首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Two experiments were conducted to evaluate the effects of NutriDense low-phytate corn in conjunction with increasing added dietary fat on growing and finishing pig performance. Diets in both experiments were corn-soybean meal-based, with yellow dent or NutriDense low-phytate corn and 0, 3, or 6% added choice white grease arranged in a 2 x 3 factorial design. There were 25 to 28 pigs per pen and 7 pens (replications) per treatment in both experiments. In Exp. 1, a total of 1,162 gilts with an initial BW of 44.6 kg were used in a 28-d growth study. A constant true ileal digestible (TID) Lys:ME ratio of 2.80 g/Mcal and available P:ME ratio of 0.90 g/Mcal were maintained in all treatment diets. Overall (d 0 to 28), there were no corn source x added fat interactions (P >/= 0.79). Regardless of corn source, ADG and G:F increased (linear, P = 0.03) with increasing added fat. There were no differences (P >/= 0.34) in pig growth performance between those fed NutriDense low-phytate or yellow dent corn. In Exp. 2, a total of 1,128 gilts with an initial BW of 81.6 kg were used in a 28-d growth study. A constant TID Lys:ME ratio of 2.15 g/Mcal of ME and available P:ME ratio of 0.75 g/Mcal were maintained in all treatment diets. Overall (d 0 to 28), there was a tendency (P = 0.07) for a corn source x added fat interaction for G:F, which can be explained by the improved G:F in pigs fed yellow dent corn only when 6% fat was added to the diet, whereas G:F was improved at both 3 and 6% added fat in pigs fed NutriDense low-phytate corn. There were no differences (P >/= 0.18) in growth performance between pigs fed NutriDense low-phytate or yellow dent corn. These results indicate that increasing added fat improved growth performance regardless of the corn source. In addition, growth performance was similar for pigs fed NutriDense low-phytate or yellow dent corn.  相似文献   

2.
Three experiments were conducted to evaluate spray-dried blood cells (SDBC) and crystalline isoleucine in nursery pigs. In Exp. 1, 120 pigs were used to evaluate 0, 2, 4, and 6% SDBC (as-fed basis) in a sorghum-based diet. There were six replicates of each treatment and five pigs per pen, with treatments imposed at an initial BW of 9.3 kg and continued for 16 d. Increasing SDBC from 0 to 4% had no effect on ADG, ADFI, and G:F. Pigs fed the 6% SDBC diet had decreased ADG (P < 0.01) and G:F (P = 0.06) compared with pigs fed diets containing 0, 2, or 4% SDBC. In Exp. 2, 936 pigs were used to test diets containing 2.5 or 5% SDBC (as-fed basis) vs. two control diets. There were six replicates of each treatment at industry (20 pigs per pen) and university (six pigs per pen) locations. Treatments were imposed at an initial BW of 5.9 and 8.1 kg at the industry and the university locations, respectively, and continued for 16 d. Little effect on pig performance was noted by supplementing 2.5% SDBC, with or without crystalline Ile, in nursery diets. Pigs fed the 5% SDBC diet without crystalline Ile had decreased ADG (P < 0.01), ADFI (P < or = 0.10), and G:F (P < 0.05) compared with pigs fed the control diets. Supplementation of Ile restored ADG, ADFI, and G:F to levels that were not different from that of pigs fed the control diets. In Exp. 3, 1,050 pigs were used to test diets containing 5, 7.5, or 9% SDBC (as-fed basis) vs. a control diet. There were six replicates of each treatment at the industry (20 pigs per pen) location and five replicates at the university (six pigs per pen) locations. Treatments were imposed at an initial BW of 6.3 and 7.0 kg at the industry and university locations, respectively, and continued for 16 d. Supplementation of 5% SDBC without crystalline Ile decreased ADG and G:F (P < 0.01) compared with pigs fed the control diet, but addition of Ile increased ADG (P < 0.01) to a level not different from that of pigs fed the control diet. The decreased ADG, ADFI, and G:F noted in pigs fed the 7.5% SDBC diet was improved by addition of Ile (P < 0.01), such that ADG and ADFI did not differ from those of pigs fed the control diet. Pigs fed diets containing 9.5% SDBC exhibited decreased ADG, ADFI, and G:F (P < 0.01), all of which were improved by Ile addition (P < 0.01); however, ADG (P < 0.05) and G:F (P = 0.09) remained lower than for pigs fed the control diet. These data indicate that SDBC can be supplemented at relatively high levels to nursery diets, provided that Ile requirements are met.  相似文献   

3.
Four experiments were conducted to investigate the feeding value of South Dakota-grown field peas (Pisum sativum L.) for growing pigs. In Exp. 1, 96 pigs (initial BW = 22 +/- 3.35 kg) were allotted to four treatment groups (four pigs per pen, six replicate pens per treatment) and fed growing (0.95% Lys) and finishing (0.68% Lys) diets containing 0, 12, 24, or 36% field peas (as-fed basis). There were no differences among the treatment groups in ADG, ADFI, or G:F. Likewise, there were no differences in backfat thickness or lean meat percent among treatment groups, but pigs fed diets containing 12, 24, or 36% field peas had greater (P < 0.05) loin depths than pigs fed the control diet. In Exp. 2, 120 pigs (initial BW = 7.8 +/- 1.04 kg) were allotted to four treatment groups 2 wk after weaning. Pigs were then fed diets containing 0, 6, 12, or 18% field peas (as-fed basis) during the following 4 wk. There were five pigs per pen and six replicate pens per treatment. Results of the experiment showed no differences in ADG, ADFI, or G:F among treatment groups. In Exp. 3, apparent (AID) and standardized (SID) ileal digestibility coefficients of CP and AA in field peas and soybean meal were measured using six individually penned growing pigs (initial BW = 36.5 +/- 2.1 kg) arranged in a repeated 3 x 3 Latin square design. The AID for Met, Trp, Cys, and Ser, and the SID for Met, Trp, and Cys were lower (P < 0.05) in field peas than in soybean meal; but for CP and all other AA, no differences in AID or SID were observed between the two feed ingredients. Experiment 4 was an energy balance experiment conducted to measure the DE and ME concentrations in field peas and corn. Six growing pigs (initial BW = 85.5 +/- 6.5 kg) were placed in metabolism cages and fed diets based on field peas or corn and arranged in a two-period switch-back design. The DE values for field peas and corn (3,864 and 3,879 kcal/kg DM, respectively) were similar, but the ME of corn was higher (P < 0.05) than the ME of field peas (3,825 vs. 3,741 kcal ME/kg DM). The results from the current experiments demonstrate that the nutrients in South Dakota-grown field peas are highly digestible by growing pigs. Therefore, such field peas may be included in diets for nursery pigs and growing-finishing pigs in amounts of at least 18 and 36%, respectively, without negatively affecting pig performance.  相似文献   

4.
We conducted two experiments to evaluate the effects of dietary energy density and lysine:calorie ratio on the growth performance and carcass characteristics of growing and finishing pigs. In Exp. 1, 80 crossbred barrows (initially 44.5 kg) were fed a control diet or diets containing 1.5, 3.0, 4.5, or 6.0% choice white grease (CWG). All diets contained 3.2 and 2.47 g of lysine/Mcal ME during growing (44.5 to 73 kg) and finishing (73 to 104 kg), respectively. Increasing energy density did not affect overall ADG; however, ADFI decreased and feed efficiency (Gain:feed ratio; G:F) increased (linear, P < .01). Increasing energy density decreased and then increased (quadratic, P < .06) skinned fat depth and lean percentage. In Exp. 2, 120 crossbred gilts (initially 29.2 kg) were used to determine the effects of increasing levels of CWG and lysine:calorie ratio fed during the growing phase on growth performance and subsequent finishing growth. Pigs were fed increasing energy density (3.31, 3.44, or 3.57 Mcal ME/kg) and lysine:calorie ratio (2.75, 3.10, 3.45, or 3.80 g lysine/Mcal ME). No energy density x lysine:calorie ratio interactions were observed (P > .10). Increasing energy density increased ADG and G:F and decreased ADFI of pigs from 29.5 to 72.6 kg (linear, P < .05). Increasing lysine:calorie ratio increased ADG and ADFI (linear, P < .01 and .07, respectively) but had no effect on G:F. From 72.6 to 90.7 kg, all pigs were fed the same diet containing .90% lysine and 2.72 g lysine/Mcal ME. Pigs previously fed with increasing lysine:calorie ratio had decreased (linear, P < .02) ADG and G:F. Also, pigs previously fed increasing CWG had decreased (linear, P < .03) ADG and ADFI. From 90.7 to 107 kg when all pigs were fed a diet containing .70% lysine and 2.1 g lysine/Mcal ME, growth performance was not affected by previous dietary treatment. Carcass characteristics were not affected by CWG or lysine:calorie ratio fed from 29.5 to 72.6 kg. Increasing the dietary energy density and lysine:calorie ratio improved ADG and G:F of growing pigs; however, pigs fed a low-energy diet or a low lysine:calorie ratio from 29 to 72 kg had compensatory growth from 72 to 90 kg.  相似文献   

5.
Five experiments were conducted to determine the effects of different wheat gluten (WG) sources (Source 1 = enzymatically hydrolyzed, Source 2 = nonmodified ring-dried, Source 3 = spray-dried, and Source 4 = flash-dried) on growth performance of nursery pigs compared with soybean meal (SBM), spray-dried animal plasma (SDAP), or other specialty protein sources. In Exp. 1, pigs (n = 220, initially 6.1 +/- 2.5 kg) were fed a control diet containing (as-fed basis) 6% SDAP or WG Source 1 or 2. The WG and l-lysine*HCl replaced 50 or 100% of the SDAP. From d 0 to 21, increasing WG (either source) decreased ADG and ADFI (linear, P < 0.01), but improved (linear, P < 0.02) G:F. In Exp. 2, pigs (n = 252, initially 6.2 +/- 3.0 kg) were fed a negative control diet containing no SDAP or WG, diets containing (as-fed basis) 9% WG Source 1 or 5% SDAP, or combinations of WG and SDAP where WG and l-lysine*HCl replaced 25, 50, or 75% of SDAP. From d 0 to 14, pigs fed increasing WG had decreased ADG (linear, P < 0.05). In Exp. 3, pigs (n = 240, initially 7.0 +/- 2.5 kg) were fed a negative control diet, a diet containing (as-fed basis) either 3, 6, 9, or 12% WG Source 3, or a positive control diet containing 5% SDAP. The diets containing 9% WG and 5% SDAP had the same amount of SBM. From d 0 to 7, pigs fed 5% SDAP had greater (P < 0.04) ADG than pigs fed the diet containing 9% WG. From d 0 to 14, increasing WG had no effect on ADG, ADFI, or G:F. In Exp. 4, pigs (n = 200, initially 6.0 +/- 2.4 kg) were fed a negative control diet, the control diet with (as-fed basis) 4.5 or 9.0% WG Source 1, or the control diet with 2.5 or 5.0% SDAP. Diets containing WG and SDAP had similar SBM levels. From d 0 to 7 and 0 to 14, increasing SDAP tended to improve (linear, P < 0.06) ADG, but increasing WG had no effect. In Exp. 5, 170 barrows and gilts (initially 7.5 +/- 2.8 kg) were used to determine the effects of WG Source 1 and 4 compared with select Menhaden fish meal or spray-dried blood cells and a negative control diet (SBM) on the growth performance of nursery pigs from d 5 to 26 postweaning (d 0 to 21 of experiment). No differences were found in ADG or G:F, but pigs fed the diet containing (as-fed basis) 2.5% spray-dried blood cells had greater ADFI than pigs fed the negative control from d 0 to 21. Wheat gluten source had no effect on ADG, ADFI, or G:F. The results of these studies suggest that increasing WG in diets fed immediately after weaning did not improve growth performance relative to SBM or SDAP.  相似文献   

6.
Two experiments were conducted to compare the nutritional adequacy of a genetically improved high-lysine, high-oil corn (HLHOC; .408% lysine, 6.21% fat, as-fed basis) and a high-oil corn (HOC; .289% lysine, 5.97% fat, as-fed basis) for young growing pigs. Experiment 1 used four non-littermate barrows (initially 20.0 kg BW) fitted with ileal T-cannulas in a crossover-designed digestion study. The .75% total lysine diets contained 8.5% casein and an equal amount of lysine (.25%) from the test corn. Apparent ileal digestibilities of amino acids, GE, DM, and CP were similar (P > .10) between diets. Apparent ileal lysine digestibilities were 65 and 71% for the HOC and HLHOC, respectively, assuming the lysine in casein to be 100% digestible. Experiment 2 used 100 barrows reared in a segregated early-weaning environment (initially 8.3 kg BW and 27 d of age) to evaluate five corn-soybean meal-based diets in a 2 x 2 factorial arrangement with main effects being corn type and dietary lysine (.80 or 1.15% digestible lysine). The fifth diet consisted of the .80% digestible lysine HOC diet supplemented with .23% additional L-lysine x HCl (.975% digestible lysine) to verify that lysine was the limiting amino acid in the low-lysine diets. Increasing digestible lysine from .80 to 1.15% increased (P < .001) ADG and gain/feed (G/F) regardless of corn variety. Combined ADG and G/F were .347 kg and .641 and .443 kg and .790 for the .80 and 1.15% digestible lysine diets, respectively. Within lysine level, corn type did not affect ADG, ADFI, or G/F (P > .10). The results of these studies indicate that the lysine in HLHOC is as available as the lysine in HOC and that HLHOC can be used successfully in swine diets.  相似文献   

7.
Two experiments were conducted using corn from clean or aflatoxin B1 (AFB1)-contaminated (182 ppb) sources. Weanling pigs (28 d) were fed one of eight dietary treatments arranged in a 2 x 2 x 2 factorial design. In Exp. 1 (192 pigs), treatments varied in corn source (clean or AFB1-contaminated), CP level (18 or 20%) and added fat (0 or 5%). At the end of the 28-d growth trials, plasma samples were obtained. An AFB1 x CP level interaction was detected (P less than .05) for growth rate (ADG), feed intake (FI) and feed/gain ratio (F/G). Feeding AFB1 reduced (P less than .05) ADG (.30 vs .37 kg/d) and FI (.57 vs .66 kg/d) and increased F/G (1.88 vs 1.78) of pigs fed 18% CP diets. Performance of pigs fed 20% CP diets was not altered by AFB1. Adding 5% fat to diets improved (P less than .05) F/G but did not improve ADG of pigs fed AFB1. There was an AFB1 x CP x fat interaction (P less than .05) for plasma cholesterol. Adding fat or increasing the CP level prevented the depression of plasma cholesterol in pigs fed AFB1. In Exp. 2 (96 pigs), all diets contained 18% CP and the treatments varied in corn source (clean or AFB1-contaminated), added L-lysine HCl (0 or .25%) and added DL-methionine (0 or .15%). Feeding AFB1 reduced (P less than .05) ADG of pigs fed the 18% CP diet (.44 vs .50 kg/d) but not of pigs fed diets supplemented with .25% lysine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
We conducted two experiments to evaluate the effects of added choice white grease on performance and carcass merit of barrows and gilts reared under commercial conditions. Pigs were housed either 20 (Exp. 1) or 25 (Exp. 2) per pen and were provided 0.67 m2 of pen space per pig. Diets were based on corn and soybean meal and fed in a meal form. The proportion of soybean meal was increased in diets with added fat to maintain the same calorie:lysine ratio in all diets within a weight phase. In Exp. 1, 480 pigs were fed diets with 0, 2, 4, or 6% fat. Total lysine contents of the control diets were 1.21, 0.88, and 0.66% during the weight phases 36 to 59, 59 to 93, and 93 to 120 kg, respectively. Gain:feed was increased linearly (P < 0.01) due to fat addition in all weight intervals and over the total experiment. The effect of added fat on ADG was not consistent among the weight phases; a linear (P < 0.01) improvement was found from 36 to 59 kg, but no effect was found during the heavier weight phases. Over the total experiment, however, ADG was improved (P < 0.01) linearly. Carcass traits were not affected by treatment. Experiment 2 used 900 pigs to evaluate possible carryover effects on performance and carcass merit from feeding 6% fat. The experiment was divided into four phases: 25 to 45, 45 to 70, 70 to 90, and 90 to 115 kg; lysine contents of the control diets fed in each phase were 1.23, 1.05, 0.81, and 0.63%, respectively. The six treatments consisted of no added fat throughout the experiment or 6% added fat fed from 25 to 45 kg, 25 to 70 kg, 25 to 90 kg, 25 to 115 kg, or 45 to 70 and 90 to 115 kg. Carryover effects for ADG and G:F (P < 0.07) were found for the 90- to 115-kg interval and for ADFI and ME intake (P < 0.05) for the 45- to 70- and 70-to 90-kg intervals. When fat was added in the previous weight interval, ADG and G:F were improved and ADFI and ME intake were decreased in the subsequent weight interval. Pigs fed fat from 25 to 115 kg had more (P < 0.05) backfat and lower (P < 0.05) carcass leanness than pigs on the other treatments. These data suggest that fat can be added or removed from diets of growing-finishing pigs without any detrimental carryover effects. In fact, the positive carryover effect on ADG and G:F from 95 to 115 kg suggests that feeding fat from 25 to 95 kg will maximize performance over the total growing-finishing period but minimize any detrimental effects of added fat on carcass leanness.  相似文献   

9.
Two experiments were conducted to determine the effects of rancidity and FFA in choice white grease (CWG) on growth performance and nutrient digestibility in nursery pigs. In Exp. 1,150 crossbred pigs (average initial BW of 6.8 kg and average initial age of 21 d) were used. Treatments (as-fed basis) were a corn-soybean meal-based control with no added fat, 6% CWG, and 6% CWG heated at 80 degrees C, with oxygen gas bubbled through it at 849 mL/min for 5, 7, 9, or 11 d. Peroxide value for the CWG increased as oxidative exposure was increased from 0 to 7 d (i.e., peroxide values of 1, 40, and 105 mEq/kg for d 0, 5, and 7, respectively), but decreased to 1 mEq/kg as the hydroperoxides decomposed after 9 and 11 d of oxidation. Pigs fed the control diet (no added fat) had the same (P = 0.91) overall ADG (d 0 to 35) but lower G:F (P < 0.04) than pigs fed diets with added fat. As for the effects of fat quality, ADG (linear effect, P < 0.01) and ADFI (linear effect, P < 0.001) decreased as the fat was made more rancid. However, there were no changes in digestibility of fatty acids as the rancidity of the fat was increased (P = 0.16), suggesting that the negative effects of rancidity were from decreased food intake and not decreased nutrient utilization. In Exp. 2, 125 crossbred pigs (average initial BW of 6.2 kg and average initial age of 21 d) were used to determine the effects of FFA in CWG on the growth performance and nutrient digestibility in nursery pigs. Treatments (as-fed basis) were a corn-soybean meal-based control with no added fat, 6% CWG, and 6% CWG that had been treated with 872, 1,752 or 2,248 lipase units/g of fat. The FFA concentrations in the CWG were increased from 2% with no lipase added to 18, 35, and 53% as lipase additions were increased. Pigs fed the control diet (no added fat) had the same (P = 0.30) overall ADG (d 0 to 33) but lower G:F (P < 0.01) than pigs fed diets with added fat. There were no effects of FFA concentration on ADG (P = 0.18), and ADFI increased (linear effect, P < 0.04) as FFA concentration in the CWG increased. Fatty acid digestibility was not affected (P = 0.17) by FFA in the diet. In conclusion, our data suggest that as fat is oxidized (especially to peroxide values greater than 40 mEq/kg), ADG and ADFI in nursery pigs will decrease; however, FFA concentrations of at least 53% do not adversely affect utilization of CWG in nursery pigs.  相似文献   

10.
Two experiments were conducted to evaluate the effect of lysolecithin on performance and nutrient digestibility of nursery pigs and to determine the effects of fat encapsulation by spray drying in diets fed in either meal or pelleted form. In Exp. 1, 108 pigs (21 d of age; 5.96 +/- 0.16 kg BW) were allotted to one of four dietary treatments (as-fed basis): 1) control with no added lard, 2) control with 5% added lard, 3) treatment 2 with 0.02% lysolecithin, and 4) treatment 2 with 0.1% lysolecithin in a 35-d experiment. Added lard decreased ADG (P = 0.02) and ADFI (P < 0.06) during d 15 to 35 and overall. Lysolecithin improved ADG linearly (P = 0.04) during d 15 to 35 and overall, but did not affect ADFI or G:F. Addition of lard decreased the digestibility of DM (P = 0.10) and CP (P = 0.05) and increased (P = 0.001) fat digestibility when measured on d 10. Lysolecithin at 0.02%, but not 0.10%, tended to improve the digestibility of fat (P = 0.10). On d 28, digestibilities of DM, fat, CP, P, (P = 0.001), and GE (P = 0.03) were increased with the addition of lard, and lysolecithin supplementation linearly decreased digestibilities of DM (P = 0.003), GE (P = 0.007), CP, and P (P = 0.001). In Exp. 2, 144 pigs (21 d of age, 6.04 +/- 0.16 kg BW) were allotted to one of six treatments in a 3 x 2 factorial randomized complete block design. Factors included 1) level (as-fed basis) and source of fat (control diet with 1% lard; control diet with 5% additional lard; and control diet with 5% additional lard from encapsulated, spray-dried fat) and 2) diet form (pelleted or meal). Addition of lard decreased feed intake during d 0 to 14 (P = 0.04), d 15 to 35 (P = 0.01), and overall (P = 0.008), and improved G:F for d 15 to 35 (P = 0.04) and overall (P = 0.07). Encapsulated, spray-dried lard increased ADG (P = 0.004) and G:F (P = 0.003) during d 15 to 28 compared with the equivalent amount of fat as unprocessed lard. Pelleting increased ADG (P = 0.006) during d 0 to 14, decreased feed intake during d 15 to 35 (P = 0.01), and overall (P = 0.07), and increased G:F during all periods (P < 0.02). Fat digestibility was increased (P = 0.001) with supplementation of lard, and this effect was greater when diets were fed in meal form (interaction, P = 0.004). Pelleting increased the digestibility of DM, OM, and fat (P < 0.002). Results indicate that growth performance may be improved by lysolecithin supplementation to diets with added lard and by encapsulation of lard through spray drying.  相似文献   

11.
Three experiments were conducted to evaluate pet food by-product (PFB) as a component of nursery starter diets and its effects on pig performance. The PFB used in these studies was a pelleted dog food that contained (as-fed basis) 21% CP, 1.25% total lysine, and 8.3% ether extract. In Exp. 1, 288 early-weaned pigs (5.2 kg at 14 d) were used to determine the effects of replacing animal protein and energy sources with PFB at 0, 10, 30, and 50% (as-fed basis) inclusion levels in phase I (d 0 to 7 after weaning) and phase II (d 7 to 21 after weaning) diets. Phase I diets contained 27.5% whey, 18.75% soybean meal, 1.50% lysine, 0.90% Ca, and 0.80% P, with PFB substituted for corn, fat, plasma protein, fish meal, limestone, and dicalcium phosphate. Phase II diets had a constant 10% whey, 1.35% lysine, and PFB was substituted for blood cells, a portion of the soybean meal, and other ingredients as in phase I diets. In phase I, growth performance by pigs fed PFB-containing diets was similar to that of the control diet. In phase II, ADG (linear; P < 0.05 and quadratic, P < 0.005), ADFI (linear and quadratic, P < 0.01), and G:F (quadratic, P < 0.01) were increased with increasing PFB inclusion. In Exp. 2, 80 weaned pigs (6.7 kg at 21 d) were fed a common phase I diet for 1 wk and used to further evaluate the effect of PFB in phase II diets (same as Exp 1; initial BW = 8.1 kg) on growth performance and apparent total tract nutrient digestibility. There were no differences in ADG, ADFI, or G:F across treatments. Dry matter and energy digestibility did not differ among diets; however, digestibilities of CP (P < 0.05) and the essential AA, arginine (P < 0.02), histidine (P < 0.01), lysine (P < 0.001), threonine (P < 0.01), and valine (P < 0.01), were greater as PFB was increased in the diet. In Exp. 3, the performance by pigs (n = 1 70; 5.5 kg; 21 d of age) fed diets with 0 or 30% PFB in both phases I and II was examined. Growth performance was similar in both diets. These studies demonstrate that pet food by-product can effectively be used as a partial replacement for animal protein sources and grain energy sources in the diets of young nursery pigs.  相似文献   

12.
In each of two experiments, 924 pigs (4.99 kg BW; 16 to 18 d of age) were assigned to 1 of 42 pens based on BW and gender. Pens were allotted randomly to dietary copper (Cu) treatments that consisted of control (10 ppm Cu as cupric sulfate, CuSO4 x 5H2O) and supplemental dietary Cu concentrations of 15, 31, 62, or 125 ppm as cupric citrate (CuCit), or 62 (Exp. 2 only), 125 (Exp. 1 only), or 250 ppm as CuSO4. Live animal performance was determined at the end of the 45-d nursery phase in each experiment. On d 40 of Exp. 2, blood and fecal samples were collected from two randomly selected pigs per pen for evaluation of plasma and fecal Cu concentrations and fecal odor characteristics. In Exp. 1, ADG, ADFI, and G:F were increased (P < 0.05), relative to controls, when pigs were fed diets containing 250 ppm Cu as CuSO4. Pigs fed diets containing 125 ppm Cu as CuCit had increased (P < 0.05) ADG compared with pigs fed diets supplemented with 15 or 62 ppm Cu as CuCit. The ADG, ADFI, and G:F did not differ among pigs fed diets containing 125 and 250 ppm Cu as CuSO4 or 125 ppm Cu as CuCit. In Exp. 2, pigs fed diets containing 250 ppm Cu as CuSO4 had improved (P < 0.05) ADG, ADFI, and G:F compared with controls. In addition, ADG, ADFI, and G:F were similar when pigs were fed diets containing either 250 ppm Cu as CuSO4 or 125 ppm Cu as CuCit. Pigs fed diets containing 62 ppm Cu as CuSO4 or CuCit had similar ADG, ADFI, and G:F. Plasma Cu concentrations were not affected by dietary Cu source or concentration, but fecal Cu concentrations were increased (P < 0.05) as the dietary concentration of Cu increased. Pigs consuming diets supplemented with 125 ppm Cu as CuCit had fecal Cu concentrations that were lower (P < 0.05) than pigs consuming diets supplemented with 250 ppm Cu as CuSO4. Fecal Cu did not differ in pigs receiving diets supplemented with 62 ppm Cu as CuSO4 or CuCit. Odor characteristics of feces were not affected by Cu supplementation or source. These data indicate that 125 and 250 ppm Cu gave similar responses in growth, and that CuCit and CuSO4 were equally effective at stimulating growth and improving G:F in weanling pigs. Fecal Cu excretion was decreased when 125 ppm Cu as CuCit was fed compared with 250 ppm Cu as CuSO4. Therefore, 125 ppm of dietary Cu, regardless of source, may provide an effective environmental alternative to 250 ppm Cu as CuSO4 in weanling pigs.  相似文献   

13.
Three experiments were conducted to evaluate the effects of feeding dietary concentrations of organic Zn as a Zn-polysaccharide (Quali Tech Inc., Chaska, MN) or as a Zn-proteinate (Alltech Inc., Nicholasville, KY) on growth performance, plasma concentrations, and excretion in nursery pigs compared with pigs fed 2,000 ppm inorganic Zn as ZnO. Experiments 1 and 2 were growth experiments, and Exp. 3 was a balance experiment, and they used 306, 98, and 20 crossbred pigs, respectively. Initially, pigs averaged 17 d of age and 5.2 kg BW in Exp. 1 and 2, and 31 d of age and 11.2 kg BW in Exp. 3. The basal diets for Exp. 1, 2, and 3 contained 165 ppm supplemental Zn as ZnSO4 (as-fed basis), which was supplied from the premix. In Exp. 1, the Phase 1 (d 1 to 14) basal diet was supplemented with 0, 125, 250, 375, or 500 ppm Zn as Zn-polysaccharide (as-fed basis) or 2,000 ppm Zn as ZnO (as-fed basis). All pigs were then fed the same Phase 2 (d 15 to 28) and Phase 3 (d 29 to 42) diets. In Exp. 2, both the Phase 1 and 2 basal diets were supplemented with 0, 50, 100, 200, 400, or 800 ppm Zn as Zn-proteinate (as-fed basis) or 2,000 ppm Zn as ZnO (as-fed basis). For the 28-d Exp. 3, the Phase 2 basal diet was supplemented with 0, 200, or 400 ppm Zn as Zn-proteinate, or 2,000 ppm Zn as ZnO (as-fed basis). All diets were fed in meal form. In Exp. 1, 2, and 3, pigs were bled on d 14, 28, or 27, respectively, to determine plasma Zn and Cu concentrations. For all three experiments, there were no overall treatment differences in ADG, ADFI, or G:F (P = 0.15, 0.22, and 0.45, respectively). However, during wk 1 of Exp. 1, pigs fed 2,000 ppm Zn as ZnO had greater (P < or = 0.05) ADG and G:F than pigs fed the basal diet. In all experiments, pigs fed a diet containing 2,000 ppm Zn as ZnO had higher plasma Zn concentrations (P < 0.10) than pigs fed the basal diet. In Exp. 1 and 3, pigs fed 2,000 ppm Zn as ZnO had higher fecal Zn concentrations (P < 0.01) than pigs fed the other dietary Zn treatments. In conclusion, organic Zn either as a polysaccharide or a proteinate had no effect on growth performance at lower inclusion rates; however, feeding lower concentrations of organic Zn greatly decreased the amount of Zn excreted.  相似文献   

14.
Two hundred sixteen crossbred barrows and gilts (84.3 kg BW) were used to test the effects of dietary energy density and lysine:energy ratio (Lys:ME) on the performance, carcass characteristics, and pork quality of finishing pigs fed 10 ppm ractopamine. Pigs were blocked by BW and gender, allotted to 36 pens (six pigs per pen), and pens were assigned randomly within blocks to dietary treatments (as-fed basis) arranged in a 2 x 3 factorial design, with two levels of energy (3.30 or 3.48 Mcal/kg) and three Lys:ME (1.7, 2.4, or 3.1 g lysine/Mcal) levels. Pigs were fed experimental diets for 28 d, and weights and feed disappearance were recorded weekly to calculate ADG, ADFI, and G:F. Upon completion of the feeding trial, pigs were slaughtered and carcass data were collected before fabrication. During carcass fabrication, hams were analyzed for lean composition using a ham electrical conductivity (TOBEC) unit, and loins were collected, vacuum-packaged, and boxed for pork quality data collection. Energy density had no (P > 0.22) effect on ADG or ADFI across the entire 28-d feeding trial; however, pigs fed 3.48 Mcal of ME were more (P < 0.02) efficient than pigs fed 3.30 Mcal of ME. In addition, ADG and G:F increased linearly (P < 0.01) as Lys:ME increased from 1.7 to 3.1 g/Mcal. Carcasses of pigs fed 3.48 Mcal of ME were fatter at the last lumbar vertebrae (P < 0.08) and 10th rib (P < 0.04), resulting in a lower (P < 0.03) predicted fat-free lean yield (FFLY). Conversely, 10th-rib fat thickness decreased linearly (P = 0.02), and LM depth (P < 0.01) and area (P < 0.01) increased linearly, with increasing Lys:ME. Moreover, FFLY (P < 0.01) and actual ham lean yield (P < 0.01) increased as Lys:ME increased in the diet. Dietary energy density had no (P > 0.19) effect on pork quality, and Lys:ME did not (P > 0.20) affect muscle pH, drip loss, color, and firmness scores. Marbling scores, as well as LM lipid content, decreased linearly (P < 0.01) as Lys:ME increased from 1.7 to 3.1 g/Mcal. There was a linear (P < 0.01) increase in shear force of cooked LM chops as Lys:ME increased in the finishing diet. Results indicate that 3.30 Mcal of ME/kg (as-fed basis) is sufficient for optimal performance and carcass leanness in pigs fed ractopamine. The Lys:ME for optimal performance and carcass composition seems higher than that currently used in the swine industry; however, feeding very high Lys:ME (> 3.0 g/Mcal, as-fed basis) to ractopamine-fed pigs may result in decreased marbling and cooked pork tenderness.  相似文献   

15.
Two studies were conducted at two locations to evaluate growth performance and carcass characteristics of growing-finishing pigs fed diets containing either glyphosate-tolerant Roundup Ready (event nk603) corn, a nontransgenic genetically similar control corn (RX670), or two conventional sources of nontransgenic corn (RX740 and DK647). A randomized complete block design (three and four blocks in Studies 1 and 2, respectively) with a 2 x 4 factorial arrangement of treatments (two genders and four corn lines) was used. Study 1 used 72 barrows and 72 gilts (housed in single-gender groups of six; six pens per dietary treatment) with initial and final BW of approximately 22 and 116 kg, respectively. Study 2 used 80 barrows and 80 gilts (housed in single-gender groups of five; eight pens per dietary treatment) with initial and final BW of approximately 30 and 120 kg, respectively. Pigs were housed in a modified open-front building in Study 1 and in an environmentally controlled finishing building in Study 2. The test corns were included at a fixed proportion of the diet in both studies. Animals had ad libitum access to feed and water. Pigs were slaughtered using standard procedures and carcass measurements were taken. In Study 1, overall ADG, ADFI (as-fed basis), and gain:feed (G:F) were not affected (P > 0.05) by corn line. In Study 2, there was no effect of corn line on overall ADFI (as-fed basis) or G:F ratio. In addition, overall ADG of barrows fed the four corn lines did not differ (P > 0.05); however, overall ADG of gilts fed corn DK647 was greater (P < 0.05) than that of pigs fed the other corn lines. There was no effect (P > 0.05) of corn line on carcass yield or fatness measurements in either study. Differences between barrows and gilts for growth and carcass traits were generally similar for both studies and in line with previous research. Overall, these results indicate that Roundup Ready corn (nk603) gives equivalent animal performance to conventional corn for growing pigs.  相似文献   

16.
Weanling pigs (total of 560) were used in two experiments to determine the effects of poultry meal in nursery diets on pig performance. In Exp. 1,210 barrows and gilts (initially 7.4 kg and 21 +/- 2 d of age) were fed one of five diets, which included a control diet with no specialty protein products or (as-fed basis) the control with 2.5 or 5.0% fish meal, or 2.9 or 5.9% poultry meal (11.8% ash). Poultry meal replaced fish meal on an equal lysine basis. Overall (d 0 to 28), pigs fed diets containing fish meal had greater (P < 0.01) ADG than pigs fed poultry meal. Increasing fish meal tended to have increased (quadratic, P < 0.07) ADG, with the greatest improvement observed in pigs fed the diet containing 2.5% fish meal. Pigs fed diets containing fish meal had improved (P < 0.01) G:F compared with pigs fed diets containing poultry meal. In Exp. 2, a total of 350 barrows and gilts (initially 8.9 kg and 22 +/- 2 d of age) were fed one of seven experimental diets, which included a control diet with no specialty protein products, or the control with 2.5 or 5.0% fish meal, 2.9 or 5.8% low-ash (10.9%) poultry meal, and 3.1 or 6.2% high-ash (13.5%) poultry meal. Poultry meal replaced fish meal on an equal lysine basis. Overall (d 0 to 15), there were no differences in ADG and ADFI (P = 0.14); however, pigs fed diets containing fish meal or poultry meal had improved (linear, P < 0.01) G:F compared with pigs fed the control diet. Pigs fed diets containing low-ash poultry meal had greater (P < 0.01) G:F compared with pigs fed diets containing high-ash poultry meal. Based on these data, quality control specifications, such as ash content, need to be considered when using poultry meal as an animal protein replacement in diets for nursery pigs.  相似文献   

17.
We conducted two experiments comparing the use of extruded-expelled soybean meal (EESoy) to solvent-extracted soybean meal (SBM) in swine diets. In Exp. 1, the objective was to determine the optimal processing temperature of EESoy for nursery pig growth performance. Pigs (n = 330, 13.2 +/- 2.3 kg of BW) were fed a control diet containing SBM with added fat or one of five diets containing EESoy extruded at 143.3, 148.9, 154.4, 160.0, or 165.6 degrees C. All diets were formulated on an equal apparent digestible lysine:ME ratio. From d 0 to 20, no differences were observed (P > 0.32) in ADG or ADFI (average of 544 and 924 g/d, respectively). However, gain:feed ratio (G/F) improved (quadratic, P < 0.01, range of 0.56 to 0.60) with increasing processing temperature, with the greatest improvement at 148.9 degrees C. In Exp. 2, the objective was to determine the feeding value of EESoy relative to SBM with or without added fat for growing-finishing pigs in a commercial production facility. A total of 1,200 gilts (initially 24.5 +/- 5.1 kg of BW) was used, with 25 pigs per pen and eight replications per treatment. Dietary treatments were arranged in a 2 x 3 factorial, with two sources of soybean meal (SBM or EESoy) and three levels of added fat. Pigs were phase-fed four diets over the experimental period and added fat (choice white grease) levels were 0, 3.4, and 7% initially, with the added fat levels decreasing in the next three dietary phases. Energy levels were based such that the higher energy in EESoy (with or without added fat) was calculated to be equal to that provided by SBM with added fat. From 24.5 to 61.2 kg, pigs fed EESoy had greater (P < 0.07) G/F than those fed SBM. Increasing added fat in either EESoy- or SBM-based diets increased G/F (linear, P < 0.0003). From 61.2 to 122.5 kg, ADG and G/F were unaffected in pigs fed EESoy and/or increasing added fat (P > 0.10). For the overall growing-finishing period, ADG was unaffected (P > 0.61) by increasing energy density of the diet; however, ADFI decreased (P < 0.05) and G/F increased (P < 0.02, range of 0.37 to 0.40) as energy density increased with either EESoy or added fat. Carcass leanness was not affected by dietary treatment. These results indicate that EESoy should be extruded at 148.9 to 154.4 degrees C, and that increasing dietary energy density by using EESoy and/or added fat improves feed efficiency in finishing pigs reared in a commercial environment.  相似文献   

18.
Two experiments evaluated effects of added pantothenic acid on performance of growing-finishing pigs. In Exp. 1, 156 pigs (PIC, initial BW = 25.7 kg) were used in a 3 x 2 x 2 factorial to evaluate the effects of added pantothenic acid (PA; 0, 22.5, or 45 ppm), ractopamine.HCl (RAC; 0 or 10 mg/kg), and sex on growth performance and carcass traits. Pigs were fed increasing PA from 25.7 to 123.6 kg (d 0 to 98) and RAC for the last 28 d before slaughter. Increasing the amount of added PA had no effect (P > 0.40) on ADG, ADFI, or G:F from d 0 to 70. A PA x sex interaction (P < 0.03) was observed for ADG and G:F from d 71 to 98. Increasing the amount of added PA increased ADG and G:F in gilts, but not in barrows. Increasing the amount of added PA had no effect (P > 0.38) on carcass traits. Added RAC increased (P < 0.01) ADG and G:F for d 71 to 98 and d 0 to 98 and increased (P < 0.01) LM area and percentage lean. In Exp. 2, 1,080 pigs (PIC, initial BW = 40.4 kg, final BW = 123.6 kg) were used to determine the effects of increasing PA on growth performance and carcass characteristics of growing-finishing pigs reared in a commercial finishing facility. Pigs were fed 0, 22.5, 45.0, or 90 mg/kg of added PA. Increasing the amount of added PA had no effect (P > 0.45) on ADG, ADFI, or G:F, and no differences were observed (P > 0.07) for carcass traits. In summary, adding dietary PA to diets during the growing-finishing phase did not provide any advantages in growth performance or carcass composition of growing-finishing pigs. Furthermore, it appears that the pantothenic acid in corn and soybean meal may be sufficient to meet the requirements of 25- to 120-kg pigs.  相似文献   

19.
A total of 720 nursery pigs in three experiments were used to evaluate the effects of blood meal with different pH (a result of predrying storage time) and irradiation of spray-dried blood meal in nursery pig diets. In Exp. 1, 240 barrows and gilts (17 +/- 2 d of age at weaning) were used to determine the effects of blood meal pH (7.4 to 5.9) in diets fed from d 10 to 31 postweaning (7.0 to 16.3 kg of BW). Different lots of dried blood meal were sampled to provide a range in pH. Overall (d 0 to 21), pigs fed diets containing blood meal had greater ADG (P < 0.05) and ADFI (P < 0.05) than pigs fed diets without blood meal. Ammonia concentrations in blood meal rose as pH decreased. However, blood meal pH did not influence (P > 0.16) ADG, ADFI, or gain:feed (G:F). In Exp. 2, 180 barrows (17 +/- 2 d of age at weaning) were used to determine the effects of post drying pH (7.6 to 5.9) and irradiation (gamma ray, 9.5 kGy) of blood meal on growth performance of nursery pigs from d 5 to 19 postweaning (6.8 to 10.1 kg of BW). One lot of whole blood was isolated with 25% of the total lot dried on d 0, 3, 8, and 12 after collection to create a range in pH. Overall, pigs fed blood meal had improved G:F (P < 0.01) compared to pigs fed the control diet. Similar to Exp. 1, the ammonia concentration of blood meal increased with decreasing pH. Blood meal pH did not influence ADG, ADFI, or G:F (P > 0.21), but pigs fed irradiated blood meal (pH 5.9) had greater ADG and G:F (P < 0.05) than pigs fed nonirradiated blood meal (pH 5.9). In Exp. 3, 300 barrows (17 +/- 6 d of age at weaning) were used to determine the effects of blood meal irradiation source (gamma ray vs. electron beam) and dosage (2.5 to 20.0 kGy) on growth performance of nursery pigs from d 4 to 18 postweaning (8.7 to 13.2 kg of BW). Overall, the mean of all pigs fed blood meal did not differ in ADG, ADFI, or G:F (P > 0.26) compared to pigs fed the control diet without blood meal. Pigs fed irradiated blood meal had a tendency (P < 0.10) for increased G:F compared with pigs fed nonirradiated blood meal. No differences in growth performance were detected between pigs fed blood meal irradiated by either gamma ray or electron beam sources (P > 0.26) or dosage levels (P > 0.11). These studies suggest that pH alone as an indicator of blood meal quality is not effective and irradiation of blood meal improved growth performance in nursery pigs.  相似文献   

20.
Five experiments were conducted to evaluate the effects of a high-protein, whey protein product (WPP; 73% CP, 6.8% lysine, 12.8% fat, and 5% lactose) and spray-dried animal plasma (SDAP) on growth performance of weanling pigs. In all experiments, pigs were fed experimental diets from d 0 to 14 after weaning in a pelleted form and then a common diet in meal form for the remainder of the experiment. Dietary treatments were established by substituting WPP or SDAP for dried skim milk (Exp. 1) or soybean meal (Exp. 2, 3, 4, and 5) in the control diet. In Exp. 1, we maintained a constant level of lactose in all diets by adjusting the amount of added crystalline lactose. The amount of lactose in diets used in Exp. 2 through 5 varied slightly by the addition of WPP. In Exp. 1 and 2, 180 weanling pigs (initially 5.8 kg and 19 +/- 1 d of age or 5.5 kg and 17 +/- 1 d of age, respectively) were used. Treatment diets contained SDAP (2.5 and 5%) or WPP (2.7 and 5.4% in Exp.1, and 2.5 or 5.0% in Exp. 2). In Exp. 1, from d 0 to 7 after weaning, ADG and ADFI increased with increasing SDAP (linear, P < .01). No other treatment effects were observed during the d 0 to 14 period. In Exp. 2, from d 0 to 14 after weaning, ADG and G:F increased (linear, P < .04) with increasing SDAP or WWP. In Exp. 3, 305 weanling pigs (initially 4.1 kg and 12 +/- 1 d of age) were used. The control diet contained 2.5% SDAP. The experimental diets were similar to the control diet but contained an additional 2.5 or 5.0% SDAP or 2.5 or 5.0% WPP. From d 0 to 14 after weaning, ADG, ADFI, and G:F increased (quadratic, P < .05) with increasing SDAP up to 5.0%. Increasing WPP increased ADG (quadratic, P < .07) and ADFI (linear, P < .09). In Exp. 4 and 5, 329 and 756 weanling pigs (initially 4.1 kg and 12 +/- 1 d of age and 5.2 kg and 18 +/- 1 d of age, respectively) were fed diets in which WPP was substituted for 0, 25, 50, 75, and 100% (Exp. 4) or 0, 50, and 100% (Exp. 5) of the SDAP in the control diet. In Exp. 4 and 5, from d 0 to 14 after weaning, pigs fed a 1:1 blend of each protein source had better ADG (quadratic, P < .04) than those only fed SDAP. In conclusion, WPP can be used in combination with or as a total replacement for SDAP in diets for weanling pigs without reducing performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号