首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cereal cyst nematode (CCN), Heterodera avenae, is one of the most important pathogens of wheat worldwide, and causes significant yield losses. Research on CCN–wheat interactions is hampered by the lack of an effective model pathosystem. This study investigated the potential of the model cereal Brachypodium distachyon (Bd21‐3) and diploid wheat 2A (G1812) and 2D (AL8/78) as model hosts for CCN. Nematode infection analysis showed that although some CCN penetrated Bd21‐3 roots, these nematodes failed to develop to the later developmental stages or form cysts, indicating B. distachyon is not a host for CCN. A strong burst of reactive oxygen species (ROS) within Bd21‐3 roots infected with CCN was induced 3 days after infection and the expression of seven ROS‐producing genes was significantly increased. In contrast, CCN completed its life cycle in both diploid wheat 2A and 2D, and formed normal syncytia in these hosts. Although CCN developmental processes within both diploid wheat 2A and 2D were very similar to those in the susceptible control, the number of cysts formed on diploid wheat 2D was less than those formed on diploid wheat 2A and the susceptible control, indicating that diploid wheat 2A was a more suitable host for CCN than 2D. This is the first report of a potential new pathosystem for CCN–host interactions using diploid wheat.  相似文献   

2.
Cereal cyst nematode (CCN) severely threatens wheat production in many regions of China. Cultivars susceptible to CCN are the main reason for its spread. This study was initiated to determine whether wheat cultivars conferring different resistance levels are the dominant determinants of CCN populations in the rhizospheric soil. Field experiments were conducted at two locations in Henan province, China, where high populations of Heterodera filipjevi or H. avenae have occurred, during the growing seasons of 2010/11 and 2011/12. Conventional enumeration of white female nematodes on the plant roots, reproductive factor (Rf) and a molecular diagnostic approach, PreDicta B test, a soil testing service based on a sensitive quantitative PCR technique, were used to determine the nematode populations in the rhizospheric soils of seven common wheat and durum wheat cultivars with different reactions to CCN. The resistant responses to CCN conferred by durum wheat Wascana and Wakooma and common wheat Madsen were effective against both H. filipjevi and H. avenae and resulted in significantly fewer nematodes (<5 females) on the roots, and lower Rf. Those cultivars were effective in limiting nematode propagation, resulting in fewer CCN eggs in their rhizospheric soils. Taikong 6 conferred moderate resistance (5–10 females) to both Heterodera species. Tianmin 668 only showed resistance to H. avenae. Aikang 58 and Wenmai 19 were susceptible to both CCN species, which facilitated increases in the nematode populations. These results demonstrate that the reactions to CCN of wheat genotypes have obvious impact on the propagation of nematodes.  相似文献   

3.
 采用PCR技术对河南郑州禾谷孢囊线虫群体的核糖体基因(ribosomal DNA,rDNA)内转录间隔区(Internal Transcribed Spacers,ITS)进行扩增,获得片段长度约为1040bp。利用UPGMA方法分析了河南郑州禾谷孢囊线虫群体与近缘种的系统发育关系,结果表明:中国Heterodera avenae群体,H.australisH.pratensis亲缘关系很近。8种限制性内切酶(Restriction Enzyme,RE)酶切禾谷孢囊线虫ITS的扩增产物,其中HindⅢ、AvaⅠ不能酶切PCR产物;Alu Ⅰ酶切PCR产物,获得560bp和480bp2个片段;RsaⅠ和Hinf Ⅱ酶切后分别得到3个片段(700、320、20bp和820、180、40bp);CfoⅠ是3个酶切位点(740、150、110、40bp);HaeⅢ和MvaⅠ能分别清晰地观察到3个片段(420、350、180bp和400、340、280bp),但有微小片段无法清晰观察到。9个种群所得RFLP图谱一致,说明郑州禾谷孢囊线虫群体可能是同一种群且不同于欧洲群体(typeA)和印度群体(typeB)的C型。  相似文献   

4.
5.
 禾谷孢囊线虫(Heterodera avenae)是中国小麦上的重要病原线虫。纤维素结合蛋白基因是一种重要的植物线虫寄生和致病相关基因。用同源克隆的方法从禾谷孢囊线虫寄生前二龄幼虫中克隆出一种纤维素结合蛋白新基因Ha-cbp-1(GenBank 注册号GQ178086)cDNA序列。Ha-cbp-1基因cDNA包含1个开放阅读框,编码131个氨基酸残基的蛋白质,预测蛋白由1个长度为18氨基酸残基的信号肽和1个纤维素结合区域(CBD)组成。Ha-cbp-1的基因组DNA序列含有2个内含子。预测的禾谷孢囊线虫纤维素结合蛋白(HA-CBP-1)序列与大豆孢囊线虫纤维素结合蛋白(HG-CBP-1)序列有60%的同一性和76%的相似性,与甜菜孢囊线虫纤维素结合蛋白(HS-CBP-1)序列有60%的同一性和75%的相似性。本研究首次从禾谷孢囊线虫中成功克隆出CBP蛋白基因。  相似文献   

6.
The type VI secretion system (T6SS) has been reported to be highly associated with various cellular activities in strain RS‐1 of Acidovorax avenae subsp. avenae (Aaa), the pathogen of bacterial brown stripe of rice. However, the role of the clpB gene that presents in the T6SS gene cluster in Aaa pathogenicity has not been clarified. The aim of the current study was to characterize the function of clpB and to investigate its contribution to bacterial pathogenesis using insertional deletion mutation and complementation approaches. The results indicated that mutation of clpB significantly affected bacterial growth, virulence, exopolysaccharide (EPS) production, biofilm formation and expression of 13 other T6SS genes of Aaa RS‐1. The reduction of virulence may be also partially due to the change in EPS composition, which was characterized by the Fourier transform infrared (FTIR) spectra. Furthermore, analysis of protein homology modelling showed that the structure of ClpB is different from those of the other T6SS components. In addition, structural difference was observed between ClpB and Type IV pili (TFP) as well as Type IV pilus biogenesis proteins (PilP), whose functions are similar to ClpB. Taken together, this study demonstrated that the clpB gene plays a key role in Aaa bacterial virulence.  相似文献   

7.
Little is known about the role of plant primary metabolism in defence against pathogens. The present study is the first investigation published that examines the role of β‐amylase (BAM) genes upon fungal, Verticillium dahliae, infection. The responses of Arabidopsis thaliana plants impaired in BAM1, BAM2, BAM3, BAM4 genes, along with double, triple and quadruple mutants of those genes, were used to explore the involvement of BAM in the host plant–V. dahliae interaction. Less severe symptoms were recorded in bam mutants compared to wild type. Real‐time quantitative PCR (qPCR) revealed that the decrease in symptom severity shown in bam plants was correlated with reductions in the growth of the pathogen in the plants. Confocal microscopy of the most and least susceptible bam mutants and the wildtype plants showed that there were no differences between them in the number of attached conidia and penetration sites on the roots. BAM1, BAM2 and BAM3 expression was altered upon V. dahliae infection in the aerial tissues of the wild type. Analysis by qPCR of the PR1 and PDF1.2 expression in the bam3, bam1234, bam14 and wildtype plants showed that PR1 was up‐regulated in the roots of bam plants upon V. dahliae infection.  相似文献   

8.
Minimizing losses to pests and diseases is essential for producing sufficient food to feed the world's rapidly growing population. The necrotrophic fungus Botrytis cinerea triggers devastating pre‐ and post‐harvest yield losses in tomato (Solanum lycopersicum). Current control methods are based on the pre‐harvest use of fungicides, which are limited by strict legislation. This investigation tested whether induction of resistance by β‐aminobutyric acid (BABA) at different developmental stages provides an alternative strategy to protect post‐harvest tomato fruit against B. cinerea. Soil‐drenching plants with BABA once fruit had already formed had no impact on tomato susceptibility to B. cinerea. However, BABA application to seedlings significantly reduced post‐harvest infection of fruit. This resistance response was not associated with a yield reduction; however, there was a delay in fruit ripening. Untargeted metabolomics revealed differences between fruit from water‐ and BABA‐treated plants, demonstrating that BABA triggered a defence‐associated metabolomics profile that was long lasting. Targeted analysis of defence hormones suggested a role of abscisic acid (ABA) in the resistance phenotype. Post‐harvest application of ABA to the fruit of water‐treated plants induced susceptibility to B. cinerea. This phenotype was absent from the ABA‐exposed fruit of BABA‐treated plants, suggesting a complex role of ABA in BABA‐induced resistance. A final targeted metabolomic analysis detected trace residues of BABA accumulated in the red fruit. Overall, it was demonstrated that BABA induces post‐harvest resistance in tomato fruit against B. cinerea with no penalties in yield.  相似文献   

9.
Choy sum (Brassica rapa var. parachinensis), leafy mustard (Brassica juncea) and pak choi (B. rapa var. chinensis) are highly nutritious components of diets in Taiwan and other Asian countries, and bacterial black rot caused by Xanthomonas campestris pv. campestris (Xcc) is a major biotic constraint in these crops. As very little was known about the Xcc strains from these crops in these regions, including their cross‐pathogenicity and aggressiveness on different hosts, Xcc strains were obtained from cabbage (Brassica oleracea var. capitata), choy sum, leafy mustard and pak choi crops in Taiwan. Two previously published PCR‐based assays reliably distinguished the Xcc strains from other Xanthomonas species and subspecies. Phylogenetic analysis based on repetitive sequence‐based PCR assays placed the Xcc strains in a clade distinct from other Xanthomonas species, and also showed host specificity. Although all of the Xcc strains from the different host species were pathogenic on all five Brassica test species in both a detached leaf assay and an intact plant assay, in the intact plant assay they showed differences in virulence or aggression on the different test hosts. The Xcc strains from leafy mustard and pak choi were consistently highly aggressive on all the test host genotypes, but the strains from choy sum and cabbage were less aggressive on leafy mustard and choy sum. The intact plant assay proved more discriminating and reliable than the detached leaf assay for comparing the aggressiveness of Xcc strains on different host genotypes, and so, with the new Xcc strains isolated in this study, will be useful for screening leafy brassica germplasm accessions for resistance to black rot.  相似文献   

10.
11.
Potato mop‐top virus (PMTV) causes necrotic flecks inside and on tubers in temperate countries. In South America, these symptoms have not been observed, although the presence of the virus has been confirmed in the Andes and in Central America. To characterize PMTV isolates from the Andes, soil samples were taken from the main potato‐producing regions in Colombia and virus was recovered by planting Nicotiana benthamiana as bait plants. The complete genomes of five isolates were sequenced and three of the isolates were inoculated to four different indicator plants. Based on sequence comparisons, three types of RNA‐CP (RNA2) and RNA‐TGB (RNA3) were found. The isolates from the centre of the country (CO3 and CO4) were similar to isolates from Europe. The genomes of CO1, CO2 and CO5 differ from other PMTV isolates, placing them in a separate clade in phylogenetic trees. The three Colombian isolates (CO1, CO2 and CO5) only induced slightly different symptoms in the indicator plants. However, the isolate from the northwest of the country (CO1) induced stronger symptoms in N. benthamiana including severe stunting. A correlation between the genotype of the isolates and the symptoms they induced on indicator plants was not found.  相似文献   

12.
Nine bacteriophages infecting Dickeya spp. biovar 3 (‘Dickeya solani’) were isolated from soil samples collected in different regions in Poland. The phages have a typical morphology of the members of the order Caudovirales, family Myoviridae, with a head diameter of c. 90–100 nm and tail length of c. 120–140 nm. In host range experiments, phage ?D5 expressed the broadest host range, infecting members of all Dickeya spp., and phage ?D7 showed the narrowest host range, infecting isolates of Dickeya dadantii and ‘D. solani’ only. None of the phages was able to infect Pectobacterium spp. isolates. All phages were prone to inactivation by pH 2, temperature of 85°C and by UV illumination for 10 min (50 mJ cm?2). Additionally, phages ?D1, ?D10 and ?D11 were inactivated by 5 m NaCl and phage ?D2 was inactivated by chloroform. Phages ?D1, ?D5, ?D7 and ?D10 were characterized for optimal multiplicity of infection and the rate of adsorption to the bacterial cells. The latent period was 30 min for ?D1, 40 min for ?D5, 20–30 min for ?D7 and 40 min for ?D10. The estimated burst size was c. 100 plaque‐forming units per infected cell. The bacteriophages were able to completely stop the growth of ‘D. solaniin vitro and to protect potato tuber tissue from maceration caused by the bacteria. The potential use of bacteriophages for the biocontrol of biovar 3 Dickeya spp. in potato is discussed.  相似文献   

13.
14.
15.
Acetylcholinesterase (AChE), which is encoded by the ace gene, catalyzes the hydrolysis of the neurotransmitter acetylcholine to terminate nerve impulses at the postsynaptic membrane. AChE is a primary target of many insecticides including organophosphates (OP) and carbamates (CB). In this study, full-length cDNA sequences of two ace genes (Nlace1 and Nlace2) were sequenced from the brown planthopper (BPH) Nilaparvata lugens, the most destructive insect pest of rice crops. Nlace1 cDNA is 2842 nucleotides long and contains an ORF potentially encoding a 790 amino acid peptide. Nlace2 cDNA is 2852 bp in length and contains an ORF that potentially encodes a 672 amino acid peptide. NlAChE1 has an identity of 40% with NlAChE2 at the amino acid sequence level. Phylogenetic analysis of 59 AChEs from 32 animal species showed that NlAChE1 is most closely related to AChE1s from Blattella germanica and Nephotettix cincticeps, while NlAChE2 is most closely related to AChE2 from N. cincticeps. Quantitative RT-PCR analysis showed that Nlace1 is expressed at a much higher level than Nlace2 in all developmental stages and tissues, demonstrating that NlAChE1 may be the dominant AChE form of the two enzymes. This result will help reveal the resistance mechanism of N. lugens to organophosphorous and carbamate insecticides and promote development of more selective insecticides targeting the main NlAChE1.  相似文献   

16.
Thatcher near‐isogenic lines (NILs) of wheat carrying resistance gene Lr2a, Lr3, LrB or Lr9 were inoculated with Puccinia triticina races of virulence phenotype BBBD, MBDS, SBDG and FBDJ. Puccinia triticina infection structures were analysed under the fluorescence microscope over a course of 14 days after inoculation (dai). The relative proportion of P. triticina and wheat genomic DNA in infected leaves was estimated with a semiquantitative multiplex PCR analysis using P. triticina‐ and wheat‐specific primers. The occurrence of a hypersensitive response (HR), cellular lignification and callose deposition in inoculated plants was investigated microscopically. In interactions producing highly resistant infection type (IT) ‘0;’, a maximum of two haustorial mother cells per infection site were produced, and there was no increase in the proportion of P.  triticina genomic DNA in infected leaves, indicating the absence of P. triticina growth. In comparison, sizes of P. triticina colonies increased gradually in interactions producing moderately resistant IT ‘1’ and ‘2’, with the highest proportion of P. triticina genomic DNA found in leaves sampled at 14 dai. In interactions producing susceptible IT ‘3–4’, the highest proportion of P. triticina genomic DNA was found in leaves sampled at 10 dai (45·5–51·5%). HR and cellular lignification were induced in interactions producing IT ‘0;’ and ‘1’ at 1 dai but they were not observed in interactions producing IT ‘2’ until 2 dai. No HR or cellular lignification were induced in interactions producing susceptible IT ‘3–4’. Furthermore, a strong deposition of callose was induced in Lr9 + BBBD and Lr9 + FBDJ (IT ‘0;’), whereas this defence response was not induced in resistant or susceptible interactions involving Lr2a, Lr3 or LrB, indicating that Lr9 mediated resistance was different from that conditioned by Lr2a, Lr3 or LrB.  相似文献   

17.
18.
19.
20.
BACKGROUND: Resistance of Fusarium graminearum to the benzimidazole fungicide carbendazim is caused by point mutations in the β2‐tubulin gene (FGSG_06611.3). The point mutation at codon 167 (TTT → TAT, F167Y) occurs in more than 90% of field isolates in China. It is important to find a suitable method for rapid detection and quantification of this point mutation in the F. graminearum populations. RESULTS: A pair of primers, Codon167F/Codon167R, were designed to amplify a fragment containing the mutation site, and two cycling probes labelled with different fluorescent reporters were used to detect whether the mutation was present. A cycleave real‐time PCR method was developed for rapid determination of the frequency of this point mutation in 282 F. graminearum perithecia collected from different fields in Jiangsu Province, China. The mutation frequency in ascospores from the perithecia to carbendazim by a spore germination assay was 6.0%, while the frequency of the point mutation at codon 167 by the cycleave real‐time PCR assay was 3.9%. CONCLUSION: The cycleave real‐time PCR method is suitable for accurate detection of the codon 167 point mutation. The frequency of this mutation in the β2‐tubulin gene represents the resistance frequency in F. graminearum populations to carbendazim. Copyright © 2011 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号