首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study was aimed at determining the effect of light conditions on contents of glucosinolates (GLS) in germinating seeds of white mustard, red radish, white radish, and rapeseed. The seeds were germinated in light and dark, at 25 degrees C, for up to 7 days. As compared to the nongerminated seeds, in seeds exposed to light and germinated for 4, 5, 6, and 7 days the content of total GLS was observed to decrease by 30 to 70% depending on the species. Germination in conducted the dark for the respective periods of time resulted in decreases of total GLS not exceeding 25%. The changes in the concentration of total GLS were attributed to aliphatic GLS predominating in seeds, yet in the case of white mustard to sinalbin belonging to aralkyl glucosinolates. Although seeds germinated in the dark, as compared to those exposed to light, were characterized by a higher total content of indole GLS, the percentage contribution of that group of compounds in white mustard, red radish, and white radish remained at a similar level, irrespective of germination time. Only in the case of rapeseed was the percentage of the sum of indole GLS observed to increase from 17 to up to 45% once the seeds were exposed to light and to 50% once they were germinated in the dark.  相似文献   

2.
耕地资源的集约化和规模化是表征耕地利用效率的重要指标,对于确保中国粮食安全和促进农业可持续发展具有重要意义。该研究以湖北省为研究区,构建集约化与规模化评估指标体系及综合评估方法,并在县域尺度上研究了湖北省2000-2020年间耕地两化水平及其耦合协调模式。结果表明:湖北省耕地集约化水平呈中部高–东西低的整体提升时空格局,而规模化水平呈南高北低–中部高东西低的先降后升时空格局,集约化和规模化水平耦合协调度基本呈中部高–四周低的空间分布模式。尽管20 a间全省的耦合协调度指数持续提升,但仍有21%的县市处于轻度失调模式。规模化程度较低是造成耦合度失调的主要因素,需要做到因地制宜,促进区域协调发展。该研究结果可为湖北省调整农业产业结构的优化途径、保障粮食安全、探寻未来耕地集约化和规模化发展新模式提供理论支撑和决策服务。  相似文献   

3.
整个长江流域,是上游和支流水能资源丰沛,而下游和干流地区的电力奇缺。地处长江上游的四川境内,水能资源虽得天独厚,但供电不足。解决这个尖锐矛盾:第一、必须把东部经济发展和西部能源开发紧密结合,同步进行,做到互相依存、互相支持、互相促进;第二、必须按系统工程的原理办事,先上游,后下游,先支流,后干流,切不可与此相反;第三、必须首先开发长江上游和支流的水能资源,使我国西部广大“老少边穷”地区脱贫致富,成为全国的战略后方;第四、必须抓紧建设长江上游和支流的蓄水工程,促使现有电站挖潜改造,彻底解决全流域和毗邻地区冬季缺电的迫切问题。保证这些决策顺利实现:1、要坚决实行大中小水电并举的方针;2、要坚决搞流域规划,实行梯级开发;3、要在开发长江上游水能资源的同时,尽快把四川省建成长江水源涵养林基地;4、要千方百计搞活经济,广开财路,为四川水电建设筹集资金。  相似文献   

4.
受气候变化和人类活动的双重影响,传统水文序列的一致性假设受到破坏,在考虑非一致性的条件下探究相邻季节间旱涝复合事件的动态变化及主导因子,对区域的粮食安全与旱涝灾害防御意义重大。为探究非一致性条件下旱涝复合事件的动态演变特征及其主导因子,该研究以黄土高原为研究对象,基于广义可加模型拟合单季节标准化降水指数的边缘分布,构建二维Copula模型分析旱涝复合事件(中、重和极端情景下)的发生概率,并利用变量投影重要性准则探究复合事件动态变化的主导因子。结果表明:1)1982-2015年间正常转旱、旱转正常、正常转涝和涝转正常事件分布广泛且发生频次较高(高于22次);2)春-夏内蒙古持续干旱、夏-秋青海持续干旱、秋-冬宁夏持续干旱、冬-春山西持续干旱、夏-秋陕西持续洪涝、夏-秋甘肃持续洪涝事件的发生概率较大;3)春-夏由旱转涝、夏-秋持续洪涝、秋-冬由涝转旱、秋-冬持续干旱和冬-春季持续干旱事件的发生概率显著上升,对该区域社会经济与生态将产生不利影响;4)复合事件发生概率动态变化的主导因素为北极涛动指数和太阳黑子指数。研究成果将为黄土高原地区旱涝复合事件的精准防御提供科技支撑。  相似文献   

5.
To estimate the impact of water percolation on the nutrient status in paddy fields, the seasonal variations of the concentrations of cations, anions, inorganic carbon (IC), and of dissolved organic carbon (DOC) in percolating water that was collected from just below the plow layer (PW-13) and from drainage pipes at the 40 em depth (PW-40), as well as in irrigation water were measured in an irrigated paddy field. Total amounts of Ca, Mg, K, Fe, and Mn leached from PW-13 during the period of rice cultivation were estimated to range from about 390 to 770, 65 to 130, 33 to 66, 340 to 680, and 44 to 87 kg ha-1, respectively. Amounts of losses that were estimated from the differences between the input by irrigation water and the output by percolation water from the plow layer corresponded to 11 to 26, 22 to 47,5.9 to 12, and 13 to 26% of exchangeable Ca and Mg, amorphous Fe, and easily reducible Mn in the plow layer, respectively. The concentrations of Ca, Mg, K, Fe, and Mn in PW13 were higher than those in PW-40. The amounts of these nutrients that were retained in the subsoil between the 13 em and 40 em soil depth corresponded to 83, 86, 61, 99, and 89% of the amounts that percolated from the plow layer, respectively. Total amounts of IC and DOC that percolated from the plow layer ranged from 750 to 1,500 and 85 to 170 kg-C ha-1, which corresponded to 5.0 to 10.0% and 0.6 to 1.1% of the total carbon content in the plow layer, respectively. Eighty eight % of IC in the percolating water from the plow layer was also retained in the subsoil.  相似文献   

6.
中国玉米秸秆草谷比及其资源时空分布特征   总被引:3,自引:2,他引:3  
针对玉米秸秆资源量及时空区域分布不清等问题,该研究分析9个典型省的玉米秸秆草谷比差异性,并基于草谷比实测值,评价近10a中国玉米秸秆资源量的时空变化情况,预测玉米秸秆的资源潜力。研究结果表明,玉米秸秆草谷比实测值为(0.84±0.23),不同地区、不同品种草谷比差异显著,随着年份变化,玉米品种和种植方式在不断变化,草谷比逐年变小,从2009年1.2减小到2018年的0.84,估算2018年全国玉米秸秆理论资源量为2.16×108 t,比2009年仅增加3.9%。玉米秸秆东北和华北地区资源量最高,占50%以上,与2009年相比,东北、华北、西北地区资源量有所增加,华东、华中、西南、华南略有下降;单位面积玉米秸秆可收集资源量4.51 t/ha,比2009年增加23%,东北地区最高,其次华北、华东和西北地区,然后是华中和西南地区,华南地区最低。预测2025年玉米秸秆的理论资源量为(2.53±0.58)×108 t,可收集资源量为(1.86±0.51)×108 t。研究为全国各个地区的秸秆合理规划利用提供基本参考数据。  相似文献   

7.
广西是典型的喀斯特地区,其生态系统非常脆弱。为评估广西植被时空变化特征及其影响因素,该研究基于2000-2018年MODIS数据,利用最大值合成和趋势分析等方法,分析广西植被NDVI时空变化特征;基于相关分析等方法,结合地形因子、气候因子和土地利用数据,探讨了植被NDVI对地形、气候变化和土地利用的响应。结果表明:1)2000-2018年广西植被NDVI呈增加趋势,但空间差异显著,表现为北高南低,边缘高中间低。2)随着高程的增加植被NDVI呈现先增加再减少的趋势;随着坡度的增加植被NDVI呈先增加至稳定再减小的趋势;除无坡向以外,坡向的不同对植被NDVI影响不大。3)广西2000-2018年气温和降水对植被NDVI为正影响,复相关系数达到0.32。在不同土地利用类型上,植被NDVI对气候的响应是不同的。研究结果揭示了广西植被时空变化特征及其对地形、气候和土地利用的响应,能够为广西可持续发展和生态环境建设提供决策支持。  相似文献   

8.
华北地区冬小麦主要气象灾害风险评价   总被引:4,自引:1,他引:3  
为了对华北地区冬小麦生育期内遇到的主要气象灾害(干旱和干热风)的综合风险进行评价,根据气象灾害发生机理及区域环境特征建立危险性、暴露性和脆弱性评价模型,并构建综合风险模型,具体分析各地区综合风险的大小及主导风险因子,该文利用华北地区48个农气站冬小麦发育期资料(1981-2010年)和气象资料(1961-2010年)以及近50 a产量资料,将冬小麦全生育期划分为前期(播种期-起身期)、中期(拔节期-开花期)、后期(灌浆期-成熟期)3个阶段,并充分考虑了底墒形成期(播种当年7-9月)内的降水,分别基于水分亏缺指数和加权干热风日数构建了干旱、干热风等级指数,对华北地区冬小麦干旱、干热风灾害以及综合气象灾害风险进行分析。结果表明:危险性、脆弱性和暴露性的权重分别为0.3272、0.3116和0.3612。华北地区冬小麦农业气象灾害风险值有2个高值中心,一个位于冀鲁豫交汇处,一个位于河北省泊头、黄骅等地,风险值由中心向四周逐渐降低。根据该文构建的综合风险评估模型,将华北冬小麦种植区划分为5个不同风险等级区。评价结果具有较强的针对性,可以为华北各地区农业气象灾害风险管理提供参考。  相似文献   

9.
During the last decade a new pattern of Hg pollution has been discerned, mostly in Scandinavia and North America. Fish from low productive lakes, even in remote areas, have been found to have a high Hg content. This pollution problem cannot be connected to single Hg discharges but is due to more widespread air pollution and long-range transport of pollutants. A large number of waters are affected and the problem is of a regional character. The national limits for Hg in fish are exceeded in a large number of lakes. In Sweden alone, it has been estimated that the total number of lakes exceeding the blacklisting limit of 1 mg Hg kg-1 in 1-kg pike is about 10 000. The content of Hg in fish has markedly increased in a large part of Sweden, exceeding the estimate background level by about a factor of 2 to 6. Only in the northernmost part of the country is the content in fish close to natural values. There is, however, a large variation of Hg content in fish within the same region, which is basically due to natural conditions such as the geological and hydrological properties of the drainage area. Higher concentrations in fish are mostly found in smaller lakes and in waters with a higher content of humic matter. Since only a small percentage of the total flow of Hg through a lake basin is transferred into the biological system, the bioavailability and the accumulation pattern of Hg in the food web is of importance for the Hg concentrations in top predators like pike. Especially, the transfer of Hg to low trophic levels seems to be a very important factor in determining the concentration in the food web. The fluxes of biomass through the fish community appear to be dominated by fluxes in the pelagic food web. The Hg in the lake water is therefore probably more important as a secondary source of Hg in pike than is the sediment via the benthic food chain. Different remedy actions to reduce Hg in fish have been tested. Improvements have been obtained by measures designed to reduce the transport of Hg to the lakes from the catchment area, eg. wetland liming and drainage area liming, to reduce the Hg flow via the pelagic nutrient chains, eg. intensive fishing, and to reduce the biologically available proportion of the total lake dose of Hg, eg. lake liming with different types of lime and additions of selenium. The length of time necessary before the remedy gives result is a central question, due to the long half-time of Hg in pike. In general it has been possible to reduce the Hg content in perch by 20 to 30% two years after treatments like lake liming, wetland liming, drainage area liming and intensive fishing. Selenium treatment is also effective, but before this method can be recommended, dosing problems and questions concerning the effects of selenium on other species must be evaluated. Regardless how essential these kind of remedial measures may be in a short-term perspective, the only satisfactory long-term alternative is to minimize the Hg contamination in air, soil and water. Internationally, the major sources of Hg emissions to the atmosphere are chlor-alkali factories, waste incineration plants, coal and peat combustion units and metal smelter industries. In the combustion processes without flue gas cleaning systems, probably about 20 to 60% of the Hg is emitted in divalent forms. In Sweden, large amounts of Hg were emitted to the atmosphere during the 50s and 60s, mainly from chlor-alkali plants and from metal production. In those years, the discharges from point sources were about 20 to 30 t yr 1. Since the end of the 60s, the emission of Hg has been reduced dramatically due to better emission control legislation, improved technology, and reduction of polluting industrial production. At present, the annual emissions of Hg to air are about 3.5 t from point sources in Sweden. In air, more than 95% of Hg is present as the elemental Hg form, HgO0. The remaining non-elemental (oxidized) form is partly associated to particles with a high wash-out ratio, and therefore more easily deposited to soils and surface waters by precipitation. The total Hg concentration in air is normally in the range 1 to 4 ng m-3. In oceanic regions in the southern hemisphere, the concentration is generally about 1 ng m?3, while the corresponding figure for the northern hemisphere is about 2 ng m-3. In remote continental regions, the concentrations are mainly about 2 to 4 ng m?3. In precipitation, Hg concentrations are generally found in the range 1 to 100 ng L?1. In the Nordic countries, yearly mean values in rural areas are about 20 to 40 ng L?1 in the southern and central parts, and about 10 ng L?1 in the northern part. Accordingly, wet deposition is about 20 (10 to 35) g km?2 yr?1 in southern Scandinavia and 5 (2 to 7) in the northern part. Calculations of Hg deposition based on forest moss mapping techniques give similar values. The general pattern of atmospheric deposition of Hg with decreasing values from the southwest part of the country towards the north, strongly suggests that the deposition over Sweden is dominated by sources in other European countries. This conclusion is supported by analyses of air parcel back trajectories and findings of significant covariations between Hg and other long range transported pollutants in the precipitation. Apart from the long range transport of anthropogenic Hg, the deposition over Sweden may also be affected by an oxidation of elemental Hg in the atmosphere. Atmospheric Hg deposited on podzolic soils, the most common type of forest soil in Sweden, is effectively bound in the humus-rich upper parts of the forest soil. In the Tiveden area in southern Sweden, about 75 to 80% of the yearly deposition is retained in the humus layer, chemically bound to S or Se atoms in the humic structure. The amount of Hg found in the B horizon of the soils is probably only slightly influenced by anthropogenic emissions. In the deeper layers of the soil, hardly any accumulation of Hg takes place. The dominating horizontal flow in the soils takes place in the uppermost soil layers (0 to 20 cm) during periods of high precipitation and high groun water level in the soils. The yearly transport of Hg within the soils has been calculated to be about 5 to 6 g km?2. The specific transport of total Hg from the soil system to running waters and lakes in Sweden is about 1 to 6 g km?2 yr1. The transport of Hg is closely related to the transport of humic matter in the water. The main factors influencing the Hg content and the transport of Hg in run-off waters from soils are therefore the Hg content in soils, the transport of humic matter from the soils and the humus content of the water. Other factors, for example acidification of soils and waters, are of secondary importance. Large peatlands and major lake basins in the catchment area reduce the out-transport of Hg from such areas. About 25 to 75% of the total load of Hg of lakes in southern and central Sweden originates from run-off from the catchment area. In lakes where the total load is high, the transport from run-off is the dominating pathway. The total Hg concentrations in soil solution are usually in the range 1 to 50, in ground water 0.5 to 15 and in run-off and lake water 2 to 12 ng L?1, respectively. The variation is largely due to differences in the humus content of the waters. In deep ground water with a low content of humic substances, the Hg concentration is usually below 1 ng L?1. The present amount and concentrations of Hg in the mor layer of forest soils are affected by the total anthropogenic emissions of Hg to the atmosphere, mainly during this century. Especially in the southern part of Sweden and in the central part along the Bothnian coast, the concentrations in the mor layer are markedly high. In southern areas the anthropogenic part of the total Hg content is about 70 to 90%. Here, the increased content in these soils is mainly caused by long-range transport and emissions from other European countries, while high level areas in the central parts are markedly affected by local historical emissions, mainly from the chlor-alkali industry. When comparing the input/output fluxes to watersheds it is evident that the present atmospheric deposition is much higher than the output via run-off waters, on average about 3 to 10 times higher, with the highest ration in the southern parts of Sweden. Obviously, Hg is accumulating in forest soils in Sweden at the present atmospheric deposition rate and, accordingly, the concentrations in forest soils are still increasing despite the fact that the emissions of Hg have drastically been reduced in Sweden during the last decades. The increased content of Hg in forest soils may have an effect on the organisms and the biological processes in the soils. Hg is by far the most toxic metal to microorganisms. In some regions in Sweden, the content of Hg in soils is already today at a level that has been proposed as a critical concentration. To obtain a general decrease in the Hg content in fish and in forest soils, the atmospheric deposition of Hg has to be reduced. The critical atmospheric load of Hg can be defined as the load where the input to the forest soils is less than the output and, consequently, where the Hg content in the top soil layers and the transport of Hg to the surface waters start to decrease. A reduction by about 80% of the present atmospheric wet deposition has to be obtained to reach the critical load for Scandinavia.  相似文献   

10.
黄河源头区属高寒半干旱气候区 ,地带性植被为高寒草甸。由于自然条件恶劣和超载过牧、沙金开采等 ,致使水土流失日益严重 ,草业在该区水土流失治理中的地位和作用独特 ,具有不可替代性。具体对策是 :草原牧区禁止超载过牧 ;沙化严重的地区进行封育改良 ;陡坡地退耕 ,缓坡地实行草、粮带状间作 ;加强对工矿和城镇建设的管理  相似文献   

11.
在重庆市石柱县坡耕地开展保护性耕作试验,探究其对水土流失的影响。于2015年在重庆市石柱县坡耕地烟田开展试验,采用顺坡起垄的方式,设置4个处理:处理T1(不种植黑麦草)、处理T2(垄间种植黑麦草)、处理T3(垄体种植黑麦草)、处理T4(垄体种植黑麦草+垄间种植黑麦草)。结果表明:垄间种植黑麦草可有效减少小区径流量58.66%~65.79%,小区产沙量62.50%~68.78%,硝态氮流失52.05%~57.22%,铵态氮流失51.03%~59.98%,总磷流失51.47%~65.88%和钾流失66.93%~69.33%。垄体种植黑麦草可有效减少小区径流量54.32%~61.59%,小区产沙量52.95%~62.98%,硝态氮流失63.73%~77.49%,铵态氮流失59.12%~67.81%,总磷流失62.84%~76.22%,钾流失75.17%~77.84%。垄间和垄体均种植黑麦草可有效减少小区径流量92.09%~98.25%,小区产沙量86.43%~95.91%,硝态氮流失87.89%~94.99%,铵态氮流失90.19%~97.06%,总磷流失81.99%~91.94%,钾流失91.52%~93.88%。整体而言,垄间种植黑麦草+垄体种植黑麦草处理对重庆烟区水土保持效果最佳。  相似文献   

12.
黄河流域干旱时空变化特征及其气候要素敏感性分析   总被引:1,自引:0,他引:1  
利用黄河流域102个气象站点1961-2013年气象数据,选用相对湿润度指数作为干旱指标,探讨年尺度和季节尺度干旱的时空分布特征,并尝试利用偏导数方法计算分析相对湿润度指数的气候要素敏感性及其与气候要素间的相关关系。结果表明:黄河流域上游旱情比中游和下游地区偏重,春夏秋冬各季分别处于中旱、轻旱、中旱和特旱状态,全年尺度处于特旱程度,季节和全年尺度的相对湿润度指数均呈现从西北到东南递增的变化趋势,春季、秋季和全年尺度特旱区域主要分布在陕西、山西、宁夏北部以及内蒙古地区,而气象干旱减缓的站点主要分布在黄河流域上游地区,干旱增强的站点主要分布在黄河流域东南部。相对湿润度指数对太阳辐射和相对湿度呈正向敏感,对温度和风速呈负向敏感。上游和中游地区夏季相对湿润度指数最敏感要素分别为太阳辐射和平均温度,全流域春季、秋季、冬季和全年尺度对相对湿度最敏感。全流域春季和夏季与相对湿润度指数相关性最强的要素均为相对湿度,上游和下游地区秋季的主控要素为太阳辐射,上游、中游和下游地区冬季则分别与温度、风速和风速相关性最强。全年尺度上,上游、中游和下游地区相对湿润度指数变化的主控要素则为太阳辐射、相对湿度和相对湿度。  相似文献   

13.
The objective of this paper is to review the developments in the last few years in two important issues related to Fe deficiency in plants. First, the current knowledge on the possible ways to carry out the diagnosis and prognosis of Fe deficiency in plants is discussed. This includes discussion on the best ways to carry out a meaningful analysis of Fe-containing compounds in different plant parts. We will also discuss other measurement techniques that can permit to assess the Fe nutritional status in plants, including leaf chlorophyll concentrations and others. Second, the new developments in management techniques to control and remediate iron deficiency are discussed. This includes possible improved ways to supply Fe compounds available to plants, both to the soil and to the irrigation water. We also discuss possible ways to supply directly the plant with Fe containing compounds, either to the foliage or to the stem. A particular emphasis is given throughout the paper to fruit tree crops growing in Mediterranean areas.  相似文献   

14.
A greenhouse experiment was conducted to investigate the effect of exchangeable Na on the growth and absorption of metal elements in barley, rye, and maize. The plants were cultivated in soils whose exchangeable sodium percentages (ESP) were 6.6 (saline soil: Saline), 17.4 (saline-sodic soil: Sodic 1), and 39.6 (sodic soil: Sodic 2), which were prepared from Tottori sand dune soil (Control). The dry weight (DW) and concentrations of metal elements Ca, Mg, Mn, Zn, and Cu) in shoots were analyzed. The shoot DW was smaller with higher ESP, but in barley the difference between all the treatments was no longer observed with time. In Sodic soils, the growth of barley was vigorous, whereas rye growth was poor, and maize plants died by 5 weeks after planting. The Na concentration in shoots of all the species was higher with higher ESP. The K concentration in shoots was low at the early growth stage, but in barley it was higher in the Saline and both Sodic soils than in the Control at the subsequent stages. The concentrations of Ca and Mg in shoots of barley and maize in the Saline and both Sodic soils were higher than those in the Control, but in rye the concentrations were lowest in Sodic 2. The concentrations of Mn, Zn, and Cu in barley shoots in the Saline and bothSodic soils tended to be higher than those in the Control, whereas in rye they were lower than in the Control in both Sodic soils. Barley showed a higher ability to absorb low available microelements than rye and maize. These results indicate that barley is tolerant to sodicity as well as salinity, maize is tolerant to salinity, but is very sensitive to sodicity, and rye is moderately sensitive to both stresses. We suggest that the tolerance of grain crops to ESP involves a tolerance to a high Na concentration in shoots, the ability to keep suitable concentrations of essential cations in the presence of a high concentration of Na in shoots and the ability to absorb low available microelements.  相似文献   

15.
Analysis by GC/MS/MS showed that a worldwide collection of 58 wheat accessions differed significantly in the production of seven phenolic acids in the roots of 17-day-old wheat seedlings. The allelochemical contents among wheat accessions ranged from 24.5 to 94.5, 19.9 to 91.7, 3.7 to 15.4, 2.2 to 38.6, 1.0 to 42.2, 19.3 to 183.6, and 11.7 to 187.6 mg/kg of root dry weight for p-hydroxybenzoic, vanillic, cis-p-coumaric, syringic, cis-ferulic, trans-p-coumaric, and trans-ferulic acids, respectively. trans-Ferulic acid was identified as the most predominant phenolic acid in the roots. Phenolic acids, with the exception of syringic acid, were more concentrated in roots than in shoots. Significant correlation was found between the roots and the shoots in the contents of vanillic, cis-p-coumaric, syringic, trans-p-coumaric, and trans-ferulic acids, and in the content of each structural group of phenolic acids. Wheat accessions with high levels of total identified phenolic acids in the roots were generally strongly allelopathic to the growth of annual ryegrass.  相似文献   

16.
A comprehensive understanding of species phenological responses to global warming will require observations that are both long-term and spatially extensive. Here we present an analysis of the spring phenological response to climate variation of twelve taxa: six plants, three birds, a frog, and two insects. Phenology was monitored using standardized protocols at 176 meteorological stations in Japan and South Korea from 1953 to 2005, and in some cases even longer. We developed a hierarchical Bayesian model to examine the complex interactions of temperature, site effects, and latitude on phenology. Results show species-specific variation in the magnitude and even in the direction of their responses to increasing temperature, which also differ from site-to-site. At most sites the differences in phenology among species are forecast to become greater with warmer temperatures. Our results challenge the assertion that trends in one geographic region can be extrapolated to others, and emphasize the idiosyncratic nature of the species response to global warming. Field studies are needed to determine how these patterns of variation in species response to climate change affect species interactions and the ability to persist in a changing climate.  相似文献   

17.
中国土壤镉污染面积广、程度深,但针对于我国北方碱性农田土壤镉污染治理的理论研究及技术研发却较为薄弱。基于VOSviewer软件,分析了近20年来国内外关于碱性土壤镉防控领域的研究方向、主推技术与国际研究格局。在此基础上,系统梳理了碱性土壤中镉的转化过程及影响因素,结合原位化学钝化技术、植物修复和农艺调控措施,进一步总结了碱性土壤镉治理的科学与技术问题。我国碱性农田镉污染治理面临关注度不高、技术研发滞后以及转化困难、土壤-作物(小麦)镉吸收机制不清晰等诸多问题。因此,亟需提高碱性农田土壤镉污染防治的重视程度,研发、试点具有针对性的技术推广模式,构建土壤-作物(小麦)镉精准防控体系,以推动碱性土壤镉污染修复技术与理论的发展及粮食的安全生产。  相似文献   

18.
Farmers in dry areas of the Mediterranean region are reluctant to apply nitrogen (N) fertilizer to rainfed wheat because of frequent drought. So, it is desirable to select varieties with high nitrogen use efficiency (NUE). The objectives of this study, conducted in 2009/10 and 2010/11 in Syria, were to study the response of genotypes of durum wheat to low and high N applications and to evaluate the contribution of N uptake efficiency and utilization efficiency to NUE under rainfed and supplemental irrigation conditions. Under the rainfed regime, grain yield decreased significantly in year 1 and year 2 when applying N fertilizer at a high rate. The early maturing genotypes gave the highest average yields under rainfed and irrigated regimes. High N fertilizer rate decreased significantly NUE from 36.1 to 24.3 in year 1 and 37.0 to 5.8 in year 2. Under irrigation, NUE fell from 84.6 to 67.1 in year 1 and from 117.7 to 33.3 in year 2. The contribution of N uptake efficiency and utilization efficiency to NUE varied from one year to another. In year 1, the contribution of N utilization efficiency was more important at all nitrogen levels; while the opposite was observed in year 2 when more N was applied. The fractions of the genotype sum of squares, respectively, for N uptake efficiency and utilization efficiency were in average 0.15 and 0.78 in year 1 and 0.75 and 0.25 in year 2. From this study we conclude that high N levels in the soil exacerbate the effect of water stress on productivity and NUE of wheat. Early maturing new genotypes tend to be better adapted and to use nitrogen more efficiently under limited water conditions. N utilization efficiency contributes more to NUE under high N availability than N uptake efficiency and vice-versa.  相似文献   

19.
Low and unstable fruit yield, poor quality of fruits, and excessive fruit dropping are major problems in a lime crop and are due to either micronutrient deficiencies or nutrient imbalance. A study was conducted to assess the micronutrient status in a lime orchard at the Central Soil and Water Conservation Research and Training Institute (CSWCRTI)’s research farm in Kota, Rajasthan, India. Plant and soil samples were collected during September and October in 2006–2007. The micronutrients extracted with diethylenetriaminepentaacetic acid (DTPA) in soils were in the order of manganese (Mn) > iron (Fe) > zinc (Zn) > copper (Cu). The mean values of DTPA Mn, Fe, Zn, and Cu in surface soils varied from 13.98 to 22.70, 2.48 to 8.66, 0.79 to 1.19, and 0.14 to 0.46 mg kg?1, respectively, whereas in subsurface soils they varied from 12.94 to 23.06, 4.84 to 6.52, 0.51 to 0.83, and 0.07 to 0.20 mg kg?1, respectively. Results reveal that except for Fe, the other DTPA-extractable micronutrients decreased with depth. Total Mn, Fe, Zn, and Cu in plant leaves varied from 22 to 83, 70 to 630, 40 to 932, and 37 to 3057 mg kg?1, respectively, indicating greater or toxic concentrations of total micronutrient in leaf samples. Total Mn, Fe, Zn, and Cu in petiole samples varied from 7 to 60, 235 to 574, 70 to 827, and 101 to 2623 mg kg?1, respectively. High concentration of Cu and Zn in leaves resulted in Fe and Mn deficiencies (exhibited as leaf chlorosis) in lime plants. Results of the study indicated that Fe and Mn deficiencies are major disorders in lime plantation. Similarly, the measure of DTPA-extractable micronutrients showed the low statuses of Fe and Cu and marginal status of Zn in soils along the Chambal region.  相似文献   

20.
基于气候适宜度模型,利用Anusplin软件对中国北方谷子一作区314个气象站点谷子生长季气候资源和气候适宜度进行1km×1km的精细化插值,分1960-1989年、1990-2019年两个气候年代对其空间分布和年代变化特征进行分析。结果表明:(1)北方谷子生长季气候资源呈现出日照时数由东到西、由南到北递增,累积降水量由北向南、由西向东递增,平均气温南高北低的空间分布;随着气候变暖,研究区谷子生长季平均气温呈上升趋势,日照时数和累积降水量均呈下降趋势。(2)北方谷子生长季气候适宜度呈现出温度适宜度由东向西、由南向北递减,降水适宜度由西北向东南递增,日照适宜度由西北向东南递减的态势;由于气候变暖,温度适宜度和降水适宜度高值区增多,日照适宜度高值区减少。(3)根据综合气候适宜度的计算结果,利用自然断点法将其划分为最适宜、适宜、次适宜和不适宜4个等级。1960-1989年(前30a)北方约21.5%的地区为谷子种植气候最适宜区,随着气候变暖,1990-2019年(后30a)约有10.5%的地区从适宜区转变为最适宜区,主要分布在山东、山西一带,未来可以考虑在该区域根据实际情况扩大种植规模。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号