首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Primiparous beef cows produced in 3 calving systems were used in a 2-yr study with a completely random design to measure milk yield throughout a 190-d lactation (2002, n = 20; 2003, n = 24 per calving system). Calving occurred in late winter (average calving date = February 4 +/- 2 d), early spring (average calving date = March 30 +/- 2 d), and late spring (average calving date = May 26 +/- 1 d). Additionally, cows used in this study had been weaned at varied ages as calves, creating 6 dam treatments. Dam age at weaning was 140 (late spring), 190 (late winter, early spring, late spring), or 240 (late winter, early spring) d of age. Milk production was measured by using the weigh-suckle-weigh technique at an average of 20, 38, 55, 88, 125, 163, and 190 d in milk. Milk yield for the 190-d lactation period was calculated as area under the curve by trapezoidal summation. Data were analyzed with a model containing treatment, year, and their interaction. Orthogonal contrasts were used to separate effects when treatment was significant (P < 0.10). Total milk yield did not differ (P = 0.42) between cows in the late winter and early spring systems, but cows in the late spring system tended to differ (P = 0.09) from the average of the other 2 systems. Cows in the late spring calving system had increased milk yield in 2002 and lesser milk yield in 2003 compared with the other calving systems (treatment x year interaction, P < 0.001). Cows born in late spring that had been weaned at 140 d of age produced more (P = 0.05) total milk than those weaned at 190 d of age. Peak milk yield was affected (P < 0.001) by treatment and showed a treatment x year interaction (P = 0.006). Day of peak lactation differed among treatments (P = 0.002), with cows in the late winter system peaking later (P = 0.007) than early spring cows, and late spring cows peaking earlier (P = 0.004) than the average of late winter and early spring cows. The average date of peak lactation was May 4 for the late winter system, May 31 for the early spring system, and July 19 for the late spring system. Calf ADG differed (P < 0.001) for the late spring system compared with the average of the late winter and early spring systems, but the relationship interacted with year (P < 0.001). Cow BW and BW change differed among treatments (P < 0.004), with much of the difference associated with the amount of milk produced or the timing of peak lactation. Season of calving affects milk yield of primiparous cows grazing Northern Great Plains rangelands and ADG of their calves.  相似文献   

2.
A 3-yr study was conducted to evaluate the effects of calving system, weaning age, and postweaning management on growth and reproduction in beef heifers. Heifer calves (n = 676) born in late winter (average birth date = February 7 +/- 9 d) or early spring (average birth date April 3 +/- 10 d) were weaned at 190 or 240 d of age, and heifers born in late spring (average birth date May 29 +/- 10 d) were weaned at 140 or 190 d of age. Heifers were managed to be first exposed to breeding at approximately 14 mo of age. After weaning, the calves were randomly assigned to treatments. Heifers on the constant gain treatment were fed a corn silage- and hay-based diet. Heifers on delayed gain treatments were placed on pasture but were fed grass hay or a supplement, or both, depending on the forage conditions. Three months before their respective breeding seasons, delayed gain heifers were moved to drylot and fed a corn silage- and barley-based diet (late winter or early spring) or moved to spring rangeland (late spring). The data were analyzed using mixed model procedures with calving system, weaning age, and postweaning management options creating 12 treatments. Average daily gain was 0.36 +/- 0.05 (SED) kg/d less (P < 0.001) for delayed gain heifers during the initial phase, whereas these heifers gained 0.44 +/- 0.03 kg/d more (P < 0.001) than constant gain heifers during the last 90 d before breeding. Body weights at the beginning of the breeding season did not differ (P = 0.97) between constant gain and delayed gain heifers but were affected by calving system and weaning age, reflecting some of the differences in initial BW. Prebreeding BW for heifers weaned at 190 d of age were 36 +/- 6.4 kg heavier (P < 0.001) for those born in late winter and early spring compared with late spring and were 388, 372, and 330 kg for heifers weaned in October at 240, 190, or 140 d of age (linear effect, P < 0.001). The proportion of heifers exhibiting luteal activity at the beginning of the breeding season was not affected (P = 0.57) by treatment. Approximately half of the heifers were randomly selected for breeding. Treatment had no effect (P = 0.64) on pregnancy rates. In conclusion, heifers from varied calving systems and weaning strategies can be raised to breeding using either constant or delayed gain strategies without affecting the percentage of heifers cycling at the beginning of the breeding season. These results suggest that producers have multiple options for management of heifer calves within differing calving systems.  相似文献   

3.
Five years of data were collected on 124 Brangus-type cows to evaluate weaning calves at 8.5 or 10.5 mo of age and winter supplementation of the brood cow with 2.25 kg of molasses daily. Cows with calves weaned at 10.5 mg of age gained 14 kg less weight (P less than .01) during the late nursing period than did cows from which calves were earlier weaned. Age of calf at weaning had no effect on cow reproduction, but calves weaned at 10.5 mo were 2 to 3 d younger (P less than .06) and 5.3 kg lighter (P less than .05) at 8.5 mo of age. During the last 2 mo of nursing, calves weaned at 10.5 mo of age gained 37.2 kg and had a 31.9-kg heavier weaning weight than calves weaned at 8.5 mo of age. Molasses supplementation resulted in differences (P less than .01) in cow weight changes. Cows fed molasses had calving percentages 5 to 7 units higher (P less than .30) than cows not fed molasses. Feeding cows molasses for 145 d throughout the calving and breeding season increased calf weaning weight 7.7 (P less than .02) and 11.2 (P less than .03) kg, respectively, at 8.5 and 10.5 mo of age over the nonsupplemented controls.  相似文献   

4.
Spring calving Angus and Angus x Hereford multiparous cows were utilized to determine the effects of intramammary treatment with penicillin G procaine (200,000 IU) and novobiocin (400 mg) at the time of weaning on udder health and calf growth after the subsequent calving. Cows were stratified by age and breed and assigned randomly to receive intramammary treatment (n = 99) at weaning or as untreated controls (n = 97). Quarter milk samples were collected at weaning and at 8 to 14 d after calving. Milk samples were analyzed for somatic cell counts (SCC) and mastitis-causing bacteria. Dry cow treatment decreased (P = 0.005) the number of cows infected after calving. Treatment decreased (P = 0.04) the number of cows that developed new infections and reduced (P = 0.03) the number of quarters with mastitis-causing bacteria after calving that were infected at weaning. Somatic cell counts after calving were greatest (P = 0.008) for cows infected with Staphylococcus aureus. Treatment did not alter (P = 0.19) SCC of quarters after calving that were infected with S. aureus at weaning but reduced (P = 0.002) SCC after calving of quarters that were infected with coagulase-negative staphylococci at weaning. Body weight of calves during early lactation was increased (P = 0.006) if cows with intramammary infection were treated at weaning. Treatment of noninfected cows at weaning increased (P = 0.008) adjusted 205-d weaning weights of calves after the subsequent lactation when compared with untreated noninfected cows. We conclude that treatment of beef cows at weaning with intramammary antibiotics decreased intramammary infections after calving, improved udder health during the subsequent lactation, and increased BW gain of the calves.  相似文献   

5.
Two 120-d trials (May to September, 1988 and 1989) determined the effects of grazing tall fescue (two varieties) or orchardgrass on forage intake and performance by beef cows. Each summer, 48 cow-calf pairs grazed endophyte-infected Kentucky-31 tall fescue (KY-31), endophyte-free Mozark tall fescue (MOZARK), or Hallmark orchardgrass (OG) pastures (16 pairs/treatment). Forage OM intakes and digestibilities were determined during June and August each year. Cow and calf BW and milk production were determined every 28 d. During June of both years, OM intakes did not differ (P greater than .10) among treatments. During August of 1988, intakes were 18% lower (P less than .05) by KY-31 cows (1.6% of BW) than by MOZARK or OG cows (average 1.95% of BW); however, no differences (P greater than .10) were measured in August of 1989. Estimates of ergovaline consumption during June from KY-31 were between 4.2 (1988) and 6.0 mg/d (1989), whereas August estimates were between 1.1 (1988) and 2.8 mg/d (1989). Ergovaline in MOZARK estrusa was below detection limits, except in August of 1989. Cows that grazed KY-31 lost three times (P less than .01) more BW than cows that grazed MOZARK or OG (42 vs 9 and 13 kg, respectively). Milk production by KY-31 cows was 25% lower (P less than .01) than that by cows that grazed MOZARK or OG (6.0 vs average of 8.0 kg/d). Similarly, slower (P less than .01) calf gains were noted for KY-31 than for MOZARK or OG (.72 vs .89 and .88 kg/d, respectively). Cows grazing KY-31 experienced accelerated BW loss and reduced milk production and weaned lighter calves than did cows grazing MOZARK or OG. Decreased performance was not explained by consistently reduced forage intakes; hence, altered nutrient utilization was suspected.  相似文献   

6.
A general bio-economic model for beef cattle production was used to define breeding objectives for Charolais cattle to be utilized in a variety of linked production systems. Economic weights were calculated for 16 traits (some with both direct and maternal components) in three production systems (pure-breeding and terminal crossing with beef or dairy cows) and two marketing strategies (sale or fattening of weaned surplus calves). Economic weights for the total breeding objective were calculated as weighted averages, where weights were numbers of cows expected to be mated with Charolais bulls in each production system and marketing strategy. Results suggest that the direct component of calving performance and cow longevity were of primary economic importance in all systems. Conception rate of cows and weaning weight reached about 50% of the standardized economic weight of calving performance in purebred systems with sale of weaned calves, whereas in purebred systems with fattening the economic importance of the direct component of cow conception rate, losses at calving, mature weight of cows, weaning weight, and fattening traits were of equal importance (each approximately about 20% that of calving performance). In terminal crossing systems, weaning weight was important when calves were sold at weaning, and fattening traits were important for systems selling fattened animals. The bio-economic model performed well under the conditions of this demonstration and could easily be customized for other applications.  相似文献   

7.
A 5-yr study was conducted beginning in 1983 with 460 cows to evaluate the effects of three breeding seasons (30, 45, and 70 d in length) and two times of spring calving, March (early) and April (late), on cattle production under Nebraska Sandhills range conditions. Criteria evaluated included pregnancy and weaning percentages, calving date and distribution, cow weights and body condition at four intervals, calf birth and weaning weights, and cow productivity. The 30-d breeding season included a 10-d estrus synchronization and AI period; in the other breeding seasons only natural breeding was used. The same sires were used over the entire study period. Percentage of cows pregnant and percentage of calves weaned were lower (P less than .01) for cows bred for 30 d than for cows bred for 45 or 70 d. Average calving dates were similar among the breeding groups within the early and late calving herds. Pregnancy rates from AI were higher (P less than .01) for the cows calving in April (64%) than for the cows calving in March (41%). Cows calving in April lost less weight between precalving and prebreeding and were heavier (P less than .05) at prebreeding time than the cows calving in March. Calf weaning weights were not different (P greater than .10) among any of the breeding season groups or between the two calving herds when calves were weaned at a similar age. Cow productivity (calf weaning weight per breeding female) was highest (P less than .05) for the cows bred for 70 d (186 kg), intermediate for the cows bred for 45 d (172 kg), and lowest for cows bred for 30 d (162 kg).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
An experiment on restricted suckling of crossbred dairy cows was conducted at the Livestock Research Centre, Tanga in northeast Tanzania. Thirty-six Bos taurus (Holstein Friesian and Jersey) x Bos indicus (East African Zebu) cows were allocated alternately as they calved to suckling their calves for either 12 or 24 weeks after calving. Cows grazed improved pastures and were offered 4 kg concentrate daily. Milking occurred twice daily by hand; calves were allowed to suck residual milk for 30 min following each milking. Calves were also allowed access to grazing and were offered a maximum of 1 kg concentrate daily to 24 weeks of age. Weaning age had no significant effect on lactation milk yield for human consumption, the mean (SE) yield being 1806 (102.0) L and 1705 (129.1) L for 12- and 24-week weaning, respectively. Cows from the two treatments suffered similar losses of live weight and body condition score during lactation and neither group had returned to the original body condition score 40 weeks following calving. Post-partum anoestrous intervals were prolonged. Although not significant, cows suckling calves to 24 weeks had a mean interval to first oestrus extended by 38 days compared with cows suckling calves to 12 weeks. The mean (SE) daily live weight gains of the calves to 52 weeks were 263 (14.1) g/day and 230 (18.1) g/day for calves weaned at 12 and 24 weeks, respectively, such that 12-month weights were 119 (5.6) kg and 110 (7.3) kg, respectively. Twelve-week-weaned calves consumed more concentrate (p<0.05) from 13 to 24 weeks than did 24-week weaned calves. Calculation of residual milk consumption removed by calves from birth to 12 weeks indicated that it accounted for 28%) of total yield. No benefits in cow and calf performance and welfare were found to justify prolonging the suckling period to 24 weeks.  相似文献   

9.
To establish the effect of sward height (SH) and concentrate supplementation on performance of grazing cattle, 24 crossbred Angus beef cows (535 kg BW) and calves (114 kg BW) were grouped by weight and calving date. They were randomly assigned to two SH treatments, either 4 to 8 cm or 8 to 11 cm, and fed three levels of supplement, high, low, or none, consisting of 6.24, 3.12, and 0 kg x animal(-1) x d(-1), respectively. The experiment was repeated over three 15-d periods in 1996: May (P1), June/July (P2), and August (P3). No SH x supplement level x period or SH x supplement level interactions (P > 0.10) were evident for responses tested. Cows on lower SH had greater (P < 0.08) DMI but spent an additional 1.3 h/d (P < 0.01) grazing compared with cows on higher SH. Sward height had no influence (P > 0.10) on forage DM digestibility (DMD). Forage DMI, DMD, and grazing time (GT) decreased (P < 0.05) as supplementation increased. Nonetheless, supplemented cows consumed more total DMI (P < 0.08) than unsupplemented cows. Cows consumed 2.4 kg/d more forage DM (P < 0.01) in P1 and P2 than in P3. Cows grazed 1.3 h/d (P < 0.01) less in P1 than in P2 and P3. Grazing efficiency (DMI/h GT) declined as supplementation increased and grazing season advanced to P3 (P < 0.01). Decreased forage DMI and grazing efficiency with increasing supplementation suggests that supplemented cattle should be able to maintain productivity while grazing at SH lower than unsupplemented cattle.  相似文献   

10.
Productivity of 3-, 4-, and 5-yr-old crossbred cows containing various proportions (0, 1/4, or 1/2) of Brahman breeding out of Angus or Hereford dams was evaluated using 489 spring-calving and 427 fall-calving records collected over a 4-yr period. Cows were bred to Limousin sires for the first 3 yr and to Limousin and Salers sires the 4th yr. Interactions between crossbred cow group and season of calving were not significant. Percentage of cows exposed to breeding that weaned a calf increased (P less than .01) as proportion Brahman breeding increased, was higher (P less than .01) for cows out of Angus dams than for cows out of Hereford dams, and was higher (P less than .01) for spring-calving cows. As the proportion Brahman increased, the percentage requiring assistance at birth decreased, and cows out of Angus dams required less (P less than .05) assistance than those out of Hereford dams. Preweaning ADG, adjusted weaning weight, weaning conformation, weaning condition, and adjusted weaning hip height increased a proportion Brahman breeding increased. Spring-born calves gained .12 kg/d faster (P less than .01) than fall-born calves. However, weight at weaning was similar for the two groups; spring-born calves were weaned at an average age of 205 d, and fall-born calves were weaned at an average age of 240 d. Fall-calving cows were heavier (P less than .05) than spring-calving cows, and 0 and 1/2 Brahman cows were heavier (P less than .01) than 1/4 Brahman cows. These data indicate that Brahman-cross dams can be used to improve reproductive rate and increase preweaning growth rate, and thus weaning weight.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Productivity of 2-yr-old crossbred cows containing various proportions (0, 1/4 or 1/2) of Brahman breeding was evaluated using 203 spring-calving and 171 fall-calving heifers over a 3-yr period. All heifers were mated to Limousin sires. Percentage of cows exposed to breeding that weaned a calf was the only trait for which a significant crossbred cow group x season of calving interaction was found. Preweaning ADG and age-adjusted weaning weight increased as proportion Brahman breeding increased. Age-adjusted weaning weight was similar for the two groups because spring-born calves were weaned at an average age of 205 d and fall-born calves were weaned at an average age of 240 d. For weaning condition scores, an interaction between dam breed and proportion Brahman was detected; scores tended to be greater for calves out of 1/2 Hereford dams than for those out of 1/2 Angus dams, and this difference increased as proportion Brahman increased. Weaning conformation scores were similar for all calves. Age-adjusted weaning hip height increased as proportion Brahman breeding increased. Based on numbers of weaned calves, spring calving was more advantageous than fall calving. Averaged across both calving seasons, weaning weight tended to increase as proportion Brahman increased.  相似文献   

12.
A grazing study was initiated in April 2000 and continued through three calving and weaning cycles (ending July 2003) to investigate the effects of rotational grazing management (twice monthly [2M] vs. twice weekly [2W]) and weaning date (mid-April [EARLY] vs. early June [LATE]) on production of fall-calving cow-calf pairs (495 +/- 9.6 kg initial BW) grazing Neotyphodium coenophialum-infected tall fescue (Festuca arundinacea Schreb.) overseeded with legumes and crabgrass. Secondary objectives of the experiment were to monitor differences in quantity and quality of available forage and to evaluate changes in forage species composition. Pastures were dominated by tall fescue throughout the study, and the proportion of basal cover was greater (P < 0.05) in 2M than in 2W pastures. The percentage of legumes was very low across all treatment combinations, but the percentage of crabgrass continued to increase (P < 0.05) linearly and quadratically across years for both summer and fall sampling periods, regardless of rotation or weaning program. In vitro DM disappearance and mineral concentrations varied minimally because of rotation frequency or weaning date. Rotation frequency did not substantially affect (P = 0.11 to 0.97) cow BW, hay offered, milk production, calving interval, calf birth weight, or actual or adjusted weaning weights; however, 2M cows had 0.3 units higher (P < 0.05) BCS at the time of breeding than 2W cows. Calves weaned late had greater (P < 0.05) actual weaning weight and weighed more (P < 0.05) on the LATE weaning date than on the EARLY weaning date, but 205-d adjusted weaning weights did not differ (P = 0.74) across weaning dates. Therefore, rotation frequency and/or weaning date had little effect on forage species composition or forage quality. In addition, the rapid rotation program offered little advantage with respect to animal performance, and weaning fall-born calves grazing endophyte-infected tall fescue pastures at approximately 189 d of age seemed to be detrimental to calf performance compared with delaying weaning until 243 d of age.  相似文献   

13.
Pregnancy rate, calving interval, birth weight, weaning weight, and quarterly BCS were collected for 5 consecutive years on 454 fall-calving multiparous British crossbred cattle (3 to 10 yr of age) to evaluate associations of age with BCS and production parameters. Body weight and BCS were collected pre-calving, prebreeding, at weaning, and midway through the second trimester of pregnancy (August). Body condition score was correlated with age during all seasons (P < 0.01). At calving, breeding, and in August, 3-yr-old cows had the lowest BW and BCS, whereas 8-yr-old cows had the greatest. At weaning, these values were maximal in 10-yr-old cows. Pregnancy rate was near 80% up to 9 yr of age but decreased to 57% in 10-yr-old cows. The relationship of pregnancy rate with age appears to be correlated with the BCS decrease at breeding in the older cows, supported by the fact that inclusion of BCS at breeding in the statistical model eliminated the effect of age on pregnancy rate (P = 0.42). Calving interval was longer in 3-yr-old cows compared with 4- to 9-yr-old cows (P = 0.02); however, among older cows, there was little change in the calving interval. Birth weight reached a maximum at 8 yr of age (35 +/- 0.9 kg) and a minimum in 3-yr-old cows (32 +/- 0.7 kg). Birth weights of calves born to both 3- and 4-yr-old cows were lower than for those born to 5-, 6-, 7-, or 8-yr-old cows (P < 0.05). Ten-year-old cows weaned lighter calves (205-d adjusted weaning weight) than younger dams. Furthermore, 3-yr-old cows weaned calves 9 +/- 2.1 and 14 +/- 2.4 kg lighter than 4- and 5-yr-old cows, respectively (P < 0.001). Interpretation of the age analyses of calving interval, birth weight, and weaning weight was independent of the inclusion of BCS in the model. This study documents the effects of age on calving interval, birth weight, and weaning weight that are independent of BCS.  相似文献   

14.
OBJECTIVE: To determine effects of breed and oral vitamin E supplementation during late gestation on serum vitamin E and IgG concentrations in beef cows that calved in late winter and late summer and in neonatal calves. ANIMALS: 73 Angus and 43 Hereford primiparous and multiparous cows and their calves. PROCEDURE: Cows in groups that were homogeneous regarding breed and age distribution were randomly allotted to groups that were orally supplemented (n = 59) or not supplemented (57) with vitamin E beginning 30 days prior to onset of 65-day calving seasons. Supplemental vitamin E was provided in a vitamin-mineral mix offered free-choice until parturition. RESULTS: Cows that calved in late winter and were supplemented orally with vitamin E had higher serum vitamin E concentrations at calving and after calving than did unsupplemented cows; differences between groups before calving were not significant. Calves from supplemented multiparous cows had higher vitamin E concentrations than did calves from unsupplemented cows. Winter-born calves from supplemented Hereford cows had heavier 205-day adjusted weaning weights than did winter-born calves from unsupplemented Hereford cows. Supplementation did not affect vitamin E or IgG concentrations in the herd that calved in late summer and did not affect calf growth. CONCLUSIONS AND CLINICAL RELEVANCE: Oral vitamin E supplementation during late gestation may be economically beneficial in certain cow-calf operations in which late-gestation cows are consuming stored forages.  相似文献   

15.
One hundred and ninety non-lactating, pregnant beef cows (three-fourth Bos taurus and one-fourth Bos indicus; 138 multiparous and 52 primiparous) were assigned to this experiment at 117 ± 2.2 d of gestation (day 0). Cows were ranked by parity, pregnancy type (artificial insemination = 102 and natural service = 88), body weight (BW), and body condition score (BCS) and assigned to receive a supplement containing: 1) sulfate sources of Cu, Co, Mn, and Zn (INR; n = 95) or 2) an organic-complexed source of Cu, Mn, Co, and Zn (AAC; Availa 4; Zinpro Corporation, Eden Prairie, MN; n = 95). The INR and AAC provided the same daily amount of Cu, Co, Mn, and Zn, based on 7 g of the AAC source. From day 0 to calving, cows were maintained in a single pasture and were segregated three times weekly into 1 of the 24 individual feeding pens to receive treatments. Cow BW and BCS were recorded on days −30, 97, upon calving, and at weaning (day 367). Milk production was estimated at 42 ± 0.5 d postpartum via weigh–suckle–weigh (WSW) method. Liver biopsies were performed in 30 cows per treatment on days −30, 97, upon calving, and the day after WSW. Calf BW was recorded at birth and weaning. Liver and longissimus muscle (LM) biopsies were performed in 30 calves per treatment upon calving and 24 h later, the day after WSW, and at weaning. No treatment effects were detected (P ≥ 0.49) for cow BCS during gestation, despite AAC cows having greater (P = 0.04) BW on day 97. Liver Co concentrations were greater (P < 0.01) for AAC compared with INR cows, and liver concentrations of Cu were greater (P = 0.02) for INR compared with AAC cows on day 97. Upon calving, INR cows had greater (P ≤ 0.01) liver Cu and Zn concentrations compared with AAC cows. No other treatment differences were noted (P ≥ 0.17) for cow and calf liver trace mineral concentrations. Cows receiving AAC had greater (P = 0.04) hepatic mRNA expression of metallothionein 1A at calving, and their calves had greater (P = 0.04) hepatic mRNA expression of superoxide dismutase at weaning. Milk production did not differ between AAC and INR cows (P = 0.70). No treatment effects were detected (P ≥ 0.29) for mRNA expression of LM genes associated with adipogenic or muscle development activities in calves at birth and weaning. Calf birth and weaning BW also did not differ (P ≥ 0.19) between treatments. In summary, supplementing AAC or INR to beef cows during the last 5 mo of gestation yielded similar cow–calf productive responses until weaning.  相似文献   

16.
There is limited information on the value of antibiotic therapy for mastitis in beef cows. Effects of antibiotic treatment at weaning and the subsequent calving on calf weaning weight, milk somatic cell counts, milk components, and intramammary infection were studied in beef cows. Additionally, effects of number of infected mammary quarters, number of dry mammary quarters, type of intramammary pathogen, and parity on response variables were determined. Cows (n = 192) were randomly assigned to treatments in a 2 x 2 factorial arrangement; factors were time of treatment (weaning and after calving) and treatment (vehicle and vehicle plus antibiotic). Oxytetracycline (LA-200) or vehicle was administered intramuscularly following collection of quarter milk samples at weaning and calving. Percentage of infected cows and quarters averaged 43.4 and 16.4%, respectively, at calving and increased (P < 0.05) to 53.7 and 29.7% at weaning. Calves from cows with one or two dry quarters weighed 12.7 kg less (P < 0.05) at 90 d after calving and 18.7% less (P < 0.05) at 212 d after calving than calves from cows with no dry quarters. Calves from cows with three or four infected quarters weighed 17.5 kg less (P < 0.05) at 90 d and 25.5 kg less (P < 0.05) at weaning than calves from cows with two or fewer infected quarters. Infections by Staphylococcus aureus and coagulase-negative staphylococci were the most common and accounted for 67 and 78% of the infections. Percentages of infected cows and quarters, infections caused by S. aureus, and dry quarters increased (P < 0.05) with parity. No differences were found among antibiotic treatments for any of the response variables studied. Intramuscular oxytetracycline was not effective in the control of mastitis in beef cows under the conditions of the study.  相似文献   

17.
Our objective was to evaluate a replicated (n = 2) Midwestern year-round grazing system's hay needs and animal production compared with a replicated (n = 2) conventional (minimal land) system over 3 yr. Because extended grazing systems have decreased hay needs for the beef herd, it was hypothesized that this year-round system would decrease hay needs without penalizing animal production. In the minimal land (ML) system, two replicated 8.1-ha smooth bromegrass-orchardgrass-birdsfoot trefoil (SB-OG-BFT) pastures were rotationally stocked with six mature April-calving cows and calves and harvested as hay for winter feeding in a drylot. After weaning, calves were finished on a high-concentrate diet. Six mature April-calving cows, six mature August-calving cows, and their calves were used in the year-round (YR) grazing system. During the early and late summer, cattle grazed two replicated 8.1-ha SB-OG-BFT pastures by rotational stocking. In mid-summer and winter, April- and August-calving cows grazed two replicated 6.1-ha, endophyte-free tall fescue-red clover (TF-RC) and smooth bromegrass-red clover (SB-RC) pastures, respectively, by strip-stocking. In late autumn, spring-calving cows grazed 6.1-ha corn crop residue fields by strip-stocking. Calves were fed hay with corn gluten feed or corn grain over winter and used as stocker cattle to graze SB-OG-BFT pastures with cows until early August the following summer. First-harvest forage from the TF-RC and SB-RC pastures was harvested as hay. Body condition scores of April-calving cows did not differ between grazing systems, but were lower (P < or = 0.03) than those of August-calving cows from mid-gestation through breeding. Preweaning calf BW gains were 47 kg/ha of perennial pasture (P < 0.01) and 32 kg/cow (P = 0.01) lower in the YR grazing system than in the ML system. Total BW gains ofpreweaning calf and grazing stocker cattle were 12 kg/ha of perennial pasture less (P = 0.07), but 27 kg/cow greater (P = 0.02) in pastures in the YR grazing system than in the ML system. Amounts of hay fed to cows in the ML system were 1,701 kg DM/cow and 896 kg DM/cow-stocker pair greater (P < 0.05) than in the YR grazing system. Extended grazing systems in the Midwest that include grazing of stocker cattle to utilize excess forage growth will decrease stored feed needs, while maintaining growing animal production per cow in April- and August-calving herds.  相似文献   

18.
In a 2-yr study, we evaluated the effect of different forage allocations on the performance of lactating beef cows and their calves grazing stockpiled tall fescue. Allocations of stockpiled tall fescue at 2.25, 3.00, 3.75, and 4.50% of cow-calf pair BW/d were set as experimental treatments. Conventional hay-feeding was also evaluated as a comparison to grazing stockpiled tall fescue. The experiment had a randomized complete block design with 3 replications and was divided into 3 phases each year. From early December to late February (phase 1) of each year, cows and calves grazed stockpiled tall fescue or were fed hay in the treatments described above. Immediately after phase 1, cows and calves were commingled and managed as a single group until weaning in April (phase 2) so that residual effects could be documented. Residual effects on cows were measured after the calves were weaned in April until mid-July (phase 3). During phase 1 of both years, apparent DMI of cow-calf pairs allocated stockpiled tall fescue at 4.50% of BW/d was 31% greater (P < 0.01) than those allocated 2.25% of BW/d. As allocation of stockpiled tall fescue increased from 2.25 to 4.50% of cow-calf BW/d, pasture utilization fell (P < 0.01) from 84 +/- 7% to 59 +/- 7%. During phase 1 of both years, cow BW losses increased linearly (P < 0.02) as forage allocations decreased, although the losses in yr 1 were almost double (P < 0.01) those in yr 2. During phases 2 and 3, few differences were noted across treatment groups, such that by the end of phase 3, cow BW in all treatments did not differ either year (P > 0.40). Calf ADG in phase 1 increased linearly (P < 0.01) with forage allocation (y = 0.063x + 0.513; R(2) = 0.91). However, calf gain per hectare decreased linearly (P < 0.01) as stockpiled tall fescue allocations increased (y = -26.5x + 212; R(2) = 0.97) such that gain per hectare for cow-calf pairs allocated stockpiled tall fescue at 4.50% BW/d was nearly 40% less (P < 0.01) than for those allocated 2.25% of BW/d. Allocating cow-calf pairs stockpiled tall fescue at 2.25% of BW/d likely optimizes its use; because cow body condition is easily regained in the subsequent spring and summer months, less forage is used during winter, and calf gain per hectare is maximized.  相似文献   

19.
A 3-yr experiment was conducted with cows and their calves to evaluate resource inputs, animal performance, and carcass characteristics of two production systems. In the control system, cows (CON; n = 99/yr) grazed pasture and were fed hay during the winter, and CON steer calves were finished in the feedlot for 211 d after weaning. In the treatment system (TRT; n = 100/yr), cows grazed pasture and crop residue during the winter and were fed hay. Treatment steer calves grazed crop residue after weaning, grazed pasture in the spring and summer, and were finished in the feedlot for 90 d. Body condition scores after TRT cows returned from crop residue grazing were greater (P < 0.01) for CON than for TRT cows. Calving rates were similar for both groups (CON = 91%; TRT = 93%). In the feedlot, CON steers had lower (P < 0.05) ADG and DMI, but were more efficient (P < 0.01) than TRT steers. Treatment steers had greater (P < 0.05) final weight, hot carcass weight and longissimus muscle area, and decreased marbling score. The cost per weaned calf and weaning breakeven were greater (P = 0.07) for the CON system than for the TRT system (CON = 455.12 dollars, 0.91 dollar/0.45 kg; TRT = 421.43 dollars, 0.84 dollar/0.45 kg). When steers were priced into the postweaning phase on an economic basis, slaughter breakeven was lower (P = 0.01), and profit potential tended (P = 0.14) to be greater for TRT steers when they were sold on a live basis. When steers were priced into the postweaning phase on a financial basis, slaughter breakeven was lower (P = 0.03) and profit potential from the sale of steers on a live basis was greater (P = 0.07) for TRT than for CON steers. Economic evaluation of the total system resulted in greater (P = 0.06) profit potential for the TRT system when steers were priced into the system on either an economic or a financial basis and when steers were sold on a live basis, but no differences were observed when steers were sold on a grid basis. Despite differences in cow weight and body condition, calving rates did not differ between systems. Although calves were herdmates, feedlot performance and carcass characteristics differed between systems. The TRT system had lower weaning and slaughter breakeven, lower cost per weaned calf, and greater profit potential when finished steers were sold on a live basis.  相似文献   

20.
A 2-yr study was conducted to compare the subsequent cow breeding and calf performance of cows that were nonpregnant with cows that were pregnant at the time calves were weaned. Cows were Angus (A), Polled Hereford (PH), Santa Gertrudis (SG) straightbreds and crossbreds of these breeds. Nonpregnant cows (G1) were 4- to 9-yr-olds that had a calf the previous year and appeared to be physically sound with no detection (by rectal palpation) of an abnormal reproductive tract due to disease, abnormal growth or calving difficulties. Pregnant cows (G2) were of similar age and breed composition to G1 cows. The 93 G1 and the 193 G2 cows were assigned within age and breed composition to sire breeding groups on pasture in an approximate 1:2 ratio, respectively, per sire. There were six A, three PH and one SG sires. The year prior to G1 cows being nonpregnant, G1 cows calved 11 d later (P less than .01) than G2 cows. Subsequent to their being nonpregnant, G1 cows gained 27 kg more (P less than .001) weight during the breeding period, had 5.4 percentage units more (P less than .29) calves born, had calves 17 d earlier (P less than .001) in the calving period, had calves that gained at a similar rate to weaning and had calves that were 14 kg heavier (P less than .01) at weaning (due to their being 17 d older) compared with G2 cows and calves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号