共查询到20条相似文献,搜索用时 0 毫秒
1.
F. P. Vinther 《Grass and Forage Science》2006,61(2):154-163
Nitrogen (N), accumulating in stubble, stolons and roots, is an important component in N balances in perennial ryegrass–white clover swards, and the effects of cutting frequency on the biomass of above‐ and below‐harvest height were studied during two consecutive years. Total dry matter (DM) and total N production, and N2 fixation, were measured at two cutting frequencies imposed in the summers of two years either by cutting infrequently at monthly intervals to simulate mowing or by frequent cutting at weekly intervals to simulate grazing. Total DM production harvested was in the range of 3000–7000 kg DM ha?1 with lower DM production associated with the frequent cutting treatment, and it was significantly affected by the different weather conditions in the two years. The higher cutting frequency also reduced the biomass below harvest height but the different weather conditions between years had less effect on stubble and, in particular, biomass of roots. The biomass of roots of white clover was significantly lower than that of roots of perennial ryegrass and remained at a relatively constant level (200–500 kg DM ha?1) throughout the experiment, whereas the biomass of perennial ryegrass roots increased from 2400 kg DM ha?1 in the year of establishment to 10 200 kg DM ha?1 in the infrequent cutting treatment and 6650 kg DM ha?1 in the frequent cutting treatment by the end of the experiment, giving shoot:root ratios of 4·7–16·6 and 0·5–1·6 for white clover and perennial ryegrass respectively. Annual N2 fixation was in the range of 28–214 kg N ha?1, and the proportion of N fixed in stolons and roots was on average 0·28. However, as weather conditions affect the harvested DM production and the shoot:root ratio, care must be taken when estimating total N2 fixation based on an assumed or fixed shoot:root ratio. 相似文献
2.
Effect of cultivar and seed rate of perennial ryegrass and strategic fertilizer nitrogen on the productivity of grass/white clover swards 总被引:1,自引:0,他引:1
Four cultivars of perennial ryegrass (intermediate diploid cv. Talbot and tetraploid cv. Barlatra, and late diploid cv. Parcour and tetraploid cv. Petra) were each sown at 10,20 and 30 kg ha-1, all with 3 kg ha-1 of white clover cv. Donna. Herbage productivity was measured over 3 harvest years, 1982–84. under two annual rates of fertilizer N (0 and 150 kg ha-1); the 150 kg ha-1 rate was split equally between March and August applications. Fertilizer N increased total herbage DM production; the 3-year means for the 0 and 150 kg ha-1 N rates were 8·04 and 8·91 t ha-1, respectively. In successive years, total herbage responses to N (kg DM (kg N applied)-1) were 6·6, 35 and 72 (overall mean, 58). Mean white clover DM production over the 3 years was reduced from 4·48 t ha-1 at nil N to 2·82 t ha-1 at the 150 kg ha-1 rate, a fall of 37%. Grass seed rate did not influence total herbage production or white clover performance. The two intermediate perennial ryegrass cultivars had a marginal advantage in total herbage production over the two late cultivars, but white clover content and production were higher with tetraploids than diploids. It is concluded that the value of increased herbage production from strategic use of fertilizer N has to be weighed against its depressive effect on white clover performance; application of 75 kg ha ha-1 N in both spring and autumn was excessively high if maintenance of a good white clover content in the sward is an objective. There is considerable flexibility in the grass: clover seed ratio in seeds mixtures. Modern highly-productive perennial ryegrass varieties do not differ substantially in compatibility with white clover but tetraploids permit better clover performance than diploids. 相似文献
3.
Simulation of nitrogen uptake, fixation and leaching in a grass/white clover mixture 总被引:4,自引:0,他引:4
To represent nitrogen cycling in a low input grass/legume pasture system, a previously developed, weather-driven grass/white clover growth model has been adapted to become the crop growth component of the soil nitrogen dynamics model SOILN. This provides a means of simulating nitrogen uptake by a grass/white clover crop, an important component of the overall nitrogen balance in low-input grassland systems.
Crop growth is represented by a photosynthesis equation adapted to take account of competition between the two crops for resources of light, water and nitrogen in the soil. Water shortage is represented by linked simulations with the soil water and heat model SOIL, and nitrogen shortage by links with the SOILN model. Nitrogen fixation has been introduced according to an equation for potential fixation reduced by environmental factors, particularly temperature. Transfer of nitrogen-rich clover plant material to the soil nitrogen pools of SOILN (from where it becomes available as a nutrient for grass) is also represented. The model is tested by comparing simulated cut crop yields and nitrogen content of cut material with measured data from perennial ryegrass/white clover at a test site. Soil nitrogen processes in the model are tested by comparing simulated and measured nitrate in drainflows. Apart from some discrepancies between simulated and measured results attributable to the inherent instability of a mixed crop system, agreement is reasonable by the standards of biological system models, indicating that the combined model gives a realistic representation of carbon and nitrogen processes in grassland with a grass, legume mixed crop. 相似文献
Crop growth is represented by a photosynthesis equation adapted to take account of competition between the two crops for resources of light, water and nitrogen in the soil. Water shortage is represented by linked simulations with the soil water and heat model SOIL, and nitrogen shortage by links with the SOILN model. Nitrogen fixation has been introduced according to an equation for potential fixation reduced by environmental factors, particularly temperature. Transfer of nitrogen-rich clover plant material to the soil nitrogen pools of SOILN (from where it becomes available as a nutrient for grass) is also represented. The model is tested by comparing simulated cut crop yields and nitrogen content of cut material with measured data from perennial ryegrass/white clover at a test site. Soil nitrogen processes in the model are tested by comparing simulated and measured nitrate in drainflows. Apart from some discrepancies between simulated and measured results attributable to the inherent instability of a mixed crop system, agreement is reasonable by the standards of biological system models, indicating that the combined model gives a realistic representation of carbon and nitrogen processes in grassland with a grass, legume mixed crop. 相似文献
4.
Four varieties of white clover (small-leaved cv. Aberystwyth S184. medium-leaved cv. Grasslands Huia and large-leaved cvs Linda and Olwen) were sown at 3 kg ha-1 together with 10 kg ha-1 perennial ryegrass cv. Talbot. Herbage productivity was measured for three harvest years, 1979-81, over four annual rates of fertilizer N (0,120,240 and 360 kg ha-1 ) and two closeness of cutting treatments (80 and 40 mm from ground level). A simulated grazing regime of six cuts per year at 3- to 6-week intervals was used.
Production of total herbage DM was increased by increasing N rate; mean annual DM production ranged from 783 1 ha-1 with no N to 11701 ha-1 at 360 kg ha-1 N. Mean herbage response to N (kg DM per kg N applied) was 73,90 and 108 for the three successive N increments relative to no N. Mean white clover DM production was reduced from 4 14t ha-1 with no N to 051 t ha-1 at 360 kg ha-1 N.
The large-leaved clover varieties were more productive than the small- or medium-leaved varieties at all N rates. Close cutting increased total herbage and white clover by a mean annual 16% and 31%. respectively. White clover varieties did not interact with either N rate or closeness of cutting.
It is concluded that repetitive N application over the growing season is incompatible with white clover persistence and production, even with large-leaved clover varieties or with close cutting, two factors which improved clover performance in the experimental swards. 相似文献
Production of total herbage DM was increased by increasing N rate; mean annual DM production ranged from 783 1 ha
The large-leaved clover varieties were more productive than the small- or medium-leaved varieties at all N rates. Close cutting increased total herbage and white clover by a mean annual 16% and 31%. respectively. White clover varieties did not interact with either N rate or closeness of cutting.
It is concluded that repetitive N application over the growing season is incompatible with white clover persistence and production, even with large-leaved clover varieties or with close cutting, two factors which improved clover performance in the experimental swards. 相似文献
5.
The acetylene reduction assay was used to follow seasonal changes in nitrogen fixation activity in a white clover-perennial ryegrass ley in Northern Ireland. The annual estimate for fixation by the ley was 268 kg ha?1 (239 lb/acre) nitrogen virtually all of which was fixed during March to October. Nitrogen fixation was curtailed drastically after the ley was cut but recovered as new foliage expanded on the clover. Glasshouse experiments described the effects of temperature, shading and defoliation on nitrogen fixation by white clover, and indicated that these factors might be important in modifying symbiosis under field conditions. 相似文献
6.
Interactions between seedlings of perennial ryegrass and white clover cultivars in establishing swards 总被引:1,自引:0,他引:1
Interactions between perennial ryegrass (grass) and white clover (clover) cultivars were investigated at the seedling stage in two experiments: (a) a field experiment in which two clovers, AberHerald and Grasslands Huia, were grown in binary mixture with two grasses, Preference and Ba 10761; (b) a glasshouse experiment in which the same clover/grass combinations were grown in low-N soil either with (+ N) or without (-N) added N. In the field experiment both clovers produced larger and more complex seedlings with Preference, and this was particularly evident in Huia. In the glasshouse experiment grass dry-matter yield was greater in the +N treatment, and this effect increased with time. Clover seedling density and development were suppressed in the +N treatment, and the development of AberHerald was affected more than Huia. Morphological measurements of the clovers showed interactions between clover, grass and N level. In the -N treatment Huia plants were larger and more complex than those of AberHerald, but in +N conditions there was little difference between them. Grass cultivar had an effect on clover via N-level interactions: in +N plants there was no grass effect, but -N plants were significantly larger with Preference. Comparison of the root and shoot morphology of the two grasses revealed no obvious differences that would account for these effects. 相似文献
7.
The response of perennial ryegrass/white clover mini-swards to elevated atmospheric CO2 concentrations: effects on yield and fodder quality 总被引:1,自引:0,他引:1
In order to assess the effects of future elevated atmospheric CO2 concentrations on yield, mineral content and the nutritive value of mixed swards of perennial ryegrass (Lolium perenne L.) and white clover (Trifolium repens L.), both species were grown as monocultures and as different mixtures and were exposed season-long to ambient (380 p.p.m.) and elevated (670 p.p.m.) CO2 concentrations in open-top chambers. Mini-swards were cut four times at about monthly intervals at a height of 5 cm, dry-matter yields were determined and content of macroelements (N, P, K, S, Mg, Ca, Na) and crude fibre, crude protein and ash content were measured. The CO2-related increase in seasonal yield amounted to 16–38% for white clover monocultures, 12–29% for mixed swards and 5–9% for ryegrass monocultures. The white clover content of all swards was significantly enhanced by elevated CO2. The K and Na content of total yield was decreased by high CO2 but did not fall below the minimum requirements for ruminants. As the Ca content of total yield was increased by elevated CO2 and the P content was not changed, the Ca/P ratio of total yield was increased and exceeded values required for animal nutrition. The crude protein content of total yield was reduced by high CO2 at the beginning of the growing season only and was increased by elevated CO2 in the course of the experiment, whereas crude fibre content was decreased throughout the season, sometimes falling below the minimum requirement for ruminants. Removal of N, P, S, Mg and Ca by cutting was significantly enhanced because of CO2 enrichment. The results show that, besides the positive effect of rising atmospheric CO2 on dry-matter yield of white clover/ryegrass swards, impacts on the nutritive value should be expected. Possible changes in species composition and implications for grassland management are briefly discussed. 相似文献
8.
An examination was made of the effects of different spring treatments on the growth of white clover in a ryegrass/white clover sward. Plots were either cut once (in February, March or April) or twice (in February and April) or left uncut. Nitrogen was applied to half of the plots in each instance. The clover was sampled at intervals of approximately 3 weeks from February to June to determine numbers of leaves and growing points and weights of plant parts. Rates of leaf appearance were also observed and estimates were made of total herbage mass from ground-level cuts.
Percentages of white clover in the herbage were higher in unfertilized than in fertilized plots and in defoliated than in undefoliated plots. The percentage increases that followed defoliation were usually maintained into later regrowth, showing that clover content was not automatically reduced as herbage mass increased. Increases in growing points were recorded after the beginning of April in defoliated unfertilized plots but not in undefoliated fertilized plots or in plots fertilized and defoliated twice during the spring period, in which numbers fell substantially.
Inverse relationships were found between rates of leaf appearance, or the number of green leaves retained per stolon, and herbage mass, whereas heights of clover and grass leaves and the percentage of dry matter allocated to petiole rather than leaf in the clover increased with increasing herbage mass.
We suggest that the observed differences between spring treatments in clover percentage result primarily from their differential effects on the formation and death of tillers and growing points in the early stages of regrowth. 相似文献
Percentages of white clover in the herbage were higher in unfertilized than in fertilized plots and in defoliated than in undefoliated plots. The percentage increases that followed defoliation were usually maintained into later regrowth, showing that clover content was not automatically reduced as herbage mass increased. Increases in growing points were recorded after the beginning of April in defoliated unfertilized plots but not in undefoliated fertilized plots or in plots fertilized and defoliated twice during the spring period, in which numbers fell substantially.
Inverse relationships were found between rates of leaf appearance, or the number of green leaves retained per stolon, and herbage mass, whereas heights of clover and grass leaves and the percentage of dry matter allocated to petiole rather than leaf in the clover increased with increasing herbage mass.
We suggest that the observed differences between spring treatments in clover percentage result primarily from their differential effects on the formation and death of tillers and growing points in the early stages of regrowth. 相似文献
9.
An experiment was carried out over 2 years to examine the interactions between two planes of winter nutrition and summer gracing at 5.5 and 7.5 cm compressed sward height on the performance of Limousin X Friesian steers grazing grass/white clover swards. Diets were offered in winter to give liveweight gains of either 0.5 (low) or 0.8 (high) kg d?1. The experiment was repealed over 2 years. Liveweights gains (low 0.50 vs. high 0.84 kg d?1 s.e.d. ±0.044) were achieved in winter 1 and (low 0.55 vs. high 0.91 kg d?1, s.e.d. ±0.041) in winter 2. These differences resulted in animals from the high treatment being 44 and 60 kg head?1 heavier at turn-out than the low-treatment animals in years I and 2, respectively. There was evidence of compensatory growth with animals from the low treatment subsequently tending to grow faster than those from the high treatment, with liveweight gains during the period from turn-out to 84 d of 1.27 vs. 1.18 s.e.d. ±0.65 kg d?1; P= 0–213 and 1.11 vs. 0.95 s.e.d. ±0.062 kg d?1; P=0.015 in summers I and 2 respectively. In general, animals grazing the short sward tended to grow more slowly than those on the tail swards (1.18 vs. 1.27 s.e.d. ±0.065 kg d?1; P= 0.166 and 0.93 vs. 113 s.e.d. ±0.062 kg d?1, P = 0.002) for years 1 and 2 respectively. Growth rates in year 1 were significantly higher than those in year 2. However, increased summer growth rates did not compensate for the differences in live weight established during the winter, and more animals reached slaughter weight in a shorter time from the high than the low treatment. Mean stocking rate on treatments 5.5 and 7.5 over the 2 years were 5.2 and 4.3 animals ha?1: differences were significant in year 2 (P <0.01). The 5.5 cm sward treatment also gave a greater liveweight gain ha?1 than the 7.5-cm sward treatment in both years with a mean for the two years of 670 vs. 572 kg ha?1 but differences were not significant. 相似文献
10.
Grass and clover production and nitrogen cycling were compared in 1983 and 1984 at three sites: an upland peaty gley and upland and lowland brown earths. The clover varieties Olwen and S184 were compared in 1983 and S100 and S184 in 1984. Ammonium and nitrate sources of 15 N were used to measure nitrogen recovery from fertilizer and soil, nitrogen fixation and nitrogen transfer from clover to grass. Acetylene reduction was measured once, in 1983, but isotope dilution was used in both years.
Olwen clover produced more dry matter and took up more15 N than S184. Olwen fixed more nitrogen than S184 over the whole season, as measured by 15 N isotope dilution. Companion grass took up more soil nitrogen when growing with S184 than with Olwen. The clover variety S100, tested at the lowland site in 1984, caused no significant variations in dry matter accumulation or N fixation.
In the dry 1984 season, grass dry matter accumulation and15 N uptake were less than in 1983, and plants actually lost total nitrogen from their roots to the soil. Fixation rate varied more in 1984 than in 1983. Nitrogen transfer from clover to grass was detected by isotope ratio differences in 1983, and by total N differences in 1984.
Site differences were dominated by the greater dry matter accumulation of Olwen in the lowland in 1983, but in that year there was also increased dry matter accumulation and increased15 N fertilizer uptake, but less nitrogen fixed on the mineral upland site than on the peat soil.
Whether15 N was given as ammonium or nitrate made little difference in these experiments. 相似文献
Olwen clover produced more dry matter and took up more
In the dry 1984 season, grass dry matter accumulation and
Site differences were dominated by the greater dry matter accumulation of Olwen in the lowland in 1983, but in that year there was also increased dry matter accumulation and increased
Whether
11.
This study investigated the effects of defoliation intensity on the above- and below-ground plant mass, rates of CO2 exchange and leaf appearance rate of ryegrass miniature swards maintained at constant cutting height ranging from 20 mm to 160 mm for 5 months. Total plant mass, above-ground herbage mass and root mass increased as cutting height increased from 20 to 120 mm. Further increase in cutting height did not increase total plant mass or its components. Leaf appearance rate and photosynthesis per unit of leaf dry matter (DM) decreased as defoliation height increased from 20 to 160 mm. Gross and net CO2 uptake per unit soil surface area increased with cutting height to 120 mm. Further increase in cutting height to 160 mm decreased gross and net CO2 uptake and herbage harvested. A multivariate canonical discriminant analysis indicated different responses of root and shoot mass to cutting height and a reduction in CO2 uptake rate at the 160 mm cutting height. The implications of those responses to defoliation management of forage plants are discussed. 相似文献
12.
Turnover rates of grass laminae and clover leaf tissue were estimated over a range of intervals within three periods each year in the second to fourth years (1983-85) of a trial involving swards continuously grazed by steers and receiving either 60 kg N ha-1 in spring (60N) or 360 kg N ha?1 throughout the year (360N). Within the 60N swards initial stocking rates at turnout were low (60N LS) at 7-2 steers ha?1 and high (60N HS) at 90 steers ha?1 in 1983, and in 1984 and 1985 corresponding rates were 10-8 and 13-5 ha?1. The 360N swards were initially stocked at turnout at 96 (360N LS) and 120 (360N HS) steers ha?1. Stocking rates were reduced by 33% in midsummer except for 60N in 1984 and 1985 when they were reduced by 50%. Meaned over 3 years, 360N HS had lower herbage mass than 60N LS. Tiller density in 360N was almost 50% higher than in 60N and clover growing point density was only one quarter that of 60N with the 60N LS having lower clover densities than 60N HS in 1985. Generally, leaf extension rate per tiller was higher in 360N than 60N and, when significant, 60N LS had higher senescence rates per tiller than 360N HS. Rate of increase in new clover lamina tissue per stolon was not affected by treatments, whereas in 1983 LS had higher senescence rates of clover laminae than HS. Petiole growth per stolon was higher in LS than HS in 1983 and 1984, the mean over these years for 360N HS being 77% that of 60N LS. Petiole senescence per stolon was lower in 360N HS than 60N LS only in 1983. When comparing 60N HS and 360N LS (representing similar levels of grazing intensity, having similar herbage mass) the gross growth of leaf material in the former was 75% of the latter, in contrast to 57% for net growth. Clover contributed 18% to the estimated growth of leaves compared to a mean of 7% in herbage mass. Taking inflorescence and pseudostem into account in 1984 and 1985,60N HS had 7% clover in standing herbage and 14% in net growth. Therefore, the contribution of clover to growth is considerably higher than its presence in herbage mass would suggest in continuously grazed swards. It is concluded that low-N swards, owing to their lower tiller density and slower grass leaf extension rate, will be less efficiently grazed than swards at higher N levels at a given herbage mass, but the presence of clover will partly offset that disadvantage. 相似文献
13.
G. R. EDWARDS† A. J. PARSONS‡ J. A. NEWMAN‡§ I. A. WRIGHT¶ 《Grass and Forage Science》1996,51(3):219-231
The spatial patterns of white clover and sward surface height (SSH) that developed In established perennial ryegrass (Lolium perenne)/white clover (Trifolium repens) pastures undercutting lent every 4 weeks to 5 cm) and gracing (continuously grazed with sheep to 5 cm) were measured. While clover cover was recorded in 1000 contiguous 5 × 5-cm quadrats down 50-m permanent transects from early spring to late autumn. Measurements of SSH were made at 10-cm intervals down the same transect. Spatial pattern was analysed using two-term local quadrat variance and patch-gap analysis. At least two scales of spatial pattern existed for white clover when defoliation treatments began. White clover was not distributed at random but found in patches (mean size = 1.1 m) where it was finely intermixed with grass. Patches, separated by gaps (regions of no clover) (mean size = 2.3 m), were in turn aggregated into ‘patches of patches’, separated by larger gaps (mean size = 4.1 m). Under grazing the pattern of patches and gaps did not alter. Under cutting, patch size increased and gap size decreased, explaining in part the greater mass and cover of white clover that arose in cut than grazed swards during the experiment. No new patches of white clover due to seedling establishment or clonal growth were observed in either cut or grazed swards. The intensity of pattern increased in both cut and grazed swards, but the increase was greater m cut swards. The initial single scale of spatial pattern of SSH of tall patches (mean size = 1.2 m) separated by short patches (mean size = 2.7 m) did not change under grazing. SSH became uniform under cutting. It is suggested that the response of plants to selective (spatially heterogeneous) grazing is a crucial factor in the development and maintenance of spatial pattern in grasslands. The importance of spatial pattern to our understanding and interpretation of plant-plant and plant-animal interactions and to the composition of temperate grasslands is considered. 相似文献
14.
The effect of blending small- and medium-leaved white clovers together in a mixture of varieties was examined under continuous sheep stocking over a period of three years. Four varieties were used, S184 and Gwenda, small-leaved varieties suitable for intensive sheep grazing, together with medium leaved varieties Menna and Donna, which are mainly used in general purpose seed mixtures for medium term leys. The small-leaved varieties were blended with Menna or Donna, sown with a commercial grass mixture and managed as near as possible to farm practice. Although the leaf size of Gwenda is only slightly greater than that of S184, blends based on these two small-leaved varieties behaved differently. In spring of the first harvest year the yield of Gwenda and of the clover in mixtures containing Gwenda was 27% greater than the yield of the same mixtures which contained S184. As the season progressed this difference decreased. In terms of total annual yields and saving in fertilizer N, the benefits of including white clover in a seed mixture were more pronounced when Menna was mixed with S184 and Gwenda, rather than when Donna was used, although both varieties are in the medium-leaf category. It was concluded that the slower establishment and the lower clover yield of S184, when compared with larger leaved varieties, can be overcome by blending with a variety that is slightly larger in leaf size, such as Menna, although the choice of variety may depend on sward management and its persistency under grazing. 相似文献
15.
Mechanical and chemical treatments to accelerate the drying of cut lucerne were evaluated under laboratory conditions. Plant material was treated with a 016 M solution of potassium carbonate (K2 CO3 ) and/or lightly pressed between a pair of smooth rollers (roll-conditioning).
Drying times to 33% moisture content (MC), expressed on a dry weight basis (dwb), were reduced by 49% by roll-conditioning, 76% by K2 CO3 ) treatment and 77% by the combined K2 CO3 + roll-conditioning treatment. The main benefit from combining the two forms of treatment was an improved uniformity of drying; when whole shoots were at 61% MC (dwb) the difference between leaf and stem moisture contents was reduced by 28% (roll-conditioning), 38% (K2 CO3 ) and 54% (K2 CO3 + roll-conditioning) relative to the untreated control. 相似文献
Drying times to 33% moisture content (MC), expressed on a dry weight basis (dwb), were reduced by 49% by roll-conditioning, 76% by K
16.
A perennial ryegrass/white clover sward, which had been grazed for over 2 years, was cut at 1-, 2-, 3- or 6-week intervals from 18 April to 28 November 1986. Two rates of fertilizer N application in spring, 0 and 66 kg N ha−1 , were compared. Perennial ryegrass growth was studied in three 6-week periods, beginning on 18 April, 18 July and 17 October. Clover growth was studied in the same three periods and described by Fisher and Wilman (1995) Grass and Forage Science , 50 , 162–171.
Applied N increased the number of ryegrass tillers m−2 , the rate of leaf extension and the weight of new leaf produced tiller−1 and m−2 per week. Increasing the interval between cuts reduced the number of ryegrass tillers m−2 and increased the rate of leaf extension, weight tiller−1 and the weight of new leaf produced tiller−1 week−1 . Increasing the interval between cuts increased the weight of new ryegrass leaf produced m−2 where N had recently been applied, but otherwise had little effect on the weight of new leaf produced m−2 . Applying N favoured the grass in competition with the clover in every respect, whereas increasing the interval between cuts only favoured the grass, compared with clover, where N had recently been applied; where N had not been applied, the ratio of ryegrass tillers to clover growing points in the sward was very little affected by the interval between cuts. 相似文献
Applied N increased the number of ryegrass tillers m
17.
Li Fengrui 《Grass and Forage Science》1999,54(2):137-143
The severity of damage by certain invertebrate species to white clover (Trifolium repens) leaves on the main stolons of plants grown in mixed perennial ryegrass/white clover swards was examined in a field experiment in the Netherlands in which two cutting frequencies (high and low) and three white clover cultivars (Retor, Alice and Gwenda) were used. The damage to the leaves was described in terms of the numbers of damaged leaves and the extent of that damage (slight <20%, moderate 20–50% and heavy >50%). The relationships between leaf damage and sward characteristics (white clover content, above-ground biomass and sward height) were evaluated throughout the growing season. Over the whole experimental period, 23·7% and 27·4% of the total number of leaves produced per stolon were damaged by slugs and weevils in the low- and high-frequency cutting treatments respectively. High-frequency cutting increased the number of leaves in the total leaf damage and moderate leaf damage categories by 21·4% and 34·8%, respectively, compared with the low-frequency cutting. The cv. Retor (medium-leaved) experienced the most severe damage by invertebrates. It had much higher leaf damage than cvs Alice (large-leaved) and Gwenda (small-leaved) at either cutting frequency, both in the total number of damaged leaves and in the different damage categories. Differences among cultivars in the number of damaged leaves and relative leaf damage occurred primarily in spring, late summer and autumn, but did not differ during the early- and mid-summer months. This study indicates that variations in leaf damage among clover cultivars were associated with differences in measured sward characteristics. Both the number of damaged leaves and the relative leaf damage were strongly negatively correlated with white clover content and biomass in spring, late summer and autumn under each cutting treatment. White clover content and biomass explained 65%, 59% and 50% of the variation in the number of damaged leaves in spring, late summer and autumn, respectively, and 58%, 57% and 45% of the variation in relative leaf damage in these three periods. Thus, sward characteristics may play a role in regulating the severity of invertebrate damage to clover leaves in addition to the primary effects of HCN. 相似文献
18.
The use of n-alkanes to estimate herbage intake and diet composition by dairy cows offered a perennial ryegrass/white clover mixture 总被引:4,自引:0,他引:4
The n-alkane technique for estimating herbage intake and diet selection in dairy cows fed perennial ryegrass (Lolium perenne)/white clover (Trifolium repens) herbages was evaluated. Pairs of animals were offered either 8, 10, 12 or 14 kg dry matter (DM) d?1 of herbage alone or with 2 kg DM d?1 of barley. Fresh herbage was cut daily from a perennial ryegrass/white clover sward and the appropriate amount was fed in four feeds during the day. Individual intakes and the white clover proportion of the diet were estimated during a 12-d period using the n-alkane technique. Animals were dosed twice daily with paper pellets containing dotriacontane (C32-alkane). Faecal grab samples were collected after the morning and afternoon milking. Three least-squares optimization methods were compared in calculating the white clover proportion in the diet; then, total DM intake was calculated. The different least-squares optimization methods gave similar predictions of the white clover content of the forage consumed. No significant (P < 0.05) effects of sampling routine, concentrate (barley) fed or interactions between the two were detected with respect to the difference between calculated and actual intake, the difference as a proportion of the total intake and estimated white clover content of the diet. The difference between the calculated and actual intake ranged from 139 to 366 g DM d ?1, which resulted in a proportional difference ranging from 0.004 to 0.02 depending on sampling routine. The actual white clover content of the herbage mixture fed was 0.42 ± 0.008, whereas the estimated white clover content ranged from 0.41 ± 0.006 to 0.43 ± 0.008. The results suggest that accurate herbage intake estimates can be achieved in dairy cows grazing perennial ryegrass/white clover swards if representative samples from herbage consumed can be collected. 相似文献
19.
J. E. VIPOND G. SWIFT T. H. McCLELLAND J. FITZSIMONS J. A. MILNE† E. A. HUNTER‡ 《Grass and Forage Science》1993,48(3):290-300
Performance of continuously stocked Mule ewes nursing Suffolk-cross twin lambs over three grazing seasons, between April and August, was compared on swards of N-fertilized diploid perennial ryegrass (D), tetraploid perennial ryegrass (T) and tetraploid perennial ryegrass with white clover (TC), the latter receiving no fertilizer N. Sward height was maintained by variable stocking rate close to a target of 4–6 cm (constant treatment) from turnout and compared in July and August with a rising sward height treatment (target 6–8 cm). Lambs on TC swards had significantly higher (P <0·001) liveweight gains compared with lambs on T swards by 41 gd-1 in April–June and by 68gd-1 in July-August. Live weight and body condition score of ewes in August were significantly higher (P<0·001) on TC compared with T swards, by 11·3 kg and 0·75 respectively. Rising sward heights in July–August increased live-weight gain of lambs compared with constant sward heights by 102, 39 and 54gd-1 in consecutive years, associated with sward height increases of 0·9, 0·5 and 0·6cm respectively. Rising sward height increased ewe live weight and body condition score by 5·1 kg and 0·3 respectively, compared with results from constant sward heights. Effects of sward height and sward type were additive. T swards had a significantly (P<0·01) 16% greater overall lamb output than the D swards due mainly to a 10% higher achieved stocking rate. Stocking rates of ewes on TC vs T swards were 40, 13 and 12% lower in April-August in successive years. The higher liveweight gain of lambs on the TC swards resulted in lamb outputs of 76, 105 and 101% of the T swards in successive years, showing that grass/clover swards containing over 20% clover could produce similar lamb output ha-1 to grass swards given 150–180 kg N ha-1. 相似文献
20.
Ninety-six plots (3 × 2 m) of well-established perennial rye grass/white clover pasture were mown to heights of 2·7 (Low) or 3·96 (High) cm (rising plate meter) at 14-, 28-, 84- or 112-d intervals in autumn-winter. A 7-, 14- and 28-d mowing interval was superimposed in spring on each autumn–winter mowing interval treatment with the low and high mowing heights altered to 2·92 and 4·80 cm, respectively.
With the low cutting height, accumulated herbage DM was more than doubled (1806 ± 79 kg DM ha-1 ) compared to a 'high' (754 ± 49 kg DM ha-1 ) cutting height in autumn–winter and this was due to increased harvesting efficiency rather than growth as estimated by leaf extension. Although defoliation interval had no effect on DM yield, the grass component increased and clover decreased. The composition effect carried over into spring. On average, 3·5 tillers were produced over winter for each ryegrass tiller present in autumn and tiller densities were higher in spring. Tillers produced over autumn–winter contributed more than 60% of ryegrass growth by early spring.
In early spring (16–30 September), the low cutting height increased herbage DM yield, in mid-spring (1–14 October) it reduced DM yields particularly in combination with short defoliation intervals, while in late spring (14 October to 11 November) cutting height had no effect on DM yields.
Over the entire spring period there was a very marked effect of defoliation interval on DM yields. 相似文献
With the low cutting height, accumulated herbage DM was more than doubled (1806 ± 79 kg DM ha
In early spring (16–30 September), the low cutting height increased herbage DM yield, in mid-spring (1–14 October) it reduced DM yields particularly in combination with short defoliation intervals, while in late spring (14 October to 11 November) cutting height had no effect on DM yields.
Over the entire spring period there was a very marked effect of defoliation interval on DM yields. 相似文献