共查询到20条相似文献,搜索用时 15 毫秒
1.
Conventional and zero traffic systems were mole ploughed and effects on soil physical properties were compared. Draught of the plough operating at 550 mm depth was measured while it was winched across plots having a 5-year history of different traffic regimes. Results showed that the draught was reduced by about 18% on non-trafficked compared with conventionally-trafficked soil.
Cone resistance measurements, 1 month before and 3 months after mole ploughing, confirmed that the non-trafficked soil had significantly less strength to a depth of about 400 mm. Bulk density measured at 75 and 175 mm depth 1 month before mole ploughing indicated a similar trend, but clod and bulk densities at 125 mm and 350 mm depth 3 months later, failed to show any consistent differences between treatments. 相似文献
2.
P. Pengthamkeerati P.P. Motavalli R.J. Kremer S.H. Anderson 《Soil & Tillage Research》2006,91(1-2):109-119
Soil compaction may affect N mineralization and the subsequent fate of N in agroecosystems. Laboratory incubation and field experiments were conducted to determine the effects of surface soil compaction on soil N mineralization in a claypan soil amended with poultry litter (i.e., Turkey excrement mixed with pine shavings as bedding). In a laboratory study, soil from the surface horizon of a Mexico silt loam soil was compacted to four bulk density levels (1.2, 1.4, 1.6 and 1.8 Mg m−3) with and without poultry litter and incubated at 25 °C for 42 days. A field trial planted to corn (Zea mays L.) was also conducted in 2002 on a Mexico silt loam claypan soil in North Central Missouri. Soil was amended with litter (0 and 19 Mg ha−1) and left uncompacted or uniformly compacted. Soil compaction decreased soil inorganic N by a maximum of 1.8 times in the laboratory study; this effect was also observed at all depths of the field trial. Compacted soil with a litter amendment accumulated NH4+-N up to 7.2 times higher than the noncompacted, litter-amended soil until Day 28 of the laboratory incubation and in the beginning of the growing season of the field study. Ammonium accumulation may have been due to decreased soil aeration under compacted conditions. Application of litter increased soil N mineralization throughout the growing season. In the laboratory study, soil inorganic N in unamended soil was negatively correlated with soil bulk density and the proportion of soil micropores, but was positively related with soil total porosity and the proportion of soil macropores. These results indicate that soil compaction, litter application and climate are interrelated in their influences on soil N mineralization in agroecosystems. 相似文献
3.
Heavy wheel traffic causes soil compaction, which adversely affects crop production and may persist for several years. We applied known compaction forces to entire plots annually for 5 years, and then determined the duration of the adverse effects on the properties of a Vertisol and the performance of crops under no-till dryland cropping with residue retention. For up to 5 years after a final treatment with a 10 Mg axle load on wet soil, soil shear strength at 70–100 mm and cone index at 180–360 mm were significantly (P < 0.05) higher than in a control treatment, and soil water storage and grain yield were lower. We conclude that compaction effects persisted because (1) there were insufficient wet–dry cycles to swell and shrink the entire compacted layer, (2) soil loosening by tillage was absent and (3) there were fewer earthworms in the compacted soil. Compaction of dry soil with 6 Mg had little effect at any time, indicating that by using wheel traffic only when the soil is dry, problems can be avoided. Unfortunately such a restriction is not always possible because sowing, tillage and harvest operations often need to be done when the soil is wet. A more generally applicable solution, which also ensures timely operations, is the permanent separation of wheel zones and crop zones in the field—the practice known as controlled traffic farming. Where a compacted layer already exists, even on a clay soil, management options to hasten repair should be considered, e.g. tillage, deep ripping, sowing a ley pasture or sowing crop species more effective at repairing compacted soil. 相似文献
4.
机械压实过程中复垦土壤紧实度影响因素的模拟分析 总被引:6,自引:7,他引:6
机械碾压造成的土壤压实是土地复垦中面临的主要问题之一,影响土壤压实程度的因素很多,除土壤自身的因素以外,还包括压实机械、压实次数以及土层厚度等。该文基于统计学的理论,采用2×5×4的混合试验设计并建立模拟实验区,使用重锤模拟分析了2种压实机械、不同压实次数(1、3、5、7、9次)和不同土层厚度(0~10cm、10~20cm、20~30cm、30~40 cm)上土壤紧实度的变化情况,并在SPSS中进行变量的方差分析和多重比较,试图找到机械压实过程中影响土壤紧实度的因素及其变化水平。结果表明:增加压实机械的承重轮面积能够有效降低对土壤的压实作用;压实机械、土层厚度和压实次数都是影响土壤紧实度的显著性因素且各因素的贡献率(97%)远高于随机误差;自卸汽车在第5次压实之后就已经使上层土壤紧实度达到最大值,而履带式推土机需要压实7次,土地复垦中应尽量选择履带型机械,碾压次数控制在5~7之内;机械压实的过程中,各土层厚度之间土壤紧实度的大小关系并不是一成不变的,中间层次(10~30 cm)的土壤由于同时受到来自上下2个方向的作用力,紧实度相对较高;不同次数的压实对土壤紧实度的影响深度和程度不同,在一定范围内,随着压实次数的增加,单次压实对土壤紧实度的影响逐渐减小。 相似文献
5.
土壤压实指标在城市土壤评价中的应用与比较 总被引:19,自引:2,他引:19
通过测定南京市不同土地利用下的52个样点的紧实度、容重和孔隙度3个压实指标来反映城市土壤的压实程度。结果表明,南京市大多数土壤存在不同程度的压实,部分压实严重,可能限制植物的生长。不同压实指标在反映土壤压实程度上基本一致,它们之间具有极显著的相关性,可以相互转换。但紧实度指标受到土壤含水量的显著影响。在同一质地或质地相近的土壤,容重和孔隙度可以很好地反映土壤的压实程度。与总孔隙度和毛管孔隙度相比,通气孔隙度在反映土壤压实时更为敏感。所以在进行城市土壤压实状况评价时,可以选择不同的土壤压实程度指标,但就方法的实用性和可靠性来说,容重比紧实度和孔隙度指标一般更方便可靠。 相似文献
6.
Thomas Keller Pauline Dfossez Peter Weisskopf Johan Arvidsson Guy Richard 《Soil & Tillage Research》2007,93(2):391-411
Soil compaction is one of the most important factors responsible for soil physical degradation. Soil compaction models are important tools for controlling traffic-induced soil compaction in agriculture. A two-dimensional model for calculation of soil stresses and soil compaction due to agricultural field traffic is presented. It is written as a spreadsheet that is easy to use and therefore intended for use not only by experts in soil mechanics, but also by e.g. agricultural advisers. The model allows for a realistic prediction of the contact area and the stress distribution in the contact area from readily available tyre parameters. It is possible to simulate the passage of several machines, including e.g. tractors with dual wheels and trailers with tandem wheels. The model is based on analytical equations for stress propagation in soil. The load is applied incrementally, thus keeping the strains small for each increment. Several stress–strain relationships describing the compressive behaviour of agricultural soils are incorporated. Mechanical properties of soil can be estimated by means of pedo-transfer functions. The model includes two options for calculation of vertical displacement and rut depth, either from volumetric strains only or from both volumetric and shear strains. We show in examples that the model provides satisfactory predictions of stress propagation and changes in bulk density. However, computation results of soil deformation strongly depend on soil mechanical properties that are labour-intensive to measure and difficult to estimate and thus not readily available. Therefore, prediction of deformation might not be easily handled in practice. The model presented is called SoilFlex, because it is a soil compaction model that is flexible in terms of the model inputs, the constitutive equations describing the stress–strain relationships and the model outputs. 相似文献
7.
Lodging is the permanent displacement of cereal stems from the vertical. Cereal plants growing in the edge rows next to both wheel tracks (‘tramlines’) and the gaps between experimental plots (‘inter-plot spaces’), which are traversed by farm vehicles during planting operations and agrochemical application, are less prone to lodge than plants growing elsewhere in fields and plots. Previous research has attributed this phenomenon to an increase in the stem strength of edge row plants, and hence their resistance to stem lodging, resulting from reduced competition between edge row plants for resources. However, this explanation gives no consideration to the anchorage strength of edge row plants, and hence their resistance to root lodging. Differences in soil and plant characteristics between the edge and centre rows of plots of winter barley (Hordeum vulgare L.) were examined on sand, silt and clay dominated soil types. Edge rows next to tramlines were investigated on the silt and clay soil types, whereas edge rows next to inter-plot spaces were investigated on the sand soil type. Edge row plants next to both tramlines and inter-plot spaces had 58.8% greater anchorage strength and hence resistance to root lodging than centre row plants. This was attributed to (1) greater soil compaction in the edge rows resulting from wheel traffic in the tramlines and inter-plot spaces, which increased the strength of the soil matrix surrounding the roots, and (2) greater plant root growth in the edge rows resulting from reduced competition. Bulk density, root plate spread and structural rooting depth were 19, 22, and 12% greater, respectively, in the edge rows of all soil types. The results suggest that in order to reduce lodging risk, energies should be directed towards identifying agricultural practices that optimise soil compaction in the seedbed without causing significant limitations to root growth. 相似文献
8.
土壤压实现象普遍存在于农业生态系统中。土壤的压实效应不但会给农业生产带来不良的影响,还可能增加地表径流的产生,从而加快地表水的污染。 为了更好地研究压实土壤中的水分、溶质运移以及压实效应对农业生产及生态与环境的影响,该文在原有土壤压实模型的基础上提出了一种两参数改进模型,并以4种原状土壤为例,用离心机法对改进模型进行验证。研究结果表明:改进模型能够较好地模拟土壤的压实过程,且拟合效果好于L模型;虽然改进模型的物理意义和模型精度与Assouline的三参数模型相当,但是参数少、形式简单是改进模型的优势。同时,改进模型的提出对研究土壤水分特征曲线测定过程中的容重变化特性具有重要的参考价值。 相似文献
9.
Pu Shen Chunxiao Wang Zhengfeng Wu Hongjun Zhao Shihua Shan 《Soil Science and Plant Nutrition》2019,65(2):148-158
Soil tillage, a major agricultural management, could effectively alter soil structure and plant growth, particularly under groundnut plantations. To understand effects of different tillage measures on nitrogen(N), phosphorus(P) and potassium(K) absorptions and use efficiencies for peanut (Arachis hypogaea L.), four tillage treatments: no tillage (NT), deep loosing (DL), deep plow (DP), and shallow plow (SP), were examined for two growing years at three typical peanut-producing sites of Qishan, Wangcheng, and Xiadian in Shandong, China. Results showed that average soil bulk density under DL, DP, and SP at the three sites was decreased by 7.1–19.5% compared with NT treatment for the 2 years. Significantly higher average total N accumulations in underground peanut part patterned as DP (163 kg/ha) > SP (149 kg/ha) > DL (144 kg/ha) > NT (117 kg/ha), while total N in aboveground peanut part was 8.7–22.1% higher under DP than other treatments. Absorptions of N, P, and K in underground parts were extremely significantly contributed to high peanut yields (P < 0.01), whereas increase of N and P absorptions in aboveground parts did not promote peanut yields. Soil bulk density was significantly negatively correlated with plant macronutrient amounts in underground peanut parts and peanut yields (P < 0.01). Moreover, N:P, N:K, and P:K ratios were similar between NT and noncompaction stress treatments of DL, DP, and SP. These results indicate that DP is a rational tillage practice for promoting nutrient uptake amount, efficiency, and peanut yields by alleviating soil compaction stress in peanut-producing fields. 相似文献
10.
B. J. Radford B. J. Bridge R. J. Davis D. McGarry U. P. Pillai J. F. Rickman P. A. Walsh D. F. Yule 《Soil & Tillage Research》2000,54(3-4):155-170
Soil compaction has been recognised as the greatest problem in terms of damage to Australia’s soil resource. Compaction by tractor and harvester tyres, related to trafficking of wet soil, is one source of the problem. In this paper an array of soil properties was measured before and immediately after the application of a known compaction force to a wet Vertisol. A local grain harvester was used on soil that was just trafficable; a common scenario at harvest. The primary aim was to determine the changes in various soil properties in order to provide a “benchmark” against which the effectiveness of future remedial treatments could be evaluated. A secondary aim was a comparison of the measurements’ efficiency to assess a soil’s structural degradation status. Also assessed was the subsequent effect of the applied compaction on wheat growth and yield in the following cropping season. Nine of the soil properties measured gave statistically significant differences as a result of the soil compaction. Differences were mostly restricted to the top 0.2 m of the soil. The greatest measured depth of effect was decreased soil porosity to 0.4 m measured from intact soil clods. There was 72% emergence of the wheat crop planted into the compact soil and 93% in the uncompact soil. Wheat yield, however, was not affected by the compaction. This may demonstrate that wheat, growing on a full profile of stored soil water as did the current crop, may be little affected by compaction. Also, wheat may have potential to facilitate rapid repair of the damage in a Vertisol such as the current soil by drying the topsoil between rainfall events so increasing shrinking and swelling cycles. If this is true, then sowing a suitable crop species in a Vertisol may be a better option than tillage for repairing compaction damage by agricultural traffic. 相似文献
11.
The capability of the soil water balance model SIMWASER to predict the impact of soil compaction upon the yield of maize (Zea mays L.) is tested, using the results of a field experiment on the influence of soil compaction by wheel pressure upon soil structure, water regime and plant growth. The experimental site was located on an Eutric Cambisol with loamy silt soil texture at an elevation of 260 m in the northern, semi-humid sub-alpine zone of Austria. Within the experimental field a 7 m wide strip was compacted by a tractor driven trailer just before planting maize in May 1988. Compression effects due to trailer traffic resulted in distinct differences of physical and mechanical soil parameters in comparison with the uncompressed experimental plots down to a depth of about 30 cm: bulk density and penetration resistance at field capacity were increased from 1.45 to 1.85 g/cm3, and from 0.8 to 1.5 MPa, respectively, while air-filled pore space as well as infiltration rate were appreciable lowered from about 0.08–0.02 cm3/cm3 and from 50 to 0.5 cm per day, respectively. The overall effect was a clear depression of the dry matter grain yield from 7184 kg/ha of the non-compacted plot to 5272 kg/ha in the compacted field strip. The deterministic and functional model SIMWASER simulates the water balance and the crop yield for any number of crop rotations and years, provided that daily weather records (air temperature, humidity of air, global radiation, wind and precipitation) are available. Crop growth and soil water regime are coupled together by the physiological processes of transpiration and assimilation, which take place at the same time through the stomata of the plant leaves and are both reacting in the same direction to changes in the soil water availability within the rooting zone. The water availability during rainless seasons depends on the hydraulic properties of the soil profile within the rooting depth and on rooting density. Rooting depth and density are affected by both the type of the crop and the penetration resistance of the soil, which depends on the soil moisture status and may be strongly increased by soil compaction. The model SIMWASER was able to simulate these effects as shown by the calculated grain yields, which amounted in the non-compacted plot to 7512 and to 5558 kg dry matter/ha in the compacted plot. 相似文献
12.
Soil compaction by agricultural machines can have adverse effects on crop production and the environment. Different models based on the Finite Element Method have been proposed to calculate soil compaction intensity as a function of vehicle and soil properties. One problem when modelling soil compaction due to traffic is the estimation of vertical stress distribution at the soil surface, as the vertical stress is inhomogeneous (non-uniform) and depends on soil and tyre properties. However, uniform stress distribution at the soil/tyre interface is used to predict the compaction of cultivated soils in most FEM compaction models. We propose a new approach to numerically model vertical stress distribution perpendicular to the driving direction at the soil/tyre interface, employing the FEM models of PLAXIS code. The approach consists of a beam (characterised by its geometric dimensions and flexural rigidity) introduced at the soil surface and loaded with a uniform stress with the aim to simulate the action of a wheel at the soil surface. Different shapes of stress distribution are then obtained numerically at the soil surface by varying the flexural rigidity of the beam and the mechanical parameters of the soil. PLAXIS simulations show that the soil type (soil texture) modifies the shape of the stress distribution at the edges of the contact interface: a parabolic form is obtained for sand, whereas a U-shaped is obtained for clay. The flexural rigidity of the beam changes the shape of distribution which varies from a homogenous (uniform) to an inhomogeneous distribution (parabolic or U-shaped distribution). These results agree with the measurements of stress distributions for different soils in the literature. We compared simulations of bulk density using PLAXIS to measurement data from compaction tests on a loamy soil. The results show that simulations are improved when using a U-shaped vertical stress distribution which replaces a homogenous one. Therefore, the use of a beam (cylinder) with various flexural rigidities at the soil surface can be used to generate the appropriate distribution of vertical stress for soil compaction modelling during traffic. 相似文献
13.
In spring 1995 a silty clay soil was compacted dynamically by wheeling with graded wheel loads up to 6 times. The reaction towards wheeling was recorded immediately. In the following 3 years some soil physical parameters as well as the Enchytraeidae abundances were recorded regularly. To the first wheeling, the soil reacted plastically in vertical direction. The reaction became elastically after the 4th wheeling. After the 6th passage with a 5‒tonnes wheel load soil structure collapsed totally, which can be concluded from the stress ratios. After the wheeling event, abundances of Enchytraeidae decreased obviously compared to uncompacted plots. The increase in air permeability, air capacity, and the decrease of soil bulk density depend on primary tillage events. The recovery of Enchytraeidae abundances developed in parallel. Abundances seem to be regenerated in the 3rd year after the wheeling event. Primary tillage can help to induce biological and macroscopic structural regeneration of the top soil after a compaction event. 相似文献
14.
G. Spoor 《Soil Use and Management》2006,22(2):113-122
The nature of soil disturbance required to alleviate soil compaction in a range of agricultural and land restoration situations is identified. Implement geometry and adjustments required to achieve the desired brittle or tensile deformation of compacted soil are discussed. Field operating procedures to achieve the required degrees of soil fissuring, loosening or soil unit rearrangement using the power units and equipment available are described. A new progressive loosening technique is identified for use within deep, extremely compacted soil profiles. Emphasis is given to the importance of making visual field checks across the loosened soil zone at an early stage, to check the desired disturbance is being achieved. Care must be taken during subsequent trafficking operations, to minimize the risk of recompaction. 相似文献
15.
Mohamed A. Tarawally Hanoi Medina M. E. Frmeta C. Alberto Itza 《Soil & Tillage Research》2004,76(2):95-103
The level of compaction induced on cultivated fields through trafficking is strongly influenced by the prevailing soil-water status and, depending on the attendant soil degradation, vital soil hydraulic processes could be affected. Therefore, understanding the relationship between field soil-water status and the corresponding level of induced compaction for a given load is considered an imperative step toward a better control of the occurrence of traffic-induced field soil compaction. Pore size distribution, a fundamental and highly degradable soil property, was measured in a Rhodic Ferralsol, the most productive and extensively distributed soil in Western Cuba, to study the effects of three levels of soil compaction on soil water characteristic parameters. Soil bulk density and cone penetration index were used to measure compaction levels established by seven passes of a 10 Mg tractor at three soil-water statuses corresponding to the plastic (Fs), friable (Fc) and relatively dry soil (Ds) consistency states. Pore size distribution calculated from soil water characteristic curves was classified into three pore size categories on the basis of their hydraulic functioning: >50 μm (f>50 μm), 50–0.5 μm (f50–0.5 μm) and <0.5 μm (f<0.5 μm). The greatest compaction levels were attained in the Fs and Fc soil water treatments, and a significant contribution to compaction was attributed to the existing soil water states under which the soil compaction was accomplished. Average cone index (CI) values in the range of 2.93–3.70 MPa reflected the accumulation of f<0.5 μm pores, and incurred severe reductions in the volume of f>50 μm pores in the Fs and Fc treatments, while an average CI value of 1.69 MPa indicated increments in the volume of f50–0.5 μm in the Ds treatment. Despite the differential effects of soil compaction on the distribution of the different pore size categories, soil total porosity (fTotal) was not effective in reflecting treatment effects. Soil water desorption at the soil water potentials evaluated (0.0 to −15,000 cm H2O) was adversely affected in the f<0.5 μm dominated treatments; strong soil water retention was observed with the predominance of f<0.5 μm, as was confirmed by the high water content at plant wilting point. Based on these findings, the use of field capacity water content as the upper limit of plant available soil water was therefore considered inappropriate for compacted soils. 相似文献
16.
Wheel traffic impact on soil conditions as influenced by tillage system in Central Anatolia 总被引:1,自引:0,他引:1
The increased limiting effects of soil compaction on Central Anatolian soils in the recent years demonstrate the need for a detailed analysis of tillage system impacts. This study was undertaken to ascertain the effects of seven different tillage systems and subsequent wheel traffic on the physical and mechanical properties of typical Central Anatolian medium textured clay loam soil (Cambisol), south of Ankara, Turkey. Both tillage and field traffic influenced soil bulk density, porosity, air voids and strength significantly except the insignificant effect of traffic on moisture content. Traffic affected the soil properties mostly down to 20 cm. However, no excessive compaction was detected in 0–20 cm soil depth. The increases of bulk density following wheel traffic varied between 10–20% at 0–5 cm and 6–12% at 10–15 cm depth. In additions, traffic increased the penetration resistance by 30–74% at 0–10 cm and 7–33% at 10–20 cm. Less wheel traffic-induced effects were found on chisel tilled plots, compared to ploughed plots. Soil stress during wheel passage was highly correlated with soil strength. Also, both tillage and traffic-induced differences were observed in mean soil aggregate sizes, especially for mouldboard ploughed plots. The obtained data imply that chisel+cultivator-tooth harrow combination provides more desirable soil conditions for resisting further soil compaction. 相似文献
17.
A soil mechanical resistance sensor with a large-diameter disc coulter was developed to delineate areas of differing soil strength across agricultural fields. The instrumented disc coulter consisted of a 76.2 cm disc with two depth-measuring sensors (rotary potentiometer and ultrasonic proximity sensor) along with a global positioning system (GPS) receiver to georeference operating depth measurements. The consistency and repeatability of the system response were evaluated by making six passes across long-term tillage comparison plots with different degrees of soil disturbance, including: 20 cm plowing, 15 cm disking, 30 cm chiseling, and no-till in several combinations. At the time of testing, standard soil cone penetrometer measurements were taken. The relationship between the average cone index in the 0–30 cm soil profile (CI0–30 cm) and the disc operating depth was evaluated. In addition, the cumulative energy density of the given depth of penetration defined as specific cone penetration energy (J m−2 or N cm−1) for each tillage plot was calculated using the cone index profiles. The average measured depth in each tillage plot was compared to the average predicted depth (dci) of a fixed specific cone penetration energy (Pci). Static calibration tests on the depth sensors showed excellent linearity with coefficients of determination (R2) greater than 0.99. The results showed that, on the average, the changes in the depth measured with the rotary potentiometer were 44 and 68% of the changes in the depth measured with the ultrasonic proximity sensor while the disc coulter was passing across, or along, the tillage plots. This difference was primarily due to the sinkage of the tractor wheels. The depth measured with the ultrasonic sensor had significant correlation with both CI0–30 cm and dci. This was partially due to the fact that a significantly high correlation (R2 = 0.97) between the CI0–30 cm and dci was observed, which was not expected and originated from the type of soil profiles present. The instrumented disc coulter is a low soil disturbance system and could be used as an inexpensive and simple sensor to obtain information about the mechanical condition of the soil for spot tillage or other management decisions. 相似文献
18.
Much of New Zealand's agriculture integrates animal and crop production on poorly drained, easily compacted soils. We hypothesized that soil properties affecting forage oat (Avena sativa, cv Awapuni) establishment on land compacted by 15 years of conventional cropping might be influenced by various subsoiling and surface tillage combinations. Plots on a Moutoa silty clay (Typic Haplaquoll) were paraplowed (P), deep subsoiled (V), shallow subsoiled (S), or were left as non-subsoiled controls (C). Subsequently, the surface 15 cm was surface-tilled (T) using a power rotary-tiller and firmed with a Cambridge roller or were not tilled (N). Oats were then sown with a cross-slot drill. Subsoiling greatly reduced soil strength. Cone indices showed disruption to 40 cm with P, 36 cm for V, and 30 cm for S. Approximately 60% of profile cone indices to a depth of 0.5 m from subsoiled treatments were less than 1.5 MPa, compared to approximately 30% for C. T slightly improved strength distribution in non-subsoiled controls but had little effect in subsoiled treatments. Subsoiling without T continued to show improved profile cone index cumulative frequency 233 days after subsoiling. Subsoiling after T in this high rainfall climate eliminated most of the separation in cumulative frequency of soil profile cone index values by two weeks after T. T reduced emergence from 142 to 113 plants per square meter and reduced yield from 5318 to 3679 kg ha−1. Forage yield increased from 3974 to 4674 kg ha−1 with subsoiling. Soil porosity, saturated and slightly unsaturated hydraulic conductivities (KSAT and K−40) and air permeability were highly variable but generally increased with subsoiling. Oxygen diffusion rate (ODR) (using Pt microelectrodes) was also variable, but N and C treatments had consistently lower ODRs than T or subsoiled treatments. Generally, subsoiling without T produced better soil conditions and oat crop performance than the prevailing New Zealand practice of T without subsoiling. 相似文献
19.
Soil compaction assessment is an important and difficult issue. In particular, it is difficult to quantify separately the compaction of macro-pores and micro-pores in the soil, and to account for spatial variability in soil properties at field scale. According to recent publications, the measurement and modelling of soil shrinkage curves (ShC) could help to overcome these difficulties. This is discussed in this paper on the basis of a field study. Control and compacted undisturbed samples originating from the surface layer of a cropped field are compared. The methods for measurement and modelling of the ShC are presented. Calculations of the micro-porosity, identified to be the soil plasma-porosity, and of the macro-porosity in the soil samples, at any water content, are described, and the accuracy of the results is discussed. A good agreement between field observation and ShC modelling is observed. The method allows for quantifying the compaction, with distinction between plasma-porosity and macro-porosity compaction. The forming of occluded macro-pores is also detected and quantified. The presented method offers numerous advantages in soil compaction assessment. It is precise, simple and easy to operate. It can be realized on clods of unspecified shape and containing a coarse fraction, and can be calculated for the fine earth fraction without the coarse fraction. The pore systems are quantified at any water content, and the determination covers the full range of pore sizes with quantitative distinction between the plasma-porosity and the macro-porosity compaction. According to previous results, it is possible to remove a certain amount of spatial variability in soil clay content by scaling the shrinkage parameters with clay content. The measurement and modelling of soil ShC is, therefore, a promising tool for soil compaction assessment. 相似文献
20.
Water repellency can reduce the infiltration capacity of soils over timescales similar to those of precipitation events. Compaction can also reduce infiltration capacity by decreasing soil hydraulic conductivity, but the effect of compaction on soil water repellency is unknown. This study explores the effect of compaction on the wettability of water repellent soil. Three air‐dry (water content ~4 g 100 g?1) silt loam samples of contrasting wettability (non‐repellent, strongly and severely water repellent) were homogenized and subjected to various pressures in the range 0–1570 kPa in an odeometer for 24 h. Following removal, sample surface water repellency was reassessed using the water drop penetration time method and surface roughness using white light interferometry. An increase in compaction pressure caused a significant reduction in soil surface water repellency, which in turn increases the soil's initial infiltration capacity. The difference in surface roughness of soils compacted at the lowest and highest pressures was significant (at P > 0.2) suggesting an increase in the contact area between sessile water drops and soil surfaces was providing increased opportunities for surface wetting mechanisms to proceed. This suggests that compaction of a water repellent soil may lead to an increased rate of surface wetting, which is a precursor to successful infiltration of water into bulk soil. Although there may be a reduction in soil conductivity upon compaction, the more rapid initiation of infiltration may, in some circumstances, lead to an overall increase in the proportion of rain or irrigation water infiltrating water repellent soil, rather than contributing to surface run‐off or evaporation. 相似文献