiment was set-up in 1971 in central Italy, which is still running at present (2016). This experiment is based on 13 rotations, i.e. three continuous winter wheat systems with different N fertilization rates (W150, W200 and W250), five maize/winter wheat rotations with increasing wheat frequency (maize preceded by 1–5 years of wheat: i.e., WM, 2WM, 3WM, 4WM and 5WM) and five two-year rotations of winter wheat with either pea (WP), faba bean (WFB), grain sorghum (WGS), sugar beet (WSB) or sunflower (WSU). All these rotations are managed either with the removal of crop residues after harvest (REM), or with their burial into the soil at ploughing (BUR). For each rotation, all phases are simultaneously grown in each year, according to a split-plot design (with REM and BUR randomised to main plots), with three replicates in complete blocks and plots of 24.5 m2 each. The following data are considered: (1) total and marketable biomass yields from 1983 to 2012; (2) content of Organic carbon (OC) and total nitrogen (N) in soil, as determined in 2014. Considering the 30-year period, BUR resulted in an average positive effect on yield (+3.7%), increased OC (+13.8%) and total N content (+9.4%) in soil, while the C/N ratio was not significantly affected. Wheat in two-year rotations showed a significantly higher (+19.4%) average yield level than in continuous cropping or in 2WM, 3WM, 4WM and 5WM, mainly due to a drop in yield occurring in the first (−13%) and second (−19%) year of recropping. Increasing N fertilisation level from 150 to 250 kg N ha−1 with continuous cropping resulted in an increase (+3.7%) in long-term average yield and in a decrease in yield stability. All rotations heavily based on wheat (continuous cropping and 5WM) produced the highest amount of buried biomass (>175 t ha−1 in 30 years), with the highest increase in soil OC content (>16 t ha−1). All the other rotations produced a lower amount of residues and were less efficient in terms of carbon sequestration in soil, apart from WFB, which gave a high increase in soil organic carbon content (+18.9 t ha−1 in 30 years), in spite of a low amount of buried residues (158 t ha−1).  相似文献   

4.
Weeds are harmful for crop production but important for biodiversity. In order to design cropping systems that reconcile crop production and biodiversity, we need tools and methods to help farmers to deal with this issue. Here, we developed a novel method for multi-objective cropping system design aimed at scientists and technical institutes, combining a cropping system database, decision trees, the “virtual field” model FlorSys and indicators translating simulated weed floras into scores in terms of weed harmfulness (e.g. crop yield loss, weed-borne parasite risk, field infestation), weed-mediated biodiversity (e.g. food offer for bees) and herbicide use intensity. 255 existing cropping systems were simulated with FlorSys, individual indicator values were aggregated into a multi-performance score, and decision trees were built to identify combinations of management practices and probabilities for reaching performance goals. These trees are used to identify the characteristics of existing cropping systems that must be changed to achieve the chosen performance goals, depending on the user's risk strategy. Alternative systems are built and simulated with FlorSys to evaluate their multi-criteria performance. The method was applied to an existing oilseed rape/wheat/barley rotation with yearly mouldboard ploughing from Burgundy which was improved to reconcile weed harmfulness control, reduced herbicide use and biodiversity promotion, based on a risk-minimizing strategy. The best alternative replaced a herbicide entering plants via shoot tips (during emergence) and roots after barley sowing by a spring herbicide entering via leaves, introduced crop residue shredding before cereals and rolled the soil at sowing, which reduced the risk of unacceptable performance from 90% to 40%. When attempting to reconcile harmfulness control and reduced herbicide use, the best alternative changed the rotation to oilseed rape/wheat/spring pea/wheat, replaced one herbicide in oilseed rape by mechanical weeding, delayed tillage before rape and applied the PRE herbicide before oilseed rape closer to sowing. This option reduced the risk of unacceptable performance to 30%. None of the initial or alternative cropping systems succeeded in optimal performance, indicating that more diverse cropping systems with innovative management techniques and innovative combinations of techniques are needed to build the decision trees. This approach can be used in workshops with extension services and farmers in order to design cropping systems. Compared to expert-based design, it has the advantage to go beyond well-known options (e.g. plough before risky crops) to identify unconventional options, with a particular focus on interactions between cultural techniques.  相似文献   

5.
4M is an easy-to-handle software that has been designed for both educational and scientific purposes. Our main goal in developing 4M was to preserve the features of CERES in a user-friendly software that can be easily extended with additional modules. The package has several characteristics that make it more than a simple crop model. 4M offers optional routines for several processes of the described soil-plant-atmosphere system. The users can build different system models, according to specific purposes. 4M includes input data generators for estimating soil and weather input data that are difficult to measure. 4M is able to simulate crop rotations by using the final conditions of the system after crop harvest as initial conditions for the following crop.  相似文献   

6.
Intensification of cropping systems in recent decades has increased their productivity but affected air, soil and water quality. These harmful environmental impacts are exacerbated in Maize Monoculture (MM) and hasten the need for solutions to overcome the trade off between crop yield and environmental impacts. In a three-year cropping systems experiment, a conventional intensive maize monoculture (MMConv), with a winter bare fallow, deep soil tillage, non-limiting irrigation was compared to three Low Input Cropping Systems (LI-CS) designed as alternatives to the conventional system. They were managed with decision-rules implemented to reach specific objectives of input reduction. The LI-CS designed with Integrated Weed Management (IWM) techniques and other sustainable cropping practices, were:(i) MMLI—an IWM Low Input MM; (ii) MMCT—a Conservation Tillage combined with cover crop MM; and (iii) Maize-MSW—an IWM maize grown in rotation with soybean and wheat. A comprehensive multi-criteria assessment was carried out to quantify the agronomic, economic, social, and environmental performances of each system. A canonical discriminant analysis of performance metrics revealed large differences between the four systems. Yields were significantly higher in MMConv (11.0 Mg ha−1) and MMLI (10.3 Mg ha−1) than in Maize-MSW (8.6 Mg ha−1) and MMCT (7.8 Mg ha−1). MMCT had the largest weed infestation (density and biomass) despite the greatest use of herbicides. The Herbicide Treatment Frequency Index (HTFI), used to indicate differences in herbicide use, revealed that the MMLI (HTFI = 1.0) and Maize-MSW (1.1) halved the herbicide use as compared to the MMConv (2.1), despite having similar weed abundance levels. The LI-CS, especially MMCT, produced high biomass winter cover crops and then less nitrogen fertilization was required as compared to MMConv. Gross margins in the MMLI (1254 € ha−1) and MMConv (1252 € ha−1) were higher than the MMCT (637 € ha−1) and Maize-MSW (928 € ha−1). MMLI and MMConv had similar labour requirements. Water drainage, pesticide leaching, energy use, and estimated greenhouse gas emissions were higher in MMConv than in the LI-CS in most years. Results from this research show good potential for the MMLI to reduce the environmental impacts of MMConv while maintaining its economic and social performance.  相似文献   

7.
Integrated Pest Management (IPM) aims to promote physical and biological regulation strategies that help farmers contain populations of pests (pathogens, animal pests and weeds) and to finally reduce the reliance on pesticides. It is based on the holistic combination of multiple management measures rather than on the sum of single methods, each of them having only small effects on pests reduction. Thus, to analyse the interactions between IPM measures and to evaluate the sustainability of their implementation, we require an approach considering the whole cropping system (CS), i.e. a functional entity whose complexity is more than the sum of its parts. A network of European experiments at the CS level was set up recently, and aimed at sharing data and expertise to enhance knowledge of IPM. Comparison of existing methodologies highlighted a diversity of CS designs and experimental layouts. We deduced that the concept of CS itself was viewed differently among scientists, and this affected experimental protocols. Other differences were related to the research context and objectives. Some experiments aimed to explore very innovative strategies and generated knowledge on both their effects on the agroecosystem and their ability to satisfy a set of performance targets, while others aimed to provide quickly adoptable solutions for local farmers in line with the current socio-economic constraints. In some research programmes, the experiment was part of the CS design process — and tested CS were regularly revised based on an continuous improvement loop — while in other cases CS were kept stable across years so as to enable the evaluation of their long-term cumulative effects. A critical aspect contributing to the diversity among CS experiments was the distinction between a factorial design of experimental CS and systemic approaches: factorial experiments allowed quantification of the effects of each IPM component regardless of the consistency between components defining the CS. In contrast, systemic approaches focused on the overall evaluation of CS designed with consideration of their consistency, hence maximising their ability to meet the objectives. Because CS experiments represent a huge investment in terms of economics and time, preliminary reflections of the relevance of the experimental strategy is of critical importance.  相似文献   

8.
Irrigation induces processes that may either decrease or increase greenhouse gas emissions from cropping systems. To estimate the net effect of irrigation on the greenhouse gas emissions, it is necessary to consider changes in the crop yields, the content of soil organic carbon and nitrous oxide emissions, as well as in emissions from the use and production of machinery and auxiliary materials. In this study the net greenhouse gas emissions of a cropping system on a sandy soil in northeast Germany were calculated based on a long-term field experiment coupled with two-year N2O flux measurements on selected plots. The cropping system comprised a rotation of potato, winter wheat, winter oil seed rape, winter rye and cocksfoot each under three nitrogen (N) fertilization intensities with and without irrigation. Total greenhouse gas emissions ranged from 452 to 3503 kg CO2-eq ha−1 and 0.09 to 1.81 kg CO2-eq kg−1 yield. Application of an adequate amount of N fertilizer led to a decrease in greenhouse gas emissions compared to zero N fertilization whereas excessive N fertilization did not result in a further decrease. Under N fertilization there were no significant differences between irrigation and non-irrigation. Increases in greenhouse gas emissions from the operation, production and maintenance of irrigation equipment were mainly offset by increases in crop yield and soil organic carbon contents. Thus, on a sandy soil under climatic conditions of north-east Germany it is possible to produce higher yields under irrigation without an increase in the yield-related greenhouse gas emissions.  相似文献   

9.
The Northeast Farming Region of China (NFR) is a very important crop growing area, comprising seven sub-regions: Xing’anling (XA), Sanjiang (SJ), Northwest Songliao (NSL), Central Songliao (CSL), Southwest Songliao (SSL), Changbaishan (CB) and Liaodong (LD), which has been severely affected by extreme climate events and climatic change. Therefore, a set of expert survey has been done to identify current and project future climate limitations to crop production and explore appropriate adaptation measures in NFR. Droughts have been the largest limitation for maize (Zea mays L.) in NSL and SSL, and for soybean (Glycine max L. Merr.) in SSL. Chilling damage has been the largest limitation for rice (Oryza sativa L.) production in XA, SJ and CB. Projected climate change is expected to be beneficial for expanding the crop growing season, and to provide more suitable conditions for sowing and harvest. Autumn frost will occur later in most parts of NFR, and chilling damage will also decrease, particularly for rice production in XA and SJ. Drought and heat stress are expected to become more severe for maize and soybean production in most parts of NFR. Also, plant diseases, pests and weeds are considered to become more severe for crop production under climate change. Adaptation measures that have already been implemented in recent decades to cope with current climatic limitations include changes in timing of cultivation, variety choice, soil tillage practices, crop protection, irrigation and use of plastic film for soil cover. With the projected climate change and increasing risk of climatic extremes, additional adaptation measures will become relevant for sustaining and improving productivity of crops in NFR to ensure food security in China.  相似文献   

10.
应用能值理论从农户生产的角度分析了武川县种植业不同作物生产能值。结果表明:该县种植业生产系统能值投入率与产出率“双低”,应增加系统投入以提高产出水平;系统环境负荷率不高,不可更新环境资源破坏严重,应提高可更新环境资源利用效率、加强水土保持工作;辅助能值投入中有机能值略高于无机能值,应按适当比例增加辅助能值投入以提高系统生态经济效益,粮食产出能值中玉米、油菜所占比重高,系统结构调整应遵循生态经济原则,压缩马铃薯面积、提高玉米、油菜等作物播种面积。  相似文献   

11.
Weed dynamics models are needed to design innovative weed management strategies. Here, we developed a 3D individual-based model called FlorSys predicting growth and development of annual weeds and crops as a function of daily weather and cropping practices: (1) crop emergence is driven by temperature, and emerged plants are placed onto the 3D field map, depending on sowing pattern, density, and emergence rate; plants are described as cylinders with their leaf area distributed according to height; (2) weed emergence is predicted by an existing submodel, emerged weed seedlings are placed randomly; (3) plant phenology depends on temperature; (4) a previously developed submodel predicts available light in each voxel of the canopy; after emergence, plant growth is driven by temperature; when shaded, biomass accumulation results from the difference between photosynthesis and respiration; shading causes etiolation; (5) frost reduces biomass and destroys plants, (6) at plant maturity, the newly produced seeds are added to the soil seed bank. The model was used to test different sowing scenarios in an oilseed rape/winter wheat/winter barley rotation with sixteen weed annuals, showing that (1) crop yield loss was negatively correlated to weed biomass averaged over the cropping season; (2) weed biomass was decreased by scenarios allowing early and homogenous crop canopy closure (e.g. reduced interrows, increased sowing density, associated or undersown crops), increased summer fatal weed seed germination (e.g. delayed sowing) or, to a lesser degree, cleaner fields at cash crop sowing (e.g. sowing a temporary cover crop for “catching” nitrogen); (3) the scenario effect depended on weed species (e.g. climbing species were little affected by increased crop competition), and the result thus varied with the initial weed community (e.g. communities dominated by small weed species were hindered by the faster emergence of broadcast-sown crops whereas taller species profited by the more frequent gap canopies); (4) the effect on weed biomass of sowing scenarios applied to one year was still visible up to ten years later, and the beneficial effect during the test year could be followed by detrimental effects later (e.g. the changed tillage dates accompanying catch crops reduced weed emergence in the immediately following cash crop but increased seed survival and thus infestation of the subsequent crops). This simulation showed FlorSys to predict realistic potential crop yields, and the simulated impact of crop scenarios was consistent with literature reports.  相似文献   

12.
A field experiment comparing different arable crop rotations was conducted in Denmark during 1997–2008 on three sites varying in climatic conditions and soil types, i.e. coarse sand (Jyndevand), loamy sand (Foulum), and sandy loam (Flakkebjerg). The crop rotations followed organic farm management, and from 2005 also conventional management was included for comparison. Three experimental factors were included in the experiment in a factorial design: 1) crop rotation (organic crop rotations varying in use of whole-year green manure (O1 and O2 with a whole-year green manure, and O4 without), and a conventional system without green manure (C4)), 2) catch crop (with and without), and 3) manure (with and without). The experiment consisted of three consecutive cycles using four-course rotations with all crops present every year, i.e. 1997–2000 (1st cycle), 2001–2004 (2nd cycle), and 2005–2008 (3rd cycle). In the 3rd cycle at all locations C4 was compared with two organic rotations, i.e. O2 and O4. The O2 rotation in the third cycle included spring barley, grass-clover, potato, and winter wheat, whereas C4 and O4 included spring barley, faba bean, potato, and winter wheat. For the O2 rotation with green manure there was a tendency for increased DM yield over time at all sites, whereas little response was seen in N yield. In the O4 rotation DM and N yields tended to increase at Foulum over time, but there was little change at Flakkebjerg. The DM yield gap between organic and conventional systems in the 3rd cycle varied between sites with 34–66% at Jyndevad, 21–44% at Foulum, and 32–52% at Flakkebjerg. The inclusion of grass-clover resulted in lower cumulated yield over the rotation than the treatment without grass-clover. The use of manure reduced the DM yield gap between conventional and organic systems on an average by 15 and 21%-points in systems with and without grass-clover, respectively, and the use of catch crops reduced the yield gap by 3 and 5%-points in the respective systems. Across all crops the agronomic efficiency of N in manure (yield benefit for each kg of mineral N applied) was greater in O4 compared with O2 for all crops.  相似文献   

13.
Annual C input to soil is a major factor affecting soil organic carbon (SOC) dynamics. However different types of C-sources can have different behaviour, in relation to their chemical characteristics and how they interact with soil. Root-derived C, in particular, should be more efficient than other organic materials as a result of the physicochemical and biological characteristics of the surrounding environment, leading to a reduction in the C decomposition rate.To test this hypothesis, we considered a long-term experiment underway in Northern Italy since 1962, comparing permanent meadow and 6 different crop rotations over a wide range of nutrient inputs, in both organic and inorganic forms. C inputs from amendments were measured and those from crops were calculated using allometric functions and crop and residues yields. The time evolution of SOC was studied through a single-pool, first-order kinetic model, allowing the estimation of humification coefficients for residues, roots, farmyard manure and cattle slurries.The highest value of the humification coefficient was estimated for farmyard manure, which confirmed its high efficiency in stabilising SOC content. Root C presented a humification coefficient 1.9 times higher than above-ground plant materials while slurries were intermediate, with a humification coefficient roughly half that of farmyard manure and even lower that of roots.The quality of C input thus seems of fundamental importance for evaluating the sustainability of different cropping systems in terms of SOC dynamics.  相似文献   

14.
Cover crops are increasingly used for weed management. But selecting the most suitable species of cover crop to be associated with a main crop requires long-term trials. We present a model-based method that uses a reduced number of parameters to help select cover crops in the context of banana cover-cropping systems. We developed the SIMBA-CC model to focus on radiation interception. The model was calibrated for 11 cover crop species by measuring their growth in 4 m2 plots with three levels of shade (0, 50, and 75%). The SIMBA-CC model served to predict the long term growth potential of the 11 cover crop species in function of the radiation under the banana crop canopy. The model was validated using three species in association with banana plants. We defined three indicators based on outputs of the model to assess the ability of each of the 11 species (i) to compete with weeds and (ii) to be maintained in the long-term under the canopy of the main crop, and (iii) to evaluate competition with the main crop for nitrogen resource. This ex ante evaluation revealed the most promising species to be intercropped with banana. Finally, the SIMBA-CC model was used to define the light interception traits of a virtual cover crop that satisfy the three indicators in the case of intercropping with banana. We showed that to satisfy the three criteria, cover crops with low values of optimal photosynthetically active radiation (PARopti) should have moderate maximal biomass productivity, while crops with higher PARopti values should have a higher maximal productivity. The use of functional traits and modeling appears effective to disentangle the relations between intrinsic traits of cover crops and effect traits that affect the performances of the intercropping system.  相似文献   

15.
Several international research and development organizations are promoting conservation agriculture in a wide range of contexts. Conservation agriculture is based on a combination of three main principles: (i) minimal or no mechanical soil disturbance; (ii) diversified crop rotations and (iii) permanent soil cover (consisting of a growing crop or a dead mulch of crop residues). However, in the face of the diversity of practices that can be associated with conservation agriculture, of goals assigned to agricultural systems, and pedoclimatic contexts, there is still no empirical evidence about the overall performance of conservation agriculture in France. Global assessments of conservation agriculture, with the full or partial application of its principles and in different contexts, are required to provide a more comprehensive picture of the performance of such systems. We tackled these objectives simultaneously, by evaluating 31 cropping systems with the MASC® model (for Multicriteria Assessment of the Sustainability of Cropping Systems). These systems were selected to represent a wide diversity of practices, from ploughed conventional systems to crop sequences based on the full application of conservation agriculture principles. Positive interactions were observed between the key elements of conservation agriculture, resulting in better sustainability performances (particularly in terms of environmental criteria). Nevertheless, the systems most closely respecting the principles of conservation agriculture displayed several weaknesses, principally of a social or technical nature, in this study. Careful attention should be paid to attenuating these weaknesses. A more detailed analysis of the results also suggested that decreasing soil tillage tends to decrease the overall performance of the system unless associated with a diversification of the crop rotation.  相似文献   

16.
This article takes SOFC-PEM hybrid systems as the research object and considers the operating parameters to be uncertainty. Uncertainty analysis method based on Latin hypercube sampling involves quantifying the uncertainty in the input parameters in the form of appropriate distribution functions, propagating the uncertainty through a deterministic model to construct the output variability distributions, and analyzing the effects of operational parameter uncertainty on system output. Furthermore, non-traditional sensitivity analysis approach is used to evaluate the relative importance of various parameters considering this distribution structure. Results show that higher operating temperature of SOFC stack, lower fuel rate and lower fuel utilization of SOFC stack can reduce the influence of uncertainty on system output at the expense of system output. Uncertainty analysis can provides more credible basis for the optimization of design parameters under uncertainty.  相似文献   

17.
Long term investigations on the combined effects of tillage systems and other agronomic practices such as mineral N fertilization under Mediterranean conditions on durum wheat are very scanty and findings are often contradictory. Moreover, no studies are available on the long term effect of the adoption of conservation tillage on grain yield of maize and sunflower grown in rotation with durum wheat under rainfed Mediterranean conditions. This paper reports the results of a 20-years experiment on a durum wheat-sunflower (7 years) and durum wheat–maize (13 years) two-year rotation, whose main objective was to quantify the long term effects of different tillage practices (CT = conventional tillage; MT = minimum tillage; NT = no tillage) combined with different nitrogen fertilizer rates (N0, N1, N2 corresponding to 0, 45 and 90 kg N ha−1 for sunflower, and 0, 90 and 180 kg N ha−1 for wheat and maize) on grain yield, yield components and yield stability for the three crops. In addition, the influence of meteorological factors on the interannual variability of studied variables was also assessed. For durum wheat, NT did not allow substantial yield benefits leading to comparable yields with respect to CT in ten out of twenty years. For both sunflower and maize, NT under rainfed conditions was not a viable options, because of the unsuitable (i.e., too wet) soil conditions of the clayish soil at sowing. Both spring crops performed well with MT. No significant N × tillage interaction was found for the three crops. As expected, the response of durum wheat and maize grain yield to N was remarkable, while sunflower grain yield was not significantly influenced by N rate. Wheat yield was constrained by high temperatures in January during tillering and drought in April during heading. The interannual yield variability of sunflower was mainly associated to soil water deficit at flowering and air temperature during seed filling. Heavy rains during this latter phase strongly constrained sunflower grain yield. Maize grain yield was negatively affected by high temperatures in June and drought in July, this latter factor was particularly important in the fertilized maize. Considering both yield and yield stability, durum wheat and sunflower performed better under MT and N1 while maize performed better under both CT and MT and with N2 rates. The results of this long term study are suitable for supporting policies on sustainable Mediterranean rainfed cropping systems and also for cropping system modelling.  相似文献   

18.
节水农作制度综合效益评价的研究   总被引:2,自引:1,他引:1  
不同的自然以及社会经济条件是形成各种节水农作制度的基础。文章主要从自然生态、经济、社会三个方面探讨节水农作制度形成的影响因素,将所涵盖的因素又具体细分为几类,从理化机制方面以及国内外实践经验出发,科学地分析了各种因素对节水农作制度形成与发展的制约形式,建立我国旱作地区节水农作制度形成机制的基本理论框架,并提出节水农作制度综合效益评价的构想。  相似文献   

19.
Commercial viability of three cytoplasmic-nuclear male sterility (CMS) systems (A4, A5 and Av) as potential alternatives to the most widely used A1 system in pearl millet (Pennisetum glaucum (L.) R.Br.) was evaluated in terms of stability of complete male sterility of four isonuclear A-lines (81A1, 81A4, 81A5 and 81Av) and the level and stability of male fertility restoration of their 44 single-cross hybrids. Lines 81A4 and 81A5 had no pollen shedders (PS), and there were very low frequency of non-PS plants of these A-lines that had a maximum of 1–5% selfed seedset (SSS). In 81A1 and 81Av,there were, albeit low frequency (<1%) of PS plants, and relatively higher frequency of the non-PS plants in these two lines, the more so in 81Av,had 1–5% and even greater SSS. Some hybrids made on each of the three A-lines (81A1, 81A4 and 81Av) had high and stable male fertility, while others made on the same three A-lines displayed large variation in SSS across the environments, the more so in case of hybrids made on 81Av. These results indicate that the A4 CMS system provides a better alternative to the A1 CMS system, while the Av system does not. On the basis of highly stable male sterility and the highest frequency of pollinators behaving as maintainers, the A5 CMS system appeared to be the best for A-line breeding. The commercial viability of this CMS system in breeding R-lines of grain hybrids, however, still remains to be ascertained as no hybrid on it was fully male fertile in any environment. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
Rice improvement is based to an increasing extent on ever-sharper genetic analysis to the detriment of classical breeding, which is disappearing. Analytical genetics are very promising, but they cannot replace integrated and finalized breeding. Little attention has been paid to improving participatory rice breeding methods for subsequent integration into sustainable cropping systems. Special methodological initiatives are required to ensure the success of this breeding-agronomy integration. This integration of inexpensive breeding methods has increased the biodiversity of rice: low temperature and drought tolerant upland rice varieties for mountain areas, and polyvalent varieties, which have the ability to grow in both rainfed or irrigated conditions, they are perfectly adapted to improved cropping systems and to beneficiaries’ needs and preferences. These preliminary results on this integration demonstrate that the present approach is relevant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号