首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The meq gene encoding a 339-amino-acid bZIP transactivator protein has been identified as a candidate oncogene of Marek's disease virus serotype 1 (MDV1), which induces malignant lymphomas in chickens. We have previously reported that, in addition to meq, L-meq, in which a 180-bp sequence is inserted into the region encoding the transactivation domain of meq, is also detected in chickens experimentally infected with MDV. To further analyze the diversity in meq, PCR was performed using a primer set which specifically amplify the proline-rich repeat (PRR) region in the transactivation domain of meq. In CVI988/R6, a vaccine strain of MDV1, and JM, an MDV1 strain attenuated by prolonged passage in vitro, a major band of a 0.8 kb corresponding to L-meq as well as a minor band of 0.6 kb corresponding to meq was detected by PCR. Furthermore, extra 0.5- and 0.3-kb bands, corresponding to genes termed as short meq (S-meq), and very short meq (VS-meq), respectively, were also detected. These genes were also detected in MDV-transformed cell lines, MSB1 and MTB1. In Md5, an oncogenic MDV1, attenuated by prolonged passage in vitro, the 0.6-kb meq was consistently detected, and 0.5-kb S-meq was occasionally detected. This diversity in meq was due to the difference in the copy number of the PRR region: L-meq and meq contained 9 and 6 copies of PRR while 4 and 2 copies of PRR were present in S-meq and VS-meq, respectively. Thus, the meq gene is polymorphic in the attenuated MDV1 and the MDV-transformed cell lines, and gene products from different meq genes may have different functions from each other.  相似文献   

2.
Meq is one of the candidate oncogenes in the MDV1 genome. We previously reported a difference in the meq open reading frame (ORF) between oncogenic and non-oncogenic MDV1: L-meq, in which a 180-bp sequence is inserted into the meq ORF, is detected in non-oncogenic MDV1. To study the functions of a gene product of L-meq (L-MEQ), transactivation by L-MEQ was analyzed by dual luciferase assay using a reporter gene under the control of long (-1--873 bp) and short (-1 - -355 bp) meq promoter (LMP and SMP, respectively). LMP showed higher promoter function than SMP. L-MEQ transactivated the expression of the reporter gene, but less than MEQ did. In the presence of SMP or the cytomegalovirus immediate-early promoter, the same or slightly higher transactivation was observed in cells cotransfected with both meq and L-meq than cells transfected only with meq. However, in the presence of LMP, lower transactivation was observed in cells cotransfected with both meq and L-meq than cells transfected only with meq, suggesting that L-MEQ can be a transrepressor. Replication of a vvMDV1 was enhanced in the cells with meq. Interestingly, however, replication of vvMDV1 was suppressed in the cells with L-meq or with both L-meq and meq, compared to untransfected cells. Thus, L-MEQ could suppress replication of vvMDV1 displaying the meq gene in coinfected cells.  相似文献   

3.
Both Marek's disease virus (MDV) and chicken infectious anemia virus (CIAV) infections are prevalent in chickens throughout the world. In the past decade, MDV strains with increased virulence (very virulent plus MDV pathotype [vv+MDV]) have been isolated. The purpose of this experiment was to determine the effects of coinfection of chickens with CIAV and a vv+MDV isolate. Specific-pathogen-free chickens were inoculated at 1 day posthatch with RB1B (very virulent MDV pathotype [vvMDV]) only, 584A (vv+MDV) only, CIAV only, RB1B + CIAV, 584A + CIAV, or nothing. Samples of spleen, thymus, and bursa of Fabricius were collected at 4, 7, 10, and 13 days postinoculation (DPI). Thymic and bursal atrophy at 13 DPI and final mortality at 30 DPI were significantly greater in chickens inoculated with 584A with or without added CIAV, or with RB1B plus CIAV, compared with birds inoculated with RB1B alone. Both amounts of virus reisolated and levels of virus detected by quantitative-competitive polymerase chain reaction were greater at 4 DPI in 584A inoculates compared with RB1B inoculates. To monitor the early cytolytic infection, northern analysis was done with a probe for the MDV immediate early gene ICP4 (infected cell protein 4). In the absence of CIAV, ICP4 expression was more apparent in chickens inoculated with 584A than in those inoculated with RB1B. CIAV coinfection increased ICP4 expression in the spleens of chickens infected with RB1B. These results indicated that inoculation of chickens with the 584A isolate caused a more robust early cytolytic infection compared with inoculation with RB1B alone and support the classification of 584A as a vv+MDV strain. Coinfection with CIAV exacerbated vvMDV strain RB1B infection. The extent of this exacerbation was less evident when birds were coinfected with 584A and CIAV.  相似文献   

4.
广西某养殖场130日龄父母代种鸡发生临床肿瘤样病变和死亡,对病鸡采用病理解剖、组织病理学观察、PCR检测、病毒分离以及分离株重要基因的序列测定和病原鉴定。结果显示:病鸡的心脏、肝脏、脾脏等部位表现有肿瘤样病变; PCR检测及病毒分离培养有J亚群禽白血病病毒(avian leukosis virus subgroup J,ALV-J)和马立克病病毒(Marek's disease virus,MDV)的感染; ALV-J分离株env基因的序列与10株ALV-J参考株的核苷酸相似性为87. 2%~97. 7%,与ALV A-E亚型参考株的相似性为53. 5%~54. 7%;与ALV-J英国原型株HPRS-103的env基因糖基化位点进行分析比较,部分糖基化位点发生了改变; MDV分离株meq基因序列与8株MDV参考株的核苷酸相似性为98. 7%~99. 4%,分离株在第71~80位氨基酸发生突变,符合国内强毒分离株的特征。结果说明:该鸡群为ALV-J和MDV的混合感染。  相似文献   

5.
6.
In the genome of strains of very virulent Marek's disease virus serotype 1(vvMDV1), such as Md5 and RB1B, the meq open reading frame (ORF) encoding a 339-amino-acid bZIP protein, is present, while a slightly longer meq ORF, termed as L-meq, in which a 180-bp sequence is inserted into the meq ORF is found in other strains of MDV1, such as CV1988/R6 and attenuated JM. When chickens were infected with vvMDV1 strains and the meq gene was amplified by nested polymerase chain reaction (PCR), the meq gene was detected throughout the experimental period for 7 weeks post inoculation (pi). However, the L-meq gene was also detected at 3 to 5 weeks and 3 to 4 weeks pi. in Md5-infected and RB1B-infected chickens, respectively. In the case of chickens infected with an attenuated MDV1, the JM strain, the L-meq gene was detected at 2 to 7 weeks pi., and the meq gene was also detected at 2 to 6 weeks pi. Both L-meq and meq genes were detected in chickens infected with an attenuated nononcogenic vaccine strain of MDV1 (CVI988/R6), throughout the experimental period. Though quantitative PCR was not performed, a larger amount of the PCR products corresponding to the L-meq than the meq gene was amplified from chickens infected with JM or CVI988/R6. These results suggest that a dynamic population shift between the MDV subpopulations displaying meq and L-meq genes occurs in chickens during the course of MDV infection. Since the MDV subpopulation that displays the L-meq gene only displays it during the latent phase, the L-meq and its gene product, if any, might contribute to the maintenance of the MDV latency.  相似文献   

7.
Serotype 1 strains of Marek's disease virus (MDV1), except attenuated vaccine strains, are known to cause lymphomas in visceral organs of infected chickens. To know additional genetic differences between oncogenic and nononcogenic MDV1, polymerase chain reaction (PCR) was performed to amplify the meq gene of the viral genome. In addition to the 1,062-bp band including the native meq open reading frame (ORF), a 1.2-kb band was amplified from the DNA sample prepared from chick embryo fibroblast infected with an attenuated strain, CVI988, but not with oncogenic strains. Sequence analysis of the 1.2-kb band showed that a 178-bp sequence was inserted to the meq ORF of CVI988. This ORF could encode for the Meq protein with a different transactivator domain. Southern blot analysis also confirmed the insertion of the 178-bp sequence in the meq ORF of CVI988. This insertion of 178-bp sequence may explain the reason why CVI988 is not oncogenic.  相似文献   

8.
9.
10.
The meq gene was thought to be only detected in Marek's disease virus serotype 1 (MDV 1) including a very virulent strain, Md5, while L-meq, in which a 180-bp sequence is inserted into the meq open reading frame, is found in other strains of MDV 1, such as CVI 988/R6. However, both meq and L-meq were previously detected by PCR in chickens infected with MDV 1, suggesting that MDV 1 may consists of at least two subpopulations, one with meq, the other with L-meq. To further analyze these subpopulations, we analyzed the time course changes in distribution of these subpopulations among T cell subsets from chickens infected with MDV 1. Both meq and L-meq were detected in CD4+ and CD8+ T cells infected with strain Md5 or CVI 988/R6. The shift in MDV subpopulations from one displaying meq to the other displaying L-meq and/or the conversion from meq to L-meq occurred mainly in the CD8+ T cell subset from Md5-infected chickens. PCR products corresponding to L-meq rather than meq were frequently amplified from the CD8+ T cell subset from CVI 988/R 6 -infected chickens. These results suggest that a dominant subpopulation of MDV 1 changes depending on the T cell subsets, and that L-meq is dominantly present in the CD8+ T cells which play a role in the clearance of pathogenic agents.  相似文献   

11.
12.
Comparative 50% protective dose (PD50) assays were performed using a plaque-purified preparation of Marek's disease virus (MDV) strain CVI-988 at the 65th chicken embryo fibroblast (CEF) passage level (MDV CVI-988 CEF65 clone C) and three commercial MD vaccines: herpesvirus of turkeys (HVT) FC126, MDV CVI-988 CEF35, and a bivalent vaccine composed of HVT FC126 and MDV SB-1. In addition, comparative PD50 assays were performed in groups of chickens with maternal antibody to each of the three vaccines. Three representatives of the newly emerged biovariant very virulent (vv) MDV strains-RB/1B, Tun, and Md5-were employed as challenge virus. The experiments made feasible the differentiation between virulent MDV and vvMDV strains, within serotype 1. Vaccination with CVI-988 clone C vaccine resulted in PD50 estimates of about 5 plaque-forming units (PFUs) against challenge infection with each of the three vvMDV strains. The PD50 estimate of CVI-988 clone C vaccine was 12-fold below the PD50 of HVT FC126. The protective synergism of bivalent vaccine, composed of HVT and SB-1, was confirmed by groups given the lowest vaccine doses. The bivalent vaccine, however, resulted in incomplete protection in groups given the highest vaccine doses. Homologous maternal antibodies to serotype 1 caused a fivefold increase in the PD50 estimate of CVI-988 clone C. Heterologous maternal antibodies against HVT did not interfere with efficacy of CVI-988 clone C vaccination. However, the combination of maternal antibodies against both HVT and SB-1 (serotypes 2 and 3) showed a strong adverse effect on CVI-988 clone C vaccine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
14.
马立克氏病病毒(MDV)被膜蛋白VP22被证实能在细胞间高效转导,为了进一步证明VP22能够作为蛋白转运的载体,将4种不同的异源蛋白与MDV 1型(MDV-1)CVl988/Rispens株VP22蛋白融合表达,通过观察这些融合蛋白的细胞定位以及它们的细胞间扩散能力来研究VP22转运蛋白的情况.结果发现,禽流感病毒(AⅣ)核蛋白(NP)、牛γ干扰素(BoIFN-γ)及新城疫病毒(NDV)F蛋白能够被MDV-1 VP22转运,而鸡法氏囊病病毒(IBDV)蛋白VP2不能被MDV-1 VP22转运,上述结果说明MDV-1 VP22蛋白能够作为蛋白转运的载体,但对所转运的蛋白具有选择性.  相似文献   

15.
For the identification of serotype-specific antigens of Marek's disease virus (MDV) serotype 1 (MDV1) or serotype 2 (MDV2), a total of 24 hybridoma clones, secreting monoclonal antibodies (MAbs) against CVI-988 (MDV1) or HPRS-24 (MDV2) strain, were established and characterized by immunofluorescence assay, virus neutralization and immunoprecipitation analysis. Based upon the molecular weights (mol. wt.) of the immunoprecipitated polypeptides, the MAbs were subdivided into 7 groups. Among them, two groups of MAbs reacted with antigens that have not been reported, were identified. MAbs belonging to the first group reacted with CVI-988- and MDV2-specific antigens with mol. wt. ranging from 29 K to 34 K (29/34 K). This antigen was not found in cells infected with Md/5 and JM strains of MDV1, and the results of kinetic analysis of antigen expression showed this antigen appeared to be related to late membrane antigens. MAbs belonging to the second group immunoprecipitated MDV2-specific antigens with mol. wt. of 37 K, 33 K and 31 K from HPRS-24-infected cells or with those of 37 K, 34 K and 31 K from SB-1(MDV2)-infected cells, and these antigens appeared to be related to early antigens. MAbs belonging to the other 5 groups included those which recognized similar antigens reported previously or the antigens characterized insufficiently in this study.  相似文献   

16.
R F Silva 《Avian diseases》1992,36(3):521-528
There are no simple, direct methods to reliably distinguish oncogenic serotype 1 Marek's disease viruses (MDVs) from their attenuated variants. The present study was an attempt to apply polymerase chain reaction (PCR) to develop a rapid and sensitive assay for the presence of the MDV genome. PCR oligos were chosen to flank the 132-base-pair tandem direct repeats in the serotype 1 MDV genome. The PCR reaction was specific for serotype 1 MDVs, amplifying fragments corresponding to one to three copies of the tandem repeats present in Md11/8, JM/102W, and GA viruses. A high-molecular-weight DNA smear was observed when the DNA from an attenuated Md11/100 was PCR-amplified. Use of the PCR technique allowed the detection of two copies of the 132-base-pair repeat in the DNA extracted from MDV-induced lymphomas removed from two chickens. No DNA was amplified from the DNA extracted from lymphomas induced by either an avian leukosis virus (RAV-1) or reticuloendotheliosis virus (chick syncytial virus).  相似文献   

17.
18.
《中国兽医学报》2016,(9):1501-1506
对1例感染超强马立克氏病病毒的病例进行确诊,对感染病毒的Meq基因进行比较分析。采用病理解剖、PCR检测、病毒分离、动物试验和Meq基因序列分析,对感染病毒进行研究。病理解剖结果为病死鸡的肝脏、脾脏、腺胃、肌胃、十二指肠表现为肿瘤病变。PCR检测结果为病死鸡的组织病料感染马立克氏病病毒。病毒分离和动物试验结果证明该感染病毒是1株马立克氏病超强毒株,该病毒可以引起免疫过CVI988疫苗的鸡发病。Meq基因序列分析表明该病毒与7株马立克氏病病毒参考毒株的同源性为98.8%~99.6%,该病毒在Meq的第115、119和176位氨基酸突变同国内流行株,该检测病毒在Meq的第217位氨基酸突变同超超强马立克氏病毒株。结果表明,通过病理解剖、PCR检测、基因序列分析、病毒分离和动物试验,确诊病鸡感染超强马立克氏病病毒。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号