首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rice blast caused by the fungus Magnaporthe oryzae (anamorph Pyricularia grisea ) is one of the most devastating diseases of cultivated rice worldwide. In this study, a green fluorescent protein ( gfp )-expressing M. oryzae strain was generated and used to investigate the infection process in a commercial rice cultivar. Expression of the gfp gene did not affect the pathogenicity of the M. oryzae transformants. Confocal microscopy allowed in vivo imaging of this pathogen during infection of rice tissues. Magnaporthe oryzae pathogenicity was examined on both leaf and root tissues. In roots of wild-type plants, the fungus penetrated into epidermal and cortical cells, and colonized the central cylinder and xylem vessels. However, the dimorphic growth pattern typically observed during the biotrophic and necrotrophic stages of leaf colonization was not observed during colonization of root tissues. Furthermore, events occurring during infection of rice plants constitutively expressing the maize pathogenesis-related PRms gene were characterized and compared with those occurring during the interaction of this pathogen with untransformed rice plants. Fungal penetration was drastically reduced and delayed in tissues of PRms plants compared to untransformed plants. These results indicated that the gfp -expressing M. oryzae represents a strategic tool for the assessment of blast disease resistance in transgenic rice which can be also applied to the analysis of the M. oryzae interaction with other cultivars or mutants of important crop species.  相似文献   

2.
Fimbristylis miliacea, a weed in rice, has evolved resistance to acetolactate synthase (ALS) inhibitors. This study aimed to investigate the competitive abilities of ALS‐resistant (R) and ALS‐susceptible (S) F. miliacea with rice. A replacement series experiment was conducted in the glasshouse at the Federal University of Pelotas, Brazil. The proportions of rice to F. miliacea were 100:0, 75:25, 50:50, 25:75 and 0:100, with 1060 plants m?2. The experimental units were arranged in a completely randomised design with four replications. A follow‐up study was conducted at the University of Arkansas, Fayetteville, USA, in a split‐plot design with four replications. The main plot was species mixture (rice × R, rice × S, R × S). The subplot was competition partitioning (below‐ and above‐ground, below‐ground only, above‐ground only and no interspecific competition). Leaf area, plant height and shoot dry mass were recorded. Rice was more competitive than the R or S F. miliacea. In equal proportions of rice and F. miliacea, regardless of ecotype, the relative leaf area, height and dry mass of rice were greater than that of F. miliacea. The ALS‐resistant ecotype was less competitive with rice than the S ecotype. Intraspecific competition among rice plants was stronger than rice competition with F. miliacea. Competition for below‐ground resources was the most critical aspect of interference among rice and F. miliacea. In production fields, high infestation levels of F. miliacea results in significant yield losses; thus, resistance to ALS inhibitors needs to be curtailed.  相似文献   

3.
The wheat cultivar Kariega expresses complete adult plant resistance against stripe rust, whereas cv. Avocet S is susceptible. Using confocal laser scanning microscopy, initial fungal penetration into flag leaves was identical in both cultivars, with directional germ-tube growth towards stomata that were penetrated without the formation of an appressorium, followed by differentiation of a substomatal vesicle, infection hyphae, haustorial mother cells and haustoria. During the following 4 days, further fungal development occurred more quickly in the resistant than in the susceptible cultivar. However, by 7 days postinoculation (dpi) the situation changed, with exponential growth of the pathogen occurring only in the susceptible line. Induced cellular lignification, a typical defence reaction of cereals, was observed at 4 dpi in the resistant cultivar, and 2 days later lignified tissue completely surrounded the fungal colonies. In the susceptible cultivar, isolated lignified host cells occurred at 6 dpi, and long, unbranched fungal hyphae outgrowing the resistance reaction were observed.  相似文献   

4.
The introduction of imidazolinone‐tolerant rice varieties has made selective Oryza sativa (weedy rice) control possible. We hypothesised that Italian weedy rice populations have variable degrees of susceptibility to imazamox prior to imidazolinone‐tolerant variety introduction. To this end, 149 Italian weedy rice populations collected from fields never before cultivated with imidazolinone‐tolerant varieties were tested in a glasshouse‐based, whole‐plant response screening study. Imazamox was applied to all populations post‐emergence at a rate of 70 g a.i. ha?1, resulting in 70–90% shoot biomass reduction in the majority of cases. The results prompted a second study of the seedling dose response of four weedy rice populations from the initial study group. Three imidazolinone‐tolerant and one conventional rice variety were also included. The seedling roots were cut six days after germination and exposed to different concentrations of imazamox. The root regrowth associated with each concentration‐exposure was then measured. Imazamox concentrations to inhibit weedy rice root growth by 50% varied by about two orders of magnitude, or between 0.0018 and 0.12 mm . Even with this result, imidazolinone‐tolerant varieties were at least 31.8 times less susceptible than weedy rice populations, suggesting that Italian weedy rice populations were not tolerant to imazamox before introduction of these varieties.  相似文献   

5.
Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is a serious threat to rice production worldwide. In temperate regions, where rice is not cultivated for several months each year, little is known about the initial onset of the disease in the field. The main overwintering and primary inoculum sources reported are infested residues and seeds, but the subsequent steps of the disease cycle are largely unknown, even though a systemic infection has been proposed but not demonstrated. The present work follows rice blast progression in infected seeds from germination to seedling stage, with direct and detailed microscopic observations under both aerobic conditions and water seeding. With the use of GFP‐marked M. oryzae strains, it was shown that spores are produced from contaminated seeds, infect emerging seedling tissues (coleoptile and primary root) and produce mycelium that colonizes the newly formed primary leaf and secondary roots. Using different rice cultivars exhibiting distinct levels of resistance/susceptibility to M. oryzae at the 2/4‐leaf stage, it was observed that resistance or susceptibility of a considered genotype is already established at the seedling stage. The results also showed that when plants are inoculated either at ripening stage (mature panicles), heading stage (flowering/immature panicles) or even before heading (flag leaf fully developed), they produce infested seeds. These seeds produce contaminated seedlings that mostly die and serve as an inoculum source for healthy neighbouring plants, which gradually develop disease symptoms on leaves. The possible rice blast disease cycle was reconstructed on irrigated rice in temperate regions.  相似文献   

6.
Verticillium wilt (VW) in olive is best managed by an integrated disease management strategy, of which use of host resistance is a key element. The widespread occurrence of a highly virulent defoliating (D) Verticillium dahliae pathotype has jeopardized the use of commercial olive cultivars lacking sufficient resistance to this pathogen. However, the combined use of resistant wild olive rootstocks and Trichoderma spp. effective in the biocontrol of VW can improve the management of VW in olive. In vivo interactions between D V. dahliae and Trichoderma harzianum were studied in olive and wild olive plants displaying different degrees of resistance against this pathogen using confocal microscopy. This multitrophic system included wild olive clones Ac‐4 and Ac‐15, olive cv. Picual, and the fungal fluorescent transformants T. harzianum GFP22 and V. dahliae V138I‐YFP, the latter being obtained in this study. In planta observations indicated that V138I‐YFP colonizes the roots and stems of the olive and wild olive genotypes, and that GFP22 grows endophytically within the roots of them all. YFP fluorescence signal quantifications showed that: (i) the degree of root and stem colonization by the pathogen varied depending upon the susceptibility of the tested wild olive genotype, being higher in Ac‐15 than in Ac‐4 plants; and (ii) treatment with T. harzianum GFP22 reduced the extent of pathogen growth in both clones. Moreover, root colonization by strain GFP22 reduced the percentage of pathogen colonies recovered from stems of olive and wild olive plants.  相似文献   

7.
Cereal cyst nematode (CCN) severely threatens wheat production in many regions of China. Cultivars susceptible to CCN are the main reason for its spread. This study was initiated to determine whether wheat cultivars conferring different resistance levels are the dominant determinants of CCN populations in the rhizospheric soil. Field experiments were conducted at two locations in Henan province, China, where high populations of Heterodera filipjevi or H. avenae have occurred, during the growing seasons of 2010/11 and 2011/12. Conventional enumeration of white female nematodes on the plant roots, reproductive factor (Rf) and a molecular diagnostic approach, PreDicta B test, a soil testing service based on a sensitive quantitative PCR technique, were used to determine the nematode populations in the rhizospheric soils of seven common wheat and durum wheat cultivars with different reactions to CCN. The resistant responses to CCN conferred by durum wheat Wascana and Wakooma and common wheat Madsen were effective against both H. filipjevi and H. avenae and resulted in significantly fewer nematodes (<5 females) on the roots, and lower Rf. Those cultivars were effective in limiting nematode propagation, resulting in fewer CCN eggs in their rhizospheric soils. Taikong 6 conferred moderate resistance (5–10 females) to both Heterodera species. Tianmin 668 only showed resistance to H. avenae. Aikang 58 and Wenmai 19 were susceptible to both CCN species, which facilitated increases in the nematode populations. These results demonstrate that the reactions to CCN of wheat genotypes have obvious impact on the propagation of nematodes.  相似文献   

8.
Mango malformation disease (MMD), caused by Fusarium mangiferae, is a major constraint to mango production, causing significant yield reduction resulting in severe economic impact. The present study characterizes fungal localization in planta during initiation and development of vegetative and floral malformation. Young mango trees were artificially inoculated with a green fluorescent protein (GFP)‐expressing strain of F. mangiferae. Shoots and buds were sampled periodically over a period of more than a year and localization of the GFP‐expressing fungi was determined using confocal microscopy. Fungal localization appears to be epiphytic: mycelia remained in close contact with the plant surface but did not penetrate the tissue. In vegetative malformation and in young inflorescences, the fungus was confined to protected regions between scales, young leaf bases and buds. Fungal colonization was only very rarely detected on open leaves or on exposed shoot sections. In developed flowers, mycelia were localized mainly to protected regions at the base of the flower organs. Upon development of the inner flower organs, specific mycelial growth occurred around the anthers and the style. Mycelial penetration through the stylar tract into aborting carpels was observed. For several months, mycelia were confined to the surface of the organs and were not detected within plant tissues. Only at later stages, transient saprophytic growth of the fungus was detected causing the malformed inflorescences to senesce and collapse, concurrent with dispersion of conidia. Implications of the present study on MMD in natural field infections are discussed.  相似文献   

9.
False smut, caused by Ustilaginoidea virens, is a rice disease of increasing importance worldwide, with no source of high‐level resistance in the existing rice germplasm. To facilitate breeding varieties with good levels of field resistance to false smut, quantitative resistance loci (QRL) were identified using 213 introgression lines (ILs) from a cross between Teqing (recipient) and Lemont (donor) evaluated using natural infection at two hotspots of false smut in northeast China. Ten QRL affecting percentages of diseased hills, diseased panicles and diseased spikelets were detected and mapped to rice chromosomes 2, 3, 4, 6, 8, 10, 11 and 12. The Lemont alleles at all QRL increased false smut resistance. Four QRL (qFSR‐6‐7, qFSR‐10‐5, qFSR‐10‐2 and qFSR‐11‐2) had relatively larger and consistent effects across the two testing sites. Promising resistant ILs were identified, most of which had multiple QRL, suggesting that pyramiding multiple QRL by marker‐assisted selection would be an effective strategy for improving rice resistance to false smut. The identified QRL and their linked DNA markers will facilitate this breeding effort in the future.  相似文献   

10.
The effect of soluble silicon (Si) on photosynthetic parameters and soluble sugar concentrations was determined in leaves of rice cv. Oochikara and mutant plants of Oochikara defective in active Si uptake [low silicon 1 (lsi1)]. Plants were grown in hydroponic culture amended with 0 (?Si) or 2 mm Si (+Si), under either low or high photon flux density (PFD) and with or without inoculation with Bipolaris oryzae, the causal agent of brown spot of rice. Leaf Si concentration increased by 141 and 435% in +Si cv. Oochikara and by 119 and 251% in +Si lsi1 mutant plants under high and low PFD, respectively, compared with ?Si plants. Plant biomass accumulation was improved by Si regardless of PFD, especially plants for cv. Oochikara. Brown spot severity was highest in ?Si plants for cv. Oochikara and lsi1 mutant plants under low PFD. In the presence of Si, disease severity in plants grown under both low and high PFD was reduced, except for lsi1 mutant plants under high PFD. Plant inoculation reduced the photosynthetic parameters measured regardless of plant material or Si supply. A decrease of net carbon assimilation rate (A) of inoculated plants under low PFD compared with non‐inoculated plants was associated with damage in the photosynthetic apparatus, except for +Si cv. Oochikara in which stomatal restriction [low water vapour conductance (gs)] contributed to A reduction. Under high PFD, damage to the photosynthetic apparatus of inoculated plants was the main reason for the reduction in A for +Si and ?Si lsi1 mutant plants. In addition, for ?Si cv. Oochikara, a reduction in gs contributed to reduced A. However, for +Si cv. Oochikara, gs was the limiting factor for A. Inoculated plants of +Si cv. Oochikara had higher A values than +Si lsi1 mutant plants, regardless of environmental conditions. Soluble sugars were not detected in leaf tissues of plants under low PFD. For high PFD, Si improved the hexose concentration in non‐inoculated plants at 144 h after inoculation (hai) for lsi1 mutant plants and from 96 hai onwards for cv. Oochikara compared with ?Si plants. However, plant inoculation reduced hexose concentration compared with non‐inoculated plants, mainly in +Si plants, regardless of plant material. Sucrose concentration increased in leaves of cv. Oochikara in the presence of Si whether inoculated or not. For +Si lsi1 mutant plants, sucrose concentration increased only at 48 hai compared with ?Si plants, whether inoculated or not. The results of this study show that a minimum Si concentration is needed in leaf tissues of rice plants to avoid the negative impact of B. oryzae infection on photosynthesis and sugar concentration. High leaf Si concentration resulted in an increased soluble sugar concentration and together, but in independent ways, soluble sugar and Si reduced brown spot severity of rice.  相似文献   

11.
12.
13.
Magnaporthe oryzae is the fungal plant pathogen that causes rice blast. The sources of primary inoculum and overwintering mode of the fungus remain largely unknown. The effect of rice residues on the onset of blast epidemics and the potential for survival of M. oryzae in the residues were studied in upland conditions in Madagascar. Blast disease was observed in a 3‐year field experiment in three treatments: with either infected or uninfected rice residues on the soil surface, or without rice residues. Leaf blast incidence was significantly higher in the treatment with infected rice residues than in the two other treatments at the early stages of the epidemic. In a second set of trials, the survival of M. oryzae on rice residues was monitored. Infected rice stems were placed by lots in three places: on the mulch of rice residues, under the mulch, and buried at a depth of 10 cm in the soil. Each month, samples were taken from the field and tested for sporulation. The survival of the blast fungus decreased rapidly on the stems buried in the soil but remained high for the other conditions. Sporulation of the fungus was observed on stems left on the mulch for up to 18 months. It is concluded that under field conditions, the presence of infected rice residues could initiate an epidemic of blast. The results of this study may help in designing effective management strategies for rice residues infected by M. oryzae.  相似文献   

14.
To reveal the effects of herbicide selection on genetic diversity in the outcrossing weed species Schoenoplectus juncoides, six sulfonylurea‐resistant (SU‐R) and eight sulfonylurea‐susceptible (SU‐S) populations were analysed using 40 polymorphic inter‐simple sequence repeat loci. The plants were collected from three widely separated regions: the Tohoku, Kanto and Kyushu districts of Japan. Genetic diversity values (Nei's gene diversity, h) within each SU‐S population ranged from = 0.125 to h = 0.235. The average genetic diversity within the SU‐S populations was HS = 0.161, and the total genetic diversity was HT = 0.271. Although the HS of the SU‐R populations (0.051) was lower than that of the SU‐S populations, the HT of the SU‐R populations (0.202) was comparable with that of the SU‐S populations. Most of the genetic variation was found within the region for both the SU‐S and SU‐R populations (88% of the genetic variation respectively). Two of the SU‐R populations showed relatively high genetic diversity (= 0.117 and 0.161), which were comparable with those of the SU‐S populations. In contrast, the genetic diversity within four SU‐R populations was much lower (from h = 0 to 0.018) than in the SU‐S populations. The results suggest that selection by sulfonylurea herbicides has decreased genetic diversity within some SU‐R populations of S. juncoides. The different level of genetic diversity in the SU‐R populations is most likely due to different levels of inbreeding in the populations.  相似文献   

15.
Rice black streaked dwarf virus (RBSDV) causing rice black streaked dwarf disease is transmitted by the small brown planthopper (SBPH, Laodelphax striatellus) in a persistent propagative manner. The disease is considered among the most destructive in rice production in east and southeast Asia. For sustainable control of the disease, planting resistant cultivars is the most economical and efficient method. The virus content in different rice cultivars was quantified using a TaqMan RT‐qPCR assay under greenhouse conditions and the disease was visually assessed in these cultivars in both greenhouse and field conditions. Results revealed significant positive moderate correlation (= 0.3787; = 0.0009) between the virus content and visual disease assessment in the greenhouse under forced inoculation. Among 66 rice cultivars, there was no significant difference in RBSDV genome equivalent copies (GEC) in seven cultivars, namely Lian‐dao 9805 (200.2 ± 12), Liangyou 3399 (206.6 ± 28), Ningjing 4 (206.6 ± 28), DaLiang 207 (302.0 ± 61), X 008 (354.0 ± 30), Shengdao 301 (658.4 ± 69) and Liangyou 1129 (679.5 ± 98). These cultivars were also visually assessed as resistant under greenhouse and field conditions. These cultivars could be used in disease management to reduce the likelihood of epidemics.  相似文献   

16.
Two major weeds in rice in the Philippines, Sphenochlea zeylanica Gaertn. and Echinochloa crus‐galli (L.) Beauv., are controlled with chemical and cultural methods. In the 1980s, after >10 years of continuous use of 2,4‐D, S. zeylanica evolved resistance to the chemical in those rice fields that had been treated with 2,4‐D once or twice every cropping season. In the 1990s, E. crus‐galli evolved resistance to butachlor and propanil in rice monocrop areas where both herbicides were used continuously for 7–9 years. Rice farmers continue to use 2,4‐D, butachlor and propanil extensively and are often unaware of herbicide resistance or the potential for cross‐resistance, its causes or its implications. In order to control herbicide‐resistant E. crus‐galli, farmers are shifting to locally available herbicides with different modes of action, such as bispyribac, an acetolactate synthase inhibitor, and cyhalofop, an acetyl coenzyme A carboxylase inhibitor. Follow‐up manual weeding or rotary weeding after herbicide spraying, a common farmers’ practice, removes the susceptible and resistant biotypes and could help to delay or prevent the evolution of resistance. Although the resistance mechanisms of both weeds are not determined yet, they could be related to enhanced degradation that is similar to the mechanisms that are shown by the resistant biotypes in other countries.  相似文献   

17.
This study assessed the cultural and weed management factors influencing the weed communities of Hungarian rice fields. Hungary is situated at the northern limit of rice production with a history of about 300 years of rice culture. We surveyed the weed flora and 25 background variables in 100 active rice fields. Using a minimal adequate model containing 11 terms, 48.5% of the total variation in weed species data could be explained. The net effects of nine variables on species composition were significant. Crop cover was found to be the most important explanatory variable, which was followed by the herbicides penoxsulam and azimsulfuron, tillage depth, phosphorous and potassium fertilisers, years after last rotation, water depth in May, sowing type, pendimethalin and water conductivity. Filamentous algae, as the most abundant group of weeds, were positively associated with deep tillage, deep water and surface sowing. Echinochloa crus‐galli, one of the most troublesome grass weeds, was associated with low rice cover, shallow water and later years after crop rotation, while weedy rice favoured high crop cover, deep water and soil sowing. These findings can be used to design improved weed management strategies. The occurrence of red list species and charophytes in diverse micro‐mosaic patterns deserves attention from a conservation perspective, as well. The maintenance of these unique charophyte communities can be facilitated by shallow tillage without soil inversion.  相似文献   

18.
The effects of herbicide dose on rice‐weed competition were investigated to develop a combined model, which can be utilised to estimate an optimum herbicide dose for a given weed density in paddy rice cultivation. Field studies were conducted in Suwon for rice‐Echinochloa crus‐galli competition and Iksan for rice‐Eleocharis kuroguwai during 2007. The competitive effect of the weeds E. crus‐galli and E. kuroguwai decreased with increasing doses of flucetosulfuron and azimsulfuron, respectively, in the same manner as the standard dose–response curve. The combination of the rectangular hyperbolic model and the standard dose–response curve adequately described the complex effects of herbicide dose and weed competition on rice yield. Parameter estimates were used with the model to predict rice yield and estimate the doses of flucetosulfuron and azimsulfuron required to restrict rice yield loss caused by E. crus‐galli and E. kuroguwai, respectively, to an acceptable level. For a rice yield of 5.0 t ha?1, the model recommended flucetosulfuron doses of 8.7, 13.4 and 20.1 g a.i. ha?1 when infested with E. crus‐galli at 12, 24 and 48 plants m?2 respectively. For a rice yield of 5.2 t ha?1, the model recommended azimsulfuron doses of 3.9, 7.5 and 12.6 g a.i. ha?1 when infested with E. kuroguwai at 24, 48 and 96 plants m?2 respectively. The theoretical outputs of the combined model appear robust and indicate there are opportunities for reduced herbicide use in the field. These now require evaluation under field conditions.  相似文献   

19.
A novel, high‐resolution melting (HRM) analysis was developed to detect single nucleotide polymorphisms (SNPs) associated with resistance to fenhexamid (hydroxyanilides) and boscalid (succinate dehydrogenase inhibitors) in Botrytis cinerea isolates. Thirty‐six single‐spore isolates arising from 13 phenotypes were selected and tested for fungicide sensitivity. Germ tube elongation assays showed two distinct sensitivity levels for each fungicide. Sequencing revealed that resistance to fenhexamid was due to a nucleotide change in the erg27 gene, resulting in an amino acid replacement of phenylalanine (F) with serine (S) or valine (V) at position 412 of the protein, whereas in isolates resistant to boscalid, a nucleotide change in the sdhB gene resulted in the replacement of histidine (H) with arginine (R) or tyrosine (Y) at position 272 of the respective protein. In each case, melting curve analysis generated three distinct profiles corresponding to the presence of each nucleotide in the targeted areas. HRM analysis successfully detected and differentiated the substitutions associated with resistance to both fungicides. In vitro bioassays, direct sequencing and high‐resolution melting analysis showed a 100% correlation with detection of resistance. The results demonstrate the utility of HRM analysis as a potential molecular tool for routine detection of fungicide resistance using known polymorphic genes of B. cinerea populations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号