首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have reported positive, negative, or neutral effects on maize yield by the application of biochar and/or compost in the presence or absence of inorganic fertilization. This study investigated the influence of biochar, compost, and mixtures of the two, along with N fertilization, on maize (Zea mays L.) growth and nutrient status in two agricultural Mediterranean soils. Biochars (BC) were produced from grape pomace (GP) and rice husks (RH) by pyrolysis at 300°C (BC-GP; BC-RH). Maize was grown for 30 days after seedling emergence in a greenhouse pot trial in two Mediterranean soils (Sandy Loam-SL and Loam-L) amended with biochar or/and compost (BC-GP+compost; BC-RH+compost) at 2% (w/w) application rate with nitrogen (N) fertilization. The addition of BC-GP amendment resulted in the highest increase of aboveground dry weight (16 g/pot) compared to the control (6.27 g/pot) in SL soil, whereas in L soil the highest increase of aboveground dry weight resulted from BC-RH+compost (13.03 g/pot) compared to the control (2.43 g/pot). The addition of BC-GP+compost significantly increased phosphorus (P) concentration of the aboveground and belowground tissues only in L soil. Potassium (K) concentration of aboveground and belowground tissues significantly increased almost by all the amendments with the greatest increase being observed after the addition of BC-GP+compost in SL soil. To conclude, biochar addition could enhance plant growth, although soil conditions, type of biochar and additional fertilization should receive special attention in order to be used as a tool for sustainable agriculture.  相似文献   

2.
林志斌  谢祖彬  刘钢  刘琦  孙波  王桂君  朱建国 《土壤》2014,46(6):1083-1090
通过将不同生物质原料(木屑和鸡粪)放置在低温(400°C)无氧条件下进行裂解,形成不同生物炭,研究了不同生物炭对湿地松不同组分(树叶、树皮、树枝和树干)生物量、碳密度、碳储量以及碳素年净固定量的影响。试验结果表明:以木屑和鸡粪为原料制备而成的两种生物炭p H和养分含量等性质差异显著;生物质裂解后,木屑p H由8.25降到木屑炭的7.46,而鸡粪炭p H为10.48,高于鸡粪的9.35;同时,C、N、P和K元素在两种生物炭中均出现富集,鸡粪生物炭N、P和K含量显著高于木屑生物炭,但两种生物炭速效P和速效K占总P、总K的比例与原料相比均出现显著降低。经过一年试验,鸡粪生物炭还田处理显著提高湿地松各个组分生物量,其中湿地松地上部分生物量增量是对照的4.92倍,而木屑炭处理对湿地松各个组分生物量影响不显著;木屑炭和鸡粪炭处理改变湿地松生物量增量在树叶和树皮中的分配比例,但对湿地松各个组分的碳密度影响不显著;鸡粪炭处理能显著提高湿地松各个组分碳素年净固定量,该处理湿地松地上部分碳素年净固定量(99.64 g/棵)分别是木屑炭处理(19.85 g/棵)和对照处理(25.77 g/棵)的5.02倍和3.87倍。由此可见,鸡粪炭可以作为提高林木土壤肥力的改良剂。  相似文献   

3.
The application of compost to calcareous soils by farmers is a well-established practice and has been shown to improve yields. However, incorporation of biochar and mixture of biochar and compost into calcareous soils is a relatively novel concept for improving soil quality and yield since calcareous soils comprise a large scale of soils worldwide. The objective of this study was to determine the effects of the co-application of biochar and compost on the soil properties, nutrient status and grain yield of rice in calcareous sandy soil. The experiment was conducted in a factorial arrangement based on randomized complete block design with three replications. The compost application rates were 1% and 3% (w/w; compost/soil) and the applied rates of biochars (rice straw biochar, RSB; sugarcane bagasse biochar, SBB) were 0.3% and 0.9% (w/w; biochar/soil). The results showed that soil pH decreased with increasing application rates of either compost or biochars. However, soil EC was enhanced through increasing the application rates of compost and biochars. The co-application of biochar and compost improved soil total N and available P concentrations. The soil available K increased with increasing the rate of incorporated biochars and compost. An increase of soil available K was more predominate with the application of RSB than SBB. The RSB, also, added a considerable amount of silicon (Si) to the soil. The co-incorporation of biochars and compost enhanced soil available concentrations of Fe, Zn, Cu, and Mn as well. The RSB was more effective than the SBB in grain yield enhancement almost certainly due to a higher Si content in RSB. Furthermore, the concurrent application of biochars and compost increased grain yield more than applying them individually. A higher application rate of biochar and compost induced a higher grain yield. The co-application of highest rates of RSB (0.9%) and compost (3%) induced the highest grain yield (26.1 g/pot) among the treatments. The increase in yield compare to the control were 321% and 260% for 0.9% RSB + 3% compost and 0.9% SBB + 3% compost, respectively. The increase in the grain yield was due to an improvement in the soil chemical properties and nutrients enhancement. Finally, the co-application of the highest rate of RSB (0.9%) and compost (3%) is recommended to obtain the appropriate rate of rice grain yield in calcareous sandy soil.  相似文献   

4.
This study was conducted to evaluate whether biochar, produced by pyrolysis at 300°C from rice husk and grape pomace (GP), affects plant growth, P uptake and nutrient status. A 3-month period of ryegrass (Lolium perenne L.) cultivation was studied on two Mediterranean agricultural soils. Treatments comprised control soils amended only with compost or biochar, and combinations of biochar plus compost, with the addition of all nutrients but P (FNoP) or without any fertilization at all (NoF). Application of both types of biochar or/with compost, in the presence of inorganic fertilization except P, significantly increased (< 0.05) dry matter yield of ryegrass (58.9–77.6%), compared with control, in sandy loam soil, although no statistically significant increase was observed in loam soil. GP biochar and GP biochar plus compost amended loam soil harvests gave higher P uptake than control, in the presence of inorganic fertilization except P, whereas in sandy loam soil, a statistical increase was recorded only in the last harvest. In addition, Mn and Fe uptake increased with the addition of the amendments in both soils, while Ca increased only in the alkaline loam soil. Biochar addition could enhance ryegrass yield and P uptake, although inorganic fertilization along with soil condition should receive special attention.  相似文献   

5.
Integrating biochar into cattle diets has recently emerged as a potential management practice for improving on-farm productivity.Yet,information concerning the cycling of biochar-manure mixtures is scarce.A 70-d incubation experiment was conducted within two surface(0–15 cm)Mollisols with contrasting textures,i.e.,sandy clay loam(Raymond)and clayey(Lethbridge),to evaluate the effects of biochar(3 Mg ha-1)on cumulative greenhouse gas(GHG)emissions and related fertility attributes in the presence or absence of cattle manure(120 Mg ha-1).Five treatments were included:i)non-amended soil(control,CK),ii)soil amended with pinewood biochar(B),iii)soil amended with beef cattle manure(M)(manure from cattle on a control diet),iv)soil amended with biochar-manure(BM)(manure from cattle on a control diet,with pinewood biochar added at 20 g kg-1of diet dry matter),and v)soil amended with B and M at the aforementioned rates(B+M).A total of 40 soil columns were prepared and incubated at 21℃and 60%–80%water-holding capacity.On average,total CO2fluxes increased by 2.2-and 3.8-fold under manure treatments(i.e.,M,BM,and B+M),within Raymond and Lethbridge soils,respectively,relative to CK and B.Similarly,total CH4 fluxes were the highest(P<0.05)in Raymond soil under B+M and BM relative to CK and B,and in Lethbridge soil under M and BM relative to CK and B.In Lethbridge soil,application of BM increased cumulative N2O emissions by 1.8-fold relative to CK.After 70-d incubation,amendment with BM increased(P<0.05)PO_4-P and NO_3-N+NH_4-N availability in Raymond and Lethbridge soils compared with B.A similar pattern was observed for water-extractable organic carbon in both soils,with BM augmenting(P<0.05)the occurrence of labile carbon over CK and B.It can be concluded that biochar,manure,and/or biochar-manure have contrasting short-term effects on the biogeochemistry of Mollisols.At relatively low application rates,biochar does not necessarily counterbalance manure-derived inputs.Although BM did not mitigate the flux of GHGs over M,biochar-manure has the potential to recycle soil nutrients in semiarid drylands.  相似文献   

6.
The effects of using intermittent aeration during composting on ammonia emissions and dry matter loss were determined during composting of hog manure amended with sawdust. Composting trials lasted three weeks and used pilot-scale 200 liter vessels (four). The experimental design used replication of two treatments, continuous aeration (CA) and intermittent aeration (IA), in two series of experiments (total of eight tests). In the CA sequence, compost temperatures were controlled at 60°C using feedback control on high and low air flow fans while the IA sequence consisted of five minutes of air flow followed by 55 minutes of rest. Mixing ratios of hog manure to sawdust were 1:1.1 and 1:1.7 dry weight basis with resulting C:N ratios of 18.2 ± 1.2 and 23.7 ± 2.2 for the two series of tests. Airflow reduction was 63 percent for IA compared to CA. Percent nitrogen loss between treatments were moderately statistically different (α = 0.14) with average percent nitrogen loss at 29.7 percent for CA and 23.0 percent for IA. Nitrogen loss as ammonia-N was higher for CA than IA (25.9 versus 14.3) but was not statistically different. No significant differences existed in dry solids loss between treatments and the physical and chemical properties of the compost produced from IA were similar to that from CA for each series. Results showed that IA compared to CA may be a practical way to reduce nitrogen loss and ammonia emissions during composting of swine manure with sawdust.  相似文献   

7.
Composting has become an increasingly popular manure management method for dairy farmers. However, the design of composting systems for farmers has been hindered by the limited amount of information on the quantities and volumes of compost produced relative to farm size and manure generated, and the impact of amendments on water, dry matter, volume and nitrogen losses during the composting process. Amendment type can affect the free air space, decomposition rate, temperature, C:N ratio and oxygen levels during composting. Amendments also initially increase the amount of material that must be handled. A better understanding of amendment effects should help farmers optimize, and potentially reduce costs associated with composting. In this study, freestall dairy manure (83% moisture) was amended with either hardwood sawdust or straw and composted for 110-155 days in turned windrows in four replicated trials that began on different dates. Initial C:N ratios of the windrows ranged from 25:1 to 50:1 due to variations in the source and N-content of the manure. Results showed that starting windrow volume for straw amended composts was 2.1 to 2.6 times greater than for sawdust amendment. Straw amended composts had low initial bulk densities with high free air space values of 75-93%. This led to lower temperatures and near ambient interstitial oxygen concentrations during composting. While all sawdust-amended composts self-heated to temperatures >55°C within 10 days, maintained these levels for more than 60 days and met EPA and USDA pathogen reduction guidelines, only two of the four straw amended windrows reached 55°C and none met the guidelines. In addition, sawdust amendment resulted in much lower windrow oxygen concentrations (< 5%) during the first 60 days. Both types of compost were stable after 100 days as indicated by CO2 evolution rates <0.5 mg CO2-C/g VS/d. Both types of amendments also led to extensive manure volume and weight reductions even after the weight of the added amendments were considered. However, moisture management proved critical in attaining reductions in manure weight during composting. Straw amendment resulted in greater volume decreases than sawdust amendment due to greater changes in bulk density and free air space. Through composting, farmers can reduce the volume and weights of material to be hauled by 50 to 80% based on equivalent nitrogen values of the stabilized compost as compared to unamended, uncomposted dairy manure. The initial total manure nitrogen lost during composting ranged from 7% to 38%. P and K losses were from 14 to 39% and from 1 to 38%, respectively. There was a significant negative correlation between C:N ratio and nitrogen loss (R2=0.78) and carbon loss (R2=0.86) during composting. An initial C:N ratio of greater than 40 is recommended to minimize nitrogen loss during dairy manure composting with sawdust or straw amendments.  相似文献   

8.
Bulking agents and bedding materials used on farms for composting manures affect the time required for composts to mature. The effects of these materials on guidelines for the use of composted manures in potting mixes are not fully known. Several chemical and biological compost characteristics were mentioned and a cucumber plant growth greenhouse bioassay was performed on samples removed from windrows during composting of: (i) dairy manure amended with wheat straw; (ii) dairy manure amended with sawdust (mostly Quercus spp.); and (iii) pig manure amended with sawdust and shredded wood (mostly Quercus spp.). Dry weights of cucumber seedlings grown in fertilized and unfertilized potting mixes amended with composts (30%, v/v) having stability values of <1 mg CO2-C g-1 dw d−1, did not differ significantly from those in a control peat mix. Only the most mature dairy manure-wheat straw compost samples consistently established sufficient N concentrations in cucumber shoots in unfertilized treatments. For the dairy manure-wheat straw compost, all possible subset regression analyses of compost characteristics versus cucumber plant dry weight revealed that any of several compost characteristics (electrical conductivity-EC, compost age, total N, organic C, C-to-N ratio, ash content, CO2 respirometry, Solvita CO2 index and the Solvita® Compost Maturity Index) predicted growth of cucumber in the unfertilized treatments, and thus maturity. In contrast, at least two characteristics of the dairy manure-sawdust compost were required to predict growth of cucumber in the unfertilized treatments. Effective combinations were EC with compost age and the Solvita® maturity index with total N. Even five compost characteristics did not satisfactorily predict growth of cucumber in the non-fertilized pig manure-wood compost. Nutrient analysis of cucumber shoots indicated N availability was the principal factor limiting growth in potting mixes amended with the dairy manure-sawdust compost, and even more so in the pig manure-wood compost even though the compost had been stabilized to a high degree (<1 mg CO2-C g−1 dw d−1). Maturity of the composted manures, which implies a positive initial plant growth response of plants grown without fertilization, could not be predicted by compost characteristics alone unless the bulking agent or bedding type used for the production of the composts was also considered.  相似文献   

9.
Both biochar and compost may improve carbon sequestration and soil fertility; hence, it has been recommended to use a mixture of both for sustainable land management. Here, we evaluated the effects of biochar–compost substrates on soil properties and plant growth in short rotation coppice plantations (SRC). For this purpose, we planted the tree species poplar, willow, and alder in a no‐till field experiment, each of them amended in triplicate with 0 (= control) or 30 Mg ha?1 compost or biochar–compost substrates containing 15% vol. (TPS15) and 30% vol. biochar (TPS30). For three years running, we analyzed plant growth as well as soil pH, potential cation exchange capacity (CEC), stocks of soil organic carbon (SOC), total N, and plant‐available phosphate and potassium oxide.Biochar‐compost substrates affected most soil properties only in the topsoil and for a limited period of time. The CEC and total stocks of SOC were consistently elevated relative to the control. After three years the C gain of up to 6.4 Mg SOC ha?1 in the TPS30 plots was lower than the added C amount. Especially in the case of TPS30 treatment, C input was characterized by the greatest losses after application, although the black carbon of the biochar was not degraded in soil. Additionally, tree growth and woody biomass yield did not respond at all to the treatments. Overall, there were few if any indications that biochar–compost substrates improve the performance of SRC under temperate soil and climate conditions. Therefore, the use of biochar for such systems is not recommended.  相似文献   

10.
《Applied soil ecology》2008,38(3):247-255
Soil microbial community structure and crop yield was investigated in field tomato production systems that compared black polyethylene mulch to hairy vetch mulch and inorganic N to organic N. The following hypotheses were tested: (1) hairy vetch cover cropping increases crop yield and significantly affects soil microbial community structure when compared to the standard plastic mulch and synthetic fertilizer-based system; (2) within plastic mulch systems, organic amendments will increase crop yield and significantly affect soil microbial community structure when compared to synthetic fertilizer; (3) crop yields and microbial community structure will be similar in the hairy vetch cover cropping and the organic amended plasticulture systems. Treatments consisted of ammonium nitrate (control), hairy vetch cover crop, hairy vetch cover crop and poultry manure compost (10 Mg/ha), three levels of poultry manure compost (5, 10, and 20 Mg/ha), and two levels of poultry manure (2.5 and 5 Mg/ha). Black polyethylene mulch was used in all treatments without hairy vetch. Fatty acid analysis was used to characterize the total soil microbial community structure, while two substrate utilization assays were used to investigate the community structure of culturable bacteria and fungi. Crop yield was not significantly increased by hairy vetch cover cropping when compared to black polyethylene mulch, although microbial community structure was significantly affected by cover cropping. Under black polyethylene mulch, crop yields were significantly increased by the highest levels of compost and manure when compared to inorganic fertilizer, but there was no detectable effect on soil microbial community structure. When cover cropping was compared to organic amended plasticulture systems, crop yields were similar one year but dissimilar the next. However, hairy vetch cover cropping and organic amendments under black plastic mulch produced significantly different soil microbial community structure.  相似文献   

11.
The objective of this study was to evaluate effects of spent mushroom substrate (SMS) and chicken manure compost (ChMC) on growth, yield, and fruit quality of honeydew melon and to determine the most suitable rate of SMS for honeydew melon production. Honeydew melon seedlings grown in four different rates of SMS were planted in the net house with two different organic material rates (M1, M2). The experiment was arranged in a split-plot design. The results showed that increasing of organic materials in the net house increased growth, yield, and quality of honeydew melon, due to enhancing of pH, organic matter (OM,) and the nutrient concentrations in the soil. However, growing media with 40 % SMS + 60 % ChMC in the nursery period and the rate of 10 tons SMS + 10 tons ChMC ha?1 in the net house period gave the best yield and fruit quality of honeydew melon.  相似文献   

12.
? The increasing availability of composted soil amendments derived from residues not normally encountered in farming has prompted this study of fish scrap compost. An on-farm field trial with maize (Zea mays) was established to test the effects of composted fish scrap (CFS) in comparison to un-composted farmyard manure (FYM) and inorganic nutrients (NPK). Fish scraps were previously composted with sawdust. Farm manure resulted from bedding dairy animals with a sawdust/straw mixture. Both CFS and FYM had C:N ratios of approximately 31. Yields and nutrient content were evaluated following application of 0.50, 23 and 106 Mg/ha of NPK, FYM and CFS, respectively which were applied based on estimated N-release. Ear-node leaves sampled at tasseling and analyzed for major and minor nutrients indicated that phosphorus was very significantly lower in compost compared to manure and NPK. Statistical analysis revealed that were was no significant differences in yields which decreased in the order FYM > NPK > CFS > Control. Simple regression analysis indicated that no single tissue trait explained yields but multiple regression showed that P and Cu levels in tissue explained 55% of yield variation (p=0.026). Apparently, the relatively high C:N of aged CFS and FYM had little or no effect on growth while slightly but not significantly decreasing plant total-N in CFS plots. The study underscores the fact that previous soil conditions on the farm must be accounted for before traits like C:N or other mineral characteristics of amendments are used to predict yield potential.  相似文献   

13.
Intensive management of planted forests may result in soil degradation and decline in timber yield with successive rotations.Biochars may be beneficial for plant production,nutrient uptake and greenhouse gas mitigation.Biochar properties vary widely and are known to be highly dependent on feedstocks,but their effects on planted forest ecosystem are elusive.This study investigated the effects of chicken manure biochar,sawdust biochar and their feedstocks on 2-year-old Pinus elliottii growth,fertilizer N use efficiency (NUE),soil N2O and CH4 emissions,and C storage in an acidic forest soil in a subtropical area of China for one year.The soil was mixed with materials in a total of 8 treatments:non-amended control (CK);sawdust at 2.16 kg m-2 (SD);chicken manure at 1.26 kg m-2 (CM);sawdust biochar at 2.4 kg m-2 (SDB);chicken manure biochar at 2.4 kg m-2 (CMB);15N-fertilizer alone (10.23 atom% 15N) (NF);sawdust biochar at 2.4 kg m-2 plus 15N-fertilizer (SDBN) and chicken manure biochar at 2.4 kg m-2 plus 15N-fertilizer (CMBN).Results showed that the CMB treatment increased P.elliottii net primary production (aboveground biomass plus litterfall) and annual net C fixation (ANCF) by about 180% and 157%,respectively,while the the SDB treatment had little effect on P.elliottii growth.The 15N stable isotope labelling technique revealed that fertilizer NUE was 22.7% in CK,25.5% in the NF treatment,and 37.0% in the CMB treatment.Chicken manure biochar significantly increased soil pH,total N,total P,total K,available P and available K.Only 2% of the N in chicken manure biochar was available to the tree.The soil N2O emission and CH4 uptake showed no significant differences among the treatments.The apparent C losses from the SD and CM treatments were 35% and 61%,respectively;while those from the CMB and SDB treatments were negligible.These demonstrated that it is crucial to consider biochar properties while evaluating their effects on plant growth and C sequestration.  相似文献   

14.
Yang  Zhaoxue  Liang  Jie  Tang  Lin  Zeng  Guangming  Yu  Man  Li  Xiaodong  Li  Xuemei  Qian  Yingying  Wu  Haipeng  Luo  Yuan  Mo  Dan 《Journal of Soils and Sediments》2018,18(4):1530-1539
Purpose

Heavy metal pollution in soils has become a global environmental concern. The combination of biochar and compost has already been proved to be an attractive method in contaminated soil. The objective was to study the sorption-desorption characteristics of Cd, Cu, and Zn onto soil amended with combined biochar-compost.

Materials and methods

In this study, the soil was amended with combinations of biochar and compost with different ratios at 10% (w/w). To determine the sorption-desorption behaviors of heavy metals by biochar-compost amendment with different ratios, we determine the effects of different ratios on soil properties and use batch experiments to investigate sorption-desorption behaviors of Cd, Cu, and Zn.

Results and discussion

The results show that the Langmuir and Freundlich model can well describe the adsorption isotherm of Cd, Cu, and Zn in the soils with or without biochar-compost combinations. The incorporation of amendment combinations into soil significantly promotes the sorption affinity of soil on metals. The sorption capacity of Cd and Zn was improved as the compost percentage rose in biochar-compost more likely due to the increase of organic matter and available phosphorus, while that of Cu was stronger with 10 and 20% biochar addition in biochar-compost combinations likely as the result of the formation of new specific adsorption sites and the mobile Cu adsorption in compost after adding a certain amount of biochar in amendment mixtures. Additionally, a certain proportion of biochar applied into amendment mixtures could suppress desorption of Cd and Cu by pH change, and the Zn desorption rate gradually decreased as the compost ratio increased in amendment mixtures.

Conclusions

The results indicated that the various ratios between biochar and compost have a significant effect on sorption-desorption of metals in soil, which helps us consider the effective combination of biochar and compost in soil.

  相似文献   

15.
Synthetic aggregates (SA) were developed as alternative potting media for ornamental plant production. Four different types of SA were developed from low productive acidic soil and paper waste with adding different types of compost amendments. Compost amendments used in the experiment were cattle manure compost, chicken manure compost, and leaf manure compost. Popular ornamental plant french marigold (Tagetes patula) was used in this experiment. SA with different compost amendments gave considerable physical and chemical parameters compared to commercial zeolite media. Moreover, plant grown in SA media showed better growth and nutritional parameters compared to plant grown in zeolite media. The plant height, number of flowers per plant, shoot fresh weight, shoot dry weight, root length, root fresh weight and root dry weight obtained from three different compost based SA were increased by in the ranges of 8.14--14.41%, 5.66--9.46%, 25.52--31.47%, 9.44--16.13%, 6.14--9.23%, 2.40--8.47% and 8.85--17.05%, respectively, compared to zeolite control.  相似文献   

16.
The application of biochar produced from wood and crop residues, such as sawdust, straw, sugar bagasse and rice hulls, to highly weathered soils under tropical conditions has been shown to influence soil greenhouse gas (GHG) emissions. However, there is a lack of data concerning GHG emissions from soils amended with biochar derived from manure, and from soils outside tropical and subtropical regions. The objective of this study was to quantify the effect on emissions of carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) following the addition, at a rate of 18 t ha−1, of two different types of biochar to an Irish tillage soil. A soil column experiment was designed to compare three treatments (n = 8): (1) non-amended soil (2) soil mixed with biochar derived from the separated solid fraction of anaerobically digested pig manure and (3) soil mixed with biochar derived from Sitka Spruce (Picea sitchensis). The soil columns were incubated at 10 °C and 75% relative humidity, and leached with 80 mL distilled water, twice per week. Following 10 weeks of incubation, pig manure, equivalent to 170 kg nitrogen ha−1 and 36 kg phosphorus ha−1, was applied to half of the columns in each treatment (n = 4). Gaseous emissions were analysed for 28 days following manure application. Biochar addition to the soil increased N2O emissions in the pig manure-amended column, most likely as a result of increased denitrification caused by higher water filled pore space and organic carbon (C) contents. Biochar addition to soil also increased CO2 emissions. This was caused by increased rates of C mineralisation in these columns, either due to mineralisation of the labile C added with the biochar, or through increased mineralisation of the soil organic matter.  相似文献   

17.
Wong  J. W. C.  Jiang  R. F.  Su  D. C. 《Water, air, and soil pollution》1998,106(1-2):137-147
A greenhouse pot experiment was conducted to investigate the boron (B) release capacity of coal fly ash and sewage sludge mixtures, and the accumulation of B in Agropyron elongatum after two consecutive growing seasons. Sludge was amended with fly ash at application rates of 0, 5, 10, 35, and 50% (w/w), and each mixture was then mixed with a loamy soil at either 1:1 or 1:5 (v/v). Both water soluble B (WS-B) and hot water soluble B (HWS-B) increased with increasing fly ash amendment rate. Shoot B concentrations also increased significantly according to the rate of ash amendment. The ash-sludge mixture improved plant growth with the highest total dry weight yield at 10% ash amendment rate. Boron toxicity symptoms in leaf tips were observed at 35% and 50% ash amendment rate at both soil mixing ratios. Hot water soluble B and WS-B decreased significantly after consecutive cropping of Agropyron especially at low ratio of mixure with soil i.e., 1:5 (v/v). However, soil available B contents at ≥ 35% ash application rate and 1:1 (v/v) soil mixing ratio were still excessive for normal plant growth, suggesting that deleterious effects on plant growth would be experienced in later seasons owing to the high amounts of residual B.  相似文献   

18.
This research work was performed to investigate the possibility of using composted herb residues (C1), co-composted sewage sludge with sawdust (C2), co-composted pig manure with sawdust (C3), and co-composted pig manure with spent mushroom (C4) in the production of horticultural seedlings to replace part of peat in the growing media. The proportions of each compost in the mixtures elaborated with peat were 50%, 75%, and 100% (v/v), respectively. The substrate of 100% commercial peat was used as the control. First, some physical, physical-chemical, and chemical properties of these substrates were determined. Second, four kinds of plants tomato, cucumber, bermudagrass, and impatiens were used to evaluate the possibility of different composts to replace part of peat. The seed germination rate, fresh weight and nutrient concentrations of seedling were then measured. We found that the physical, physical-chemical and chemical properties of these substrates were statistically influenced by the type and the proportion of compost in the substrates. The substrates elaborated with C1 and C2 showed adequate physical and chemical properties for their use as substrate in horticultural seedlings production. The highest germination of cucumber, tomato, bermudagrass and impatiens all occurred at C1 based substrate. Seedling grown in the C1 and C2 based substrate reached better growth and nutrition than peat. Our results suggested that the C1 and C2 were good alternative to peat-based substrate for seedling production, especially at the rate of 75% and 100% of C1 and 50% of C2, which have shown beneficial effects on the seedling production of cucumber, tomato, bermudagrass and impatiens compared to the control. However, C3 and C4 were not always adequately used in substituting expensive peat.  相似文献   

19.
磷酸二氢钙与生物质共热解提高生物炭固碳效果   总被引:1,自引:0,他引:1  
以木屑和牛粪为生物质原材料,通过添加磷酸二氢钙与生物质原材料共同热解制备生物炭,研究其对生物炭形成过程中碳保留量及稳定性的研究,以期为提高生物炭的固C能力提供新思路,为全面了解生物炭固碳减排效果提供理论参考。结果表明,与不添加磷酸二氢钙制备的生物炭相比,添加磷酸二氢钙制备的木屑和牛粪生物炭碳保留量则分别提高了31.3%和26.1%。尽管与不添加磷酸二氢钙制备的生物炭相比,添加磷酸二氢钙制备的牛粪生物炭被过氧化氢氧化损失C的量增加了8.8倍,但添加磷酸二氢钙制备的木屑生物炭被过氧化氢氧化损失C的量减少了93.1%。此外,添加磷酸二氢钙制备的木屑和牛粪生物炭还降低了其微生物好氧矿化损失C的量,降幅分别为90.3%和72.8%。可见,通过添加磷酸二氢钙对生物质原材料进行共热解,达到了对生物炭进行以固"C"为目的的设计效果,并且效果取决于生物炭原材料的类型。  相似文献   

20.
A major input in intensive organic agriculture is nutrient-rich liquid fertilizers. Guano and other fowl manure are frequently digested in water extracts, and the supernatant is supplied as fertilizer. The resultant manure biowaste (MBW) is commonly disposed of to the environment, posing potential pollution and health risks. The study aims were to determine two types of fowl MBWs for their chemical properties before and after lime treatment and to test their reuse potential as soil amendment. Guano and layer manure were digested, and the residues?? chemical properties were analyzed before and after lime treatment. MBWs were then air-dried and used as a soil amendment in a parsley-growing experiment. The lime-treated MBW composition met the European standards for high-quality biowaste compost. Both digested and lime-treated MBWs had residual nitrogen, 3% and 1% in guano and layer manure, respectively. Parsley grown in soil amended with layer MBW had 100% survival, high yield, and good crop quality compared with controls. Plants grown with soil amended with guano biowaste exhibited lower yield and only 50% survival. These findings indicate that the current practice of disposing guano biowaste to the environment may pollute soil and water bodies, while the land spread of lime-treated layer MBW is safe and may improve soil fertility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号