首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 186 毫秒
1.
Land use and land cover change (LULCC) directly affect the temporal and spatial change of soil erosion. As a typical governance watershed in the hilly and gully area of the Loess Plateau, the Jiuyuangou watershed has experienced significant LULCC in the past 10 years due to conversion of farmland to forests, economic construction, and cropland abandonment. However, the evolution process of soil erosion change and LULCC in the watershed is unclear, as is the relationship between the two. This study used satellite images to extract information on LULCC in the watershed and the Chinese soil loss equation (CSLE) model to evaluate the temporal and spatial evolution of soil erosion in the watershed from 2010 to 2020. The main results showed that (1) the continuous vegetation restoration project in the watershed reduced soil erosion from 2010 to 2015; however, the increased frequency of extreme rainfall events after 2015 reduced its impact. The annual average soil erosion modulus decreased from 10.85 t ha−1 year−1 in 2010 to 8.03 t ha−1 year−1 in 2015 but then increased to 10.57 t ha−1 year−1 in 2020; (2) the main land use and land cover (LULC) type in the Jiuyuangou watershed is grassland, accounting for 62% of the total area, followed by forestland, cropland, buildings, and water. Cropland has the largest multi-year average soil erosion modulus, followed by grassland and buildings, with forestland having the smallest; (3) significant spatial correlations occurred between soil erosion change and LULCC for common ‘no change’ and common ‘gain’ in the settlements, roads, and areas near the human influences with good soil and water conservation, but not other regions due to the influence of climatic factors (heavy rain events). Thus, we should repair terraces, control dams in the watershed, and actively conserve water and soil. This study provides a scientific reference for planning and managing water and soil conservation and ecological environment construction in the watershed.  相似文献   

2.
The sink of CO2 and the C budget of forest biomes of the Former Soviet Union (FSU) were assessed with two distinct methods: (1) ecosystem/ecoregional, and (2) forest statistical data. The ecosystem/ecoregional method was based on the integration of ecoregions (defined with a GIS analysis of several maps) with soil/vegetation C data bases. The forest statistical approach was based on data on growing stock, annual increment of timber, and FSU yield tables. Applying the ecosystem/ecoregional method, the area of forest biomes in the FSU was estimated at 1426.1 Mha (106 ha); forest ecosystems comprised 799.9 Mha, non-forest ecosystems and arable land comprised 506.1 and 119.9 Mha, respectively. The FSU forested area was 28% of the global area of closed forests. Forest phytomass (i.e., live plant mass), mortmass (i.e., coarse woody debris), total forest plant mass, and net increment in vegetation (NIV) were estimated at 57.9 t C ha?1, 15.5 t C ha?1, 73.4 t C ha?1, and 1.0 t C ha?1 yr?1, respectively. The 799.9 Mha area of forest ecosystems calculated in the ecosystem/ecoregional method was close to the 814.2 Mha reported in the FSU forest statistical data. Based on forest statistical data forest phytomass was estimated at 62.7 t C ha?1, mortmass at 37.6 t C ha?1; thus the total forest plant mass C pool was 100.3 t C ha?1. The NIV was estimated at 1.1 t C ha?1 yr?1. These estimates compared well with the estimates for phytomass, total forest plant mass, and NIV obtained from the ecosystem/ecoregional method. Mortmass estimated from the forest statistical data method exceeded the estimate based on the ecosystem/ecoregional method by a factor of 2.4. The ecosystem/ecoregional method allowed the estimation of litter, soil organic matter, NPP (net primary productivity), foliage formation, total and stable soil organic matter accumulation, and peat accumulation (13.9 t C ha?1, 125.0 t C ha?1, 3.1 t C ha?1 yr?1, 1.4 t C ha?1 yr?1, 0.11, and 0.056 t C ha?1 yr?1, respectively). Based on an average value of NEP (net ecosystem productivity) from the two methods, and following a consideration of anthropogenic influences, FSU forests were estimated to be a net sink of approximately 0.5 Gt C yr?1 of atmospheric C.  相似文献   

3.
Abstract

The investigations aimed to: 1) evaluate water erosion rates on undulating slopes in Lithuania under different land use systems; 2) study changes in soil physical properties on the differently eroded slopes; and 3) better understand relationships between soil physical properties and soil erodibility. Research data were obtained on loamy sand and clay loam Eutric Albeluvisols located on the undulating hilly relief of the ?emai?iai Uplands of Western Lithuania. The results of 18 years of water erosion investigations under different land use systems on slopes of varying steepness are presented. Attention is focused on changes in soil physical properties in relation to soil erosion severity. Measured water erosion rates in the field experiments were: 3.2–8.6 m3 ha?1 yr?1 under winter rye, 9.0–27.1 m3 ha?1 yr?1 under spring barley and 24.2–87.1 m3 ha?1 yr?1 under potatoes. Perennial grasses completely prevented water erosion, while erosion-preventive grass-grain crop rotations (67% grasses, 33% cereal grains) decreased soil losses by 75–80% compared to the field crop rotation, containing 17% tillage crops (potatoes), 33% grasses and 50% cereal grains. The grain-grass crop rotation (33% grasses and 67% cereal grains) decreased soil erosion rates by 23–24%. The percentage of clay-silt and clay fractions of arable soil horizons increased, while the total soil porosity and moisture retention capacity decreased with increased soil erosion. Phytocenoses, including sod-forming perennial grasses and grass-grain crop rotations, led to changes in the physical properties of eroded soils; soil bulk density decreased and percentage total porosity and moisture retention capacity increased. The grass-grain crop rotations increased the water-stable soil structure (measured as water-stable soil aggregates) by 11.03 per cent units and sod-forming perennial grasses increased aggregate stability by 9.86 per cent units compared with the grain-grass crop rotation on the 10–14° slope. Therefore, grass-grain crop rotations and sod-forming perennial grasses decreased soil erodibility and thus could assist both erosion control and the ecological stability of the vulnerable hilly-undulating landscape.  相似文献   

4.
Abstract

Soil erosion by water is currently one of the most notable types of land degradation in Samanalawewa Watershed in Sri Lanka, creating copious environmental and socioeconomic impacts. Thus, with the aim of detecting and mapping the rates of human-induced soil erosion in the watershed, remote sensing and geographic information system based modelling and field experiments were carried out. The results of the assessment disclosed that the present rate of human-induced soil erosion varies from 0 to 289 t ha?1 yr?1 with the majority of the area exceeding the natural rate of soil erosion by 14 to 33 times at present. However, the average rate of human-induced soil erosion has declined dramatically from 19.8 to 4.3 t ha?1 yr?1 from 1986 to 2008. In order to analyse the significant determinants of farm-level adoption of soil and water conservation measures, binary logistic regression procedure was applied using the data collected through a household survey (n = 201). The most significant (p<0.01) variables of the study were the farmers’ perceptions of soil erosion problems, gender of the household head, training on soil and water conservation, and ascertained advice from agricultural extension officers while the variables regarding past awareness about soil conservation technologies and off-farm income were significant at p<0.05. Furthermore, the study revealed that the majority (60.2%) of the farmers in the study area had been adopting different types of soil and water conservation measures for a prolonged period of time. Therefore, owing to the current decreasing rate of soil erosion, the soil and water conservation costs and the ratios of human-induced soil erosion vs natural soil erosion had declined significantly while the productivity of their lands had gone up.  相似文献   

5.
This study evaluates surface runoff generation and soil erosion rates for a small watershed (the Keleta Watershed) in the Awash River basin of Ethiopia by using the Soil and Water Assessment Tool (SWAT) model. Calibration and validation of the model was performed on monthly basis, and it could simulate surface runoff and soil erosion to a good level of accuracy. The simulated surface runoff closely matched with observed data (derived by hydrograph separation). Surface runoff generation was generally high in parts of the watershed characterized by heavy clay soils with low infiltration capacity, agricultural land use and slope gradients of over 25 per cent. The estimated soil loss rates were also realistic compared to what can be observed in the field and results from previous studies. The long‐term average soil loss was estimated at 4·3 t ha−1 y−1; most of the area of the watershed (∼80 per cent) was predicted to suffer from a low or moderate erosion risk (<8 t ha−1 y−1), and only in ∼1·2 per cent of the watershed was soil erosion estimated to exceed 12 t ha−1 y−1. Expectedly, estimated soil loss was significantly correlated with measured rainfall and simulated surface runoff. Based on the estimated soil loss rates, the watershed was divided into four priority categories for conservation intervention. The study demonstrates that the SWAT model provides a useful tool for soil erosion assessment from watersheds and facilitates planning for a sustainable land management in Ethiopia. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
In the Eastern Rif of N Morocco, soil conservation is seriously threatened by water erosion. Large areas of soil have reached an irreversible state of degradation. In this study, the 137Cs technique was used to quantify erosion rates and identify the main factors involved in the erosion process based on a representative catchment of the Eastern Rif. To estimate erosion rates in terms of the main factors affecting soil losses, samples were collected taking into account the lithology, slope and land use along six selected transects within the Boussouab catchment. The transects were representative of the main land uses and physiographic characteristics of that Rif sector. The reference inventory for the area was established at a stable, well preserved, matorral site (value of 4250 Bq m− 2). All the sampling sites were eroded and 137Cs inventories varied widely (between 245 and 3670 Bq m− 2). The effective soil losses were also highly variable (between 5.1 and 48.8 t ha− 1 yr− 1). Soil losses varied with land use. The lowest average values were on matorral and fallow land (10.5 and 15.2 t ha− 1 yr− 1, respectively) but much higher with alfa vegetation or cereal crops (31.6 and 27.3, respectively). The highest erosion rate was on a badland transect at the more eroded part of the catchment, with rates exceeding 40 t ha− 1 yr− 1 and reaching a maximum of 48.8 t ha− 1 yr− 1.The average soil losses increased by more than 100% when the slope increased from 10° (17.7 t ha− 1 yr− 1) to 25° (40. 8 t ha− 1 yr− 1). Similar results were obtained when comparing erosion rates in soils that were covered by matorral with respect to those under cultivation. Lithology was also a key factor affecting soil loss. Soils on marls were more erodible and the average erosion rates reached 29.36 t ha− 1 yr− 1, which was twice as high as soils on the glacis and old fluvial terraces (average rates of 14.98 t ha− 1 yr− 1). The radiometric approach was very useful to quantify erosion rates and to examine the pattern of soil movement. The analysis of main erosion factors can help to promote rational soil use and establish conservation strategies in the study area.  相似文献   

7.
A Soil Conservation Research Program (SCRP) has been on-going in Anjeni Watershed, Amhara Region, Ethiopia since the 1980s, focussing particularly on soil-based, graded fanya juu terraces. This study was carried out to examine the long-term impacts of these soil and water conservation measures in improving ecosystem services. A comparative analysis was made with a non-treated 100 ha adjacent watershed (Zikrie). The Revised Universal Soil Loss Equation (RUSLE) was used in a geographic information system (GIS) to quantify soil loss. Representative soil samples were taken 30 cm deep soil pits in the loss and deposition zones in the terraced Anjeni and topo-sequential soil samples on both watersheds. Laboratory analysis was carried out at the National Soil Testing Laboratory (NSTL) of Ethiopia. Soil texture, pH and OC were analyzed for the 91 soil samples. A GIS analysis of the RUSLE factors was made on a 5 m grid cell basis. The mean annual soil loss rate in Anjeni was estimated to be 37 t ha-1 yr-1, while that of the adjacent non-conserved Zikrie was 45 t ha-1 yr-1. The total estimated soil loss in Anjeni watershed was 4214 t yr-1. River valleys in the Anjeni watershed had the maximum mean annual estimated soil loss hazard (86 t ha-1 yr-1). Cultivated land had medium mean annual estimated soil loss (44 t ha-1 yr-1) due to the soil conservation works. Supporting the soil-based graded fanya juu terraces with biological soil conservation measures is important for the stability of the ecosystem.  相似文献   

8.
The proton budget for a Japanese cedar (Cryptomeria japonica) forest in Gunma Prefecture, Japan, was studied by estimating biogeochemical fluxes. The proton budgets were estimated for three individual compartments of the ecosystem: vegetation canopy, and the upper (O horizon + 0–10 cm) and lower (10–100 cm) soil layers. The dominant proton sources in the compartments were atmospheric deposition (1.2 kmol ha?1 yr?1), nitrification (5.1 kmol, ha?1 yr?1) and base-cation uptake by vegetation (8.0 kmol, ha?1 yr?1) respectively. These proton sources were neutralized almost completely within the individual compartments mainly by base-cation release from the canopy or the soil. The sum of internal proton sources was five times as large as that of external ones. Nitrogen input from the atmosphere was 2.2 kmol ha?1 yr?1, whereas its output from the lower soil layer was 3.9 kmol ha?1 yr?1, indicating that a net loss of nitrogen occurred in the ecosystem. However, this did not cause the acidification of soil leachates because of a sufficient release rate of base cations from the soil.  相似文献   

9.
Nutrient fluxes from a soil treatment process for pig slurry   总被引:3,自引:0,他引:3  
Abstract. The effects of pig slurry applications to a hydrologically isolated field treatment plant (at Solepur) were studied over a period of eight years. Thirty repeated doses, averaging 160 m3 ha?1 were applied from April to October of each year (1991–1995), to reach a total application of 4930 m3 ha?1. All slurry samples were analysed for their total solids (TS), macronutrient (C, N, P, K, Ca) and micronutrient (Cu, Zn) content. In total, 284 tonnes of total solids (57 t TS ha?1 yr?1), 115 tonnes of carbon (23 t C ha?1yr?1), 24.5 tonnes of nitrogen (4900 kg N ha?1 yr?1), 7964 kg of phosphorus (1593 kg P ha?1 yr?1), 16 518 kg of potassium (3304 kg K ha?1 yr?1), 183 kg copper (37 kg Cu ha?1 yr?1) and 266 kg zinc (53 kg Zn ha?1 yr?1) were applied to the soil. Thus, this site provides an opportunity to assess the balance and to examine the long‐term behaviour of nutrients under conditions of intensive land application of pig slurries or similar effluents. The main nutrient fluxes through the soil‐water system were determined for each element. Over 40% of the total carbon applied was retained by the soil. About 25% of the slurry nitrogen applied remained in the soil profile and 12.5% was leached through the drainage water as nitrate. Most of the slurry phosphorus applied was retained in the soil profile either as P‐Dyer extractable (83%), or as total soil phosphorus (112%); <0.01% was found in the drainage water. Forty‐three per cent of the potassium applied in the slurry was recovered from the soil profile and 15% was recovered in the drainage water. Most of the copper (62%) and zinc (74%) applied in the slurry remained in the soil as EDTA extractractable forms; very low percentages (0.05% and 0.6% respectively) were found in the drainage water.  相似文献   

10.
川中丘陵区小流域土壤侵蚀空间分异评价研究   总被引:4,自引:4,他引:4  
将地理信息系统(GIS)技术Arc/Info与通用土壤流失方程(USLE)相结合进行了小流域土壤侵蚀量的估算。以盐亭农田生态系统国家野外科学观测研究站内的截流村小流域(简称截流村小流域)为研究对象,依据实地调查资料及地形、土地利用、土壤和植被等数据,建立了小流域空间数据库,利用GIS的栅格数据空间分析功能,将小流域空间离散化为10 m×10 m的栅格,在栅格内根据合适的USLE因子算法进行了土壤侵蚀量估算,进而对小流域内土壤侵蚀强度空间分异和小流域内侵蚀量进行了统计分析。结果表明,截流村小流域年均输沙模数为1244.7 t/(km2.a),侵蚀强度属轻度;坡耕地占流域面积的44.17%,年均土壤侵蚀模数为2195.0 t/(km2.a),其侵蚀总量占流域总侵蚀量77.93%,表明坡耕地是该小流域水土流失的策源地,小流域水土流失治理的关键是实现流域内坡耕地的合理利用。同时对于林地和小于10°坡耕地的侵蚀模数结果与相关研究仅相差19.8%和4.4%,证实了该模型的准确性和可靠性。  相似文献   

11.
The influence of land use on runoff and soil loss was assessed on two small watersheds in the Eastern Caribbean island of St Lucia, under contrasting land management regimes. The data generated from these watersheds revealed that the soil losses from an intensively cultivated agricultural watershed were 20‐times higher in magnitude than that of a forested watershed both for peak rainfall event and for total duration of analysis. This was due to higher surface runoff rates and exposure of soil to direct raindrop impact within cultivated areas. Whereas the forest canopy cover in combination with higher infiltration capacities of the forested land reduced the erosive runoff from the forest watershed and thus the soil loss. Moreover, the energy intensities of large storms in excess of 40 mm were estimated and found to range between 400 MJ mm ha−1 h−1 and 1834 MJ mm ha−1 h−1. 1
  • 1 Megajoules‐millimeters per hectare‐hour.
  • Soil loss from the agricultural watershed was strongly correlated (R2 = 0·85) to storm energy‐intensity (EI30). However, the correlation of soil loss with the EI30 (R2 = 0·71) was poor for the forest watershed due to the effect of canopy vegetation, which significantly reduced the energy of raindrop impact. Over the study period, cumulative soil losses were 10·0 t ha−1 for the agricultural site and 0·5 t ha−1 for the forest site. 2
  • 2 Metric tons per hectare.
  • The largest storm observed during the study period resulted in erosion losses of 3·78 t ha−1 and 0·2 t ha−1 from the agricultural and forest sites respectively. The regression models were developed using the measured data for prediction of runoff and soil loss over the watersheds of St Lucia under similar conditions. This study contributed towards efficient watershed management planning and implementation of suitable water conservation measures in St Lucia. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

    12.
    Starting in the 1980's, the Rainbow Smelt (Osmerus mordax) population of the Boyer River (Canada) gradually declined due to water eutrophication and excessive siltation in the spawning area. Sediments and agricultural nutrients reach hydrosystems through runoff and soil erosion. The objectives of the study were to quantify the soil and sediment loss from agricultural fields and to identify the areas at risk, using 137Cs measurements. Using a Geographical Information Systems (GIS), the watershed was subdivided into 6 isosectors presenting specific soil/slope combinations. Representative fields from each isosector were sampled for 137Cs. Using GIS, the data for individual fields were extrapolated to isosectors and the whole cultivated area of the watershed. Based on this approach, it was estimated that around 30% of the arable lands of the watershed show erosion rates higher than 6 t ha− 1 yr− 1, which is considered as a tolerable level for Canadian soils, and that 45% of the residual area presents an erosion rate close to that limit. The average sediment production at the edge of fields was estimated at 2.8 t ha− 1 yr− 1, for an annual production of more than 60 000 t of material. Loamy soils with a slope higher than 2% were estimated to generate the highest sediment rate (6.9 t ha− 1 yr− 1) and nearly 40% of the overall sediment production.  相似文献   

    13.
    This paper reports on a field study conducted in Kilie catchment, East Shoa Zone, Ethiopia to assess the rate of soil erosion by employing a soil loss prediction model (Universal Soil Loss Equation) integrated with in remote sensing and geographical information systems (RS/GIS), environment and gully measurement techniques. The final soil erosion risk map was produced after multiplication of the six factors involved in the USLE and RS/GIS. Gully measurement showed that the erosion rate is higher for the upland areas than the lowlands due to inappropriate soil and water conservation measures, free grazing by animals and conversion of hillside areas into farmlands. About 97·04 per cent of the study catchment falls within a range of 0–10 t ha−1 yr−1 sheet/rill erosion rate. We found that 2·17 per cent of the study area in the uplands has a soil erosion rate falling between 10 and 20 t ha−1 yr−1. About 0·8 per cent of the study area in the uplands is hit by severe sheet/rill erosion rate within the range of 20–60 t ha−1 yr−1. Gully erosion extent in the study area was evaluated through gully measurement and quantification methods. Gully density of 67 m ha−1 was recorded in the catchment. The gully to plot area ratio was found to be 0·14 on average. Hence, in the upland areas, sustainable land management practices are required in order to reduce the rate of soil erosion. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

    14.
    基于AnnAGNPS模型的黄土高原小流域土壤侵蚀定量评价   总被引:9,自引:3,他引:9  
    以位于黄土丘陵沟壑区的砖窑沟流域为试点,利用AnnAGNPS模型进行土壤侵蚀定量评价。采用流域8次径流事件监测数据进行模型检验,径流量和沉积物量的相对误差分别为10%和-10%,AnnAGNPS模型能够比较理想地模拟流域长期的径流量和沉积物量,并可应用于黄土丘陵沟壑区的径流流失和土壤侵蚀定量评价。采用2004年土地利用状况模拟分析了流域土壤侵蚀量及其空间分布,结果表明:该流域平均片蚀和细沟侵蚀强度为3508 t/(km2·a),属中度侵蚀等级,黄土沟壑地的平均侵蚀强度最大,属极强度侵蚀等级;严重的沟道侵蚀显著增加了运移到流域出口的泥沙。  相似文献   

    15.
    该文通过紫色丘陵区响水滩小流域不同土地利用类型、不同坡度和坡长、不同地貌部位土壤剖面中 137Cs含量的测定与分析,对其侵蚀空间分布进行了估算。研究结果表明:该流域 137Cs含量的背景值为1870 Bq/m2;流域内坡耕地、林地的年平均侵蚀强度分别为4468、1759 t/(km2·a);土壤侵蚀量与坡长、坡度均指数相关;丘顶、丘坡和鞍部的年平均侵蚀强度分别为2125、4676、3625 t/(km2·a)。结果表明土地利用类型、坡长和坡度、地貌部位对土壤侵蚀量影响很大,坡耕地是该流域泥沙的主要来源。  相似文献   

    16.
    K.J. Virgo  R.N. Munro 《Geoderma》1978,20(2):131-157
    The results of reconnaissance soil surveys covering 6,000 km2 are used to describe the Central Plateau region, which lies at elevations of 2,000 to 2,800 m in northern Ethiopia. Landform and soil sequences on calcareous shales, dolerites and sandstones are described, in which the principal soil units are Lithosols, Luvisols, Cambisols, Arenosols and Vertisols. Detailed morphological and analytical data are presented for a profile representative of arable soils in each sequence.Small-scale subsistence cultivation of cereals is the dominant land use; all land which is physically cultivable is at present cultivated. Settlement patterns are closely related to soil type, nucleated settlement occurring on fine textured soils but dispersed settlement on coarser textured and more freely draining soils.Erosion and soil moisture features of the three landforms described were investigated and compared. Empirical methods and suspended sediment measurements indicate high rates of regional soil loss (17–33 t ha?1 yr?1), accounted for by seasonally high rates of rainfall erosivity, steep terrain and poor land use. The recent development of gully erosion is seen to be linked to the disintegration of waterfall tufas. Application of the universal soil loss equation to arable lands indicates potential annual soil losses in the range of 400 t ha?1 on Vertisols to 200 t ha?1 on Cambisols: differences in rates are ascribed principally to differences in crop planting dates, which affect the degree of vegetative protection during periods of high rainfall erosivity.Soil moisture is shown to be in the available range for less than three months in the year. The time at which moisture in the profile enters the available range differed between the three soils monitored and was found to be closely related to the crop planting date, thus indirectly affecting the erosion hazard.  相似文献   

    17.
    The degradative effects of mechanized farming operations on soils in the tropics are not widely documented. This study was conducted to quantify the effects of mechanized no-till and conventional tillage systems on runoff, erosion and changes in soil properties. Experiments were conducted on twin watersheds of about 5 ha each. Only the conventionally plowed watershed was terraced to control erosion. Measurements made with a rate-measuring H-Flume indicated that runoff and erosion from the terraced and conventionally tilled watershed were several times greater, compared with the unter-raced no-till watershed. Cumulative runoff in 1979 was 10 times and erosion 42.2 times higher from the plowed watershed than from the no-till watershed. The infiltration capacity 5 years after land development was 3.8 cm h?1 for the plowed and 10.4 for the no-till watershed. Surface soil from the no-till watershed retained more water at all soil water potentials than that from the plowed treatment. The gravel content in the surface layer of the plowed watershed was 25.1%, compared with 15.8% in the no-till watershed. The maize grain yield from the twelfth consecutive crop was 3 Mg ha?1 for the no-till and 1 Mg ha?1 for the plowed watershed.  相似文献   

    18.
    Accelerated soil erosion is a major threat to soil, and there are great variations in the rate of soil erosion over time due to natural and human-induced factors. The temperate forest zone of Russia is characterized by complex stages of land-use history (i.e. active urbanization, agricultural development, land abandonment, etc.). We have for the first time estimated the rates of soil erosion by the WaTEM/SEDEM model (rainfall erosion) and by a regional model (snowmelt erosion) over the past 250 years (from 1780 to 2019) for a 100-km2 study site in the Moscow region of Russia. The calculations were made on the basis of a detailed historical reconstruction of the following factors: the location of the arable land, crop rotation, the rain erosivity factor, and the maximum snow water equivalent. The area of arable land has decreased more than 3.5-fold over the past 250 years. At the end of the 20th century, the rates of gross erosion had declined more than 5.5-fold (from 28 × 103 to 5 × 103 t?ha?1?yr?1) in comparison with the end of the 18th century. Changes in the boundaries of arable land and also the relief features had led to a significant intra-slope accumulation of sediments. As a result of sediment redeposition within the arable land, the variation in net soil erosion was significantly lower than the variation in gross soil erosion. The changes in arable land area and in crop composition are the factors that have to the greatest extent determined the changes in soil erosion in this territory.  相似文献   

    19.
    Soil erosion is a serious environmental problem arising from agricultural intensification and landscape changes. Improper land management coupled with intense rainfall has intricated the problem in most parts of the Ethiopian highlands. Soil loss costs a profound amount of the national GDP. Thus, quantifying soil loss and prioritizing areas for conservation is imperative for proper planning and resource conservation. Therefore, this study has modeled the mean soil loss and annual sediment yield of the Gumara watershed. Landsat 5 TM, Landsat 7ETM+, and Landsat 8 OLI were used for land use land cover (LULC) change analysis. Besides these, other datasets related to rainfall, digital soil map, Digital Elevation Model, reference land use, and cover (LULC) ground truth points were used to generate parameters for modeling soil loss. The watershed was classified into five major land-use classes (water body, cultivated land, grazing land, built-up and forest and plantation) using a maximum likelihood algorithm covering a period of the last 30 years (1988–2019). The mean annual soil loss and sediment yield were quantified using RUSLE, Sediment delivery ratio (SDR), and Sediment Yields models (SY). The analysis result unveils that within the past 30 years, the watershed has undergone significant LULC changes from forest & plantation (46.33%) and grazing land to cultivated land (31.59%) with the rate of ?1.42km2yr-1 and -2.80km2yr-1 respectively. In the same vein, the built-up area has expanded to cultivated and grazing land. Subsequently, nearly 15% (207 km2) of the watershed suffered from moderate to very severe soil loss. On average, the watershed losses 24.2 t ha?1 yr?1 of soil and yields 2807.02 t ha?1 yr?1 sediment. Annually, the watershed losses 385,157 t ha?1 yr?1 soil from the whole study area. Among the admirative districts, Farta (Askuma, Giribi, Mahidere Mariam and Arigo kebeles), Fogera (Gazen Aridafofota and Gura Amba kebeles), East Este (Witimera kebele), and Dera (Gedame Eyesus and Deriana Wechit kebeles) districts which cover 50% of the watershed were found severely affected by soil erosion. Thus, to curve back this scenario, soil and water conservation practices should prioritize in the aforementioned districts of the watersheds.  相似文献   

    20.
    Ecuador has the highest deforestation rate in South America, causing large‐scale soil erosion. Inter‐Andean watersheds are especially affected by a rapid increase of the population leading to the conversion of large areas of montane forest into pasture and cropland. In this study, we estimate soil erosion risk in a small mixed land‐use watershed in the southern Andes of Ecuador. Soil loss was estimated at a spatial resolution of 30 m, using the Revised Universal Soil Loss Equation (RUSLE) where the RUSLE factors were estimated on the basis of limited public available data. Land‐cover maps for 1976, 2008 and 2040 were created assuming increasing deforestation rates over the ensuing decades. Greater erosion rates are estimated for succession areas with agricultural cropland and pasture with maximum values of 936 Mg ha−1 y−1, where slopes and precipitation amounts are the greatest. Under natural forest vegetation, the estimated soil erosion rates are negligible (1·5 to 40 Mg ha−1 y−1) even at steep slopes and higher elevations where rainfall amounts and intensities are generally higher. When the entire watershed has undergone substantial deforestation in 2040, erosion values may reach 2,021 Mg ha−1 y−1. Vegetation cover is the most important factor for potential soil erosion. Secondary factors are related to rainfall (R‐factor) and topography (LS factors). Although the spatial predictions of potential soil erosion have only limited meaning for erosion risk, this method provides an important screening tool for land management and assessment of land‐cover change. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号