首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mycorrhizae are fungal symbionts forming mutualistic relationship with plant roots. In this study, surface-sterilized potato tubers were sown in earthen pots filled with sterile soil. Half of the pots were inoculated with sterilized arbuscular mycorrhizal fungi (AMF) spores and sterilized inoculated maize root fragments, and another half without any AMF inoculation representing control. Inoculation was done twice 3 days before sowing the tubers and on the onset of seedling emergence. Plants, along with their controls, were sampled at 20-day intervals upto 80 days after tuber initiation. The tubers of potato are shown to present a higher level of metabolites and mineral nutrition in the mycorrhizal inoculated compared to the non-inoculated. The results showed that AMF has a potential in enhancing potato production by increasing the storage metabolites, mineral nutrition in tubers and nitrogen assimilating enzymes in plant.  相似文献   

2.
Abstract

Potato (Solanum tuberosum) showed a well-established mutualistic association with arbuscular mycorrhizal fungi. In the present study, earthen pots containing autoclaved soil were taken in which surface sterilized potato seeds were sown. The seed sowed earthen pots were inoculated by sterilized spores of arbuscular mycorrhizal fungi along with sterilized inoculated maize-root fragments, while the rest half of the seed filled pots, without any inoculation depicting control but were provided with non-inoculated maize root fragments. The inoculation was performed twice; first inoculation was done 3 days prior to sowing of potato seeds and second at the time of seedling emergence. Sampling of the inoculated as well as of control plants was performed at 20-day intervals till 80?days after tuber initiation. An increment in the level of metabolites as well as mineral nutrient was found in mycorrhizal inoculated potato tubers in contrast to non-inoculated. Our work demonstrates that inoculation has a great potential in enriching storage metabolites and nutrients in potato plant in low yielding soils.  相似文献   

3.
丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)和根围促生细菌(plant growthpromoting rhizobacteria,PGPR)能降解有毒有机物,但分解土壤中残留甲胺磷农药尚未见报道。本试验旨在测定AMF和PGPR矿化甲胺磷的效应。试验设甲胺磷0、50、100和150μg g-1下,对番茄(Lycospersicon esculentum,品种金冠)接种AMF Glomus mosseae(Gm)、Glomus etunicatum(Ge)、PGPR Bacillus subtilis(Bs)、Bacillus sp.B697(Bsp)、Pseudomonas fluorescens(Pf)、Gm+Bs、Gm+Bsp、Gm+Pf、Ge+Bs、Ge+Bsp、Ge+Pf和不接种对照,共48个处理。结果表明,接种Gm显著增加了根区土壤和根内PGPR定殖数量,而Pf处理显著提高了AMF侵染率,表明Gm与Pf能够相互促进。甲胺磷100μg g-1水平下,Gm+Pf处理的番茄株高显著高于其他处理,地上部干重显著高于其他处理(Ge+Pf除外),根系干重显著高于对照、PGPR各处理和Ge处理;而根内甲胺磷浓度则显著低于其他处理,茎叶中的则显著低于其他处理(Gm+Bs、Gm+Bsp和Ge+Pf除外)。AMF、PGPR或AMF+PGPR处理均显著降低番茄体内甲胺磷浓度。甲胺磷50~100μg g-1水平下,Gm+Pf显著降低根区土壤中甲胺磷残留量,矿化率达52%~60.6%。AMF和PGPR显著提高了根区土壤中甲胺脱氢酶活性,其中以Gm+Pf组合处理的酶活性最高。表明AMF和PGPR均能促进土壤中残留甲胺磷的降解,Gm+Pf是本试验条件下的最佳组合。  相似文献   

4.
The mycorrhizal enhancement of plant growth is generally attributed to increased nutrients uptake. A greenhouse experiment was conducted to investigate the effect of arbuscular mycorrhizal fungi (AMF) inoculation on the growth and nutrient uptake of directly seeded wetland rice. Seeds were germinated and inoculated with arbuscular mycorrhizal fungi or left uninoculated. The plants were grown at 60% of ‐0.03 MPa to establish the mycorrhizas. After 5 weeks, half of the pots were harvested and the rest were flooded with deionized water to maintain 3–5 cm of standing water until harvesting (122 days after sowing). Mycorrhizal fungal colonization of rice roots was 36.2% at harvest. Mycorrhizal fungi inoculated rice seedlings grew better compared to uninoculated seedlings and had increased grain yield (10%) at the harvesting stage. Shoot and root growth were effectively increased by AMF inoculation at the harvesting stage. The nitrogen (N) and phosphorus (P) acquisition of direct seeding wetland rice were significantly increased by AMF inoculation. The AMF enhanced N and P translocation through the hyphae from soils to roots/shoots to grains effectively.  相似文献   

5.
丛枝菌根对酸枣实生苗耐盐性的影响   总被引:15,自引:4,他引:15       下载免费PDF全文
本文研究了在土中加入不同量NaCl条件下 (0、1 5、3 0、4 5gkg-1干土 )接种丛枝菌根真菌 (AMF)Glomusmosseae对盆栽酸枣 (ZizyphusspinosusHu)实生苗生长及耐盐性的影响。结果表明 ,无论接种与否 ,植株的高度、根茎叶的干鲜重均随土壤NaCl浓度的增加而降低 ,而根、茎、叶和整株的Na浓度及Na全量均随土壤NaCl浓度的增加而增大。在土壤盐浓度相同的条件下 ,接种AMF植株的生长量 (株高、鲜重、干重等 )和叶片的叶绿素含量显著高于不接种植株。接种AMF的植株茎、叶中Na浓度低于不接种植株 ,而根中Na浓度、植株Na总量显著高于不接种植株。盐浓度最大的接种处理 ,其植株生长量和叶片叶绿素含量均高于不加盐不接菌处理。播种时进行盐胁迫处理和播种后 4 0d开始进行盐胁迫处理对菌根的侵染率、植株生长的影响差异不显著。上述四种盐浓度播种时进行盐处理的接种AMF植株的总干重比不接种植株分别提高 16 4 %、14 9%、4 8%、35 % ,在播种后 4 0d进行盐处理的接种AMF的植株比不接种植株分别提高 194 %、12 7%、72 %、4 6 %。结果证明 ,酸枣实生苗具有较强的耐盐性 ,其生长对菌根真菌有很强的依赖性 ,接种菌根真菌提高了其耐盐能力。  相似文献   

6.
The interactive impacts of arbuscular mycorrhizal fungi (AMF, Glomus intraradices) and earthworms (Aporrectodea trapezoides) on maize (Zea mays L.) growth and nutrient uptake were studied under near natural conditions with pots buried in the soil of a maize field. Treatments included maize plants inoculated vs. not inoculated with AMF, treated or not treated with earthworms, at low (25 mg kg−1) or high (175 mg kg−1) P fertilization rate. Wheat straw was added as feed for earthworms. Root colonization, mycorrhiza structure, plant biomass and N and P contents of shoots and roots, soil available P and NO3–N concentrations, and soil microbial biomass C and N were measured at harvest. Results indicated that mycorrhizal colonization increased markedly in maize inoculated with AMF especially at low P rate, which was further enhanced by the addition of earthworms. AMF and earthworms interactively increased maize shoot and root biomass as well as N and P uptake but decreased soil NO3–N and available P concentrations at harvest. Earthworm and AMF interaction also increased soil microbial biomass C, which probably improved root N and P contents and indirectly increased the shoot N and P uptake. At low P rate, soil N mobilization by earthworms might have reduced potential N competition by arbuscular mycorrhizal hyphae, resulting in greater plant shoot and root biomass. Earthworms and AMF interactively enhanced soil N and P availability, leading to greater nutrient uptake and plant growth.  相似文献   

7.
Aims : The aim of this study was to explore interactive effects between quality (types) and quantity (application rates) of biochar as well as of arbuscular mycorrhiza (AM) symbiosis on the growth of potato plants. Methods : A low P sandy loam soil was amended with 0%, 1.5%, or 2.5% (w/w) of either of 4 types of biochar, which were produced from wheat straw pellets (WSP) or miscanthus straw pellets (MSP) pyrolyzed at temperatures of either 550°C or 700°C. Potato plants grown in pots containing the soils or soil biochar mixture were inoculated with or without AM fungus (AMF), Rhizophagus irregularis. The experiment was carried out under fully irrigated semi‐field conditions and plants were harvested 101 days after planting. Results : Application of high temperature biochar decreased growth, biomass and tuber yield of potato plants, while the low temperature biochar had a similar effect on yield as plants grown without biochar amendment. Total biomass of potato plants were decreased with the increasing rate of biochar. Arbuscular mycorrhizal fungus inoculation stimulated the growth of potato plants in all organs, increased tuber biomass significantly in 1.5% MSP700 amended plants, and to a lesser degree for WSP700, MSP550, and WSP550. In addition, plant biomass gain was linearly related to N, P, and K uptake, the ratio of P to N in the leaf of plants indicated that all treatments were mainly P‐limited. A multiple linear regression using P uptake and biochar rate as independent variables explained 91% of the variation in total biomass. The single effect of AMF inoculation, type and rate of biochar affected plant N, P and K uptake similarly. While AMF inoculation significantly increased P uptake in potato plants grown in soil with WSP700 or MSP700 despite of the rate of biochar. In general, application of biochar significantly increased AMF root colonization of potato plants. Conclusions : The application of MSP550 at 1.5% combined with AMF stimulated growth of potato the most. Furthermore, the results indicated that the interactive effect of AMF inoculation, biochar type and application rate on potato growth to a large extent could be explained by effects on plant nutrient uptake.  相似文献   

8.
Arbuscular mycorrhizal fungi (AMF) have the capability to improve crop yields by increasing plant nutrient supply. A pot experiment was conducted under natural conditions to determine the response of AMF inoculation on the growth of maize (Zea mays L.), sorghum (Sorghum bicolor L.), millet (Pennisetum glaucum L.), mash bean (Vigna mungo L.), and mung bean (Vigna radiata. L.) crops during 2008. The experiment was conducted as a completely randomized design in three replications using phosphorus (P)–deficient soil. Three plants were grown in 10 kg soil up to the stage of maximum growth for 70 days. Spores of AMF were isolated from rhizosphere of freshly growing wheat and berseem crops and mixed with sterilized soil with fine particles. Crops were inoculated in the presence of indigenous mycorrhiza with the inoculum containing 20 g sterilized soil mixed with 40–50 AMF spores. Inoculation with AMF improved yield and nutrient uptake by different crops significantly over uninoculated crops. Inoculated millet crop showed 20% increase in shoot dry matter and 21% in root dry matter when compared with other inoculated crops. Increases of 67% in plant nitrogen (N) and iron (Fe) were observed in millet, 166% in plant P uptake was observed in mash beans, 186% in zinc (Zn) was measured in maize, and 208% in copper (Cu) and 48% in manganese (Mn) were noted in sorghum crops. Maximum root infection intensity of 35% by AMF and their soil spore density were observed in millet crop followed by 32% in mash beans. Results suggest that inoculation of AMF may play a role in improving crop production and the varied response of different crops to fungi signifies the importance of evaluating the compatibility of the fungi and plant host species.  相似文献   

9.
Abstract

In general, according to previous studies, pioneer species do not require arbuscular mycorrhizal fungi (AMF) to increase their growth and survival in tropical systems. The aim of this study was to determine the dependence response to AMF of Heliocarpus appendiculatus, a pioneer species, at different phosphorus (P) levels. In a greenhouse experiment, H. appendiculatus seedlings were grown in pots with a sterile vermiculite-sand mixture (1:1). Two sets of pots were set up: One set was inoculated (150 spores per pot) with indigenous AMF from a tropical rain forest at “Los Tuxtlas” (Veracruz, Mexico); the other set was not inoculated. To each set, 0, 0.02, 0.2, and 2 g L?1P was added. All pots were watered with 250 mL of nutrient solution. Mycorrhizal plants showed a higher total dry weight and relative growth rate in 0.02 g L?1P concentration, while nonmycorrhizal plants responded positively at 0.2 g L?1P; a decrease in plant responses at higher P levels was observed in both treatments. H. appendiculatus showed to have higher relative dependence at lower P concentration (≈50%). As levels of P increased, mycorrhizal colonization decreased. Successful growth of pioneer species during succession process may be improved if there is AMF content in soils, prior to disturbance.  相似文献   

10.
[目的]磷极易被土壤吸附和固定,导致土壤中磷有效性较低.研究接种丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)和低磷处理两者交互对紫花苜蓿生长和磷吸收的影响,为提高碱性土壤中磷肥利用率提供理论依据.[方法]以黄绵土和紫花苜蓿(Medicago sativa)为试验材料进行盆栽试验.在施...  相似文献   

11.
菌根化育苗对玉米生长和养分吸收的影响   总被引:2,自引:2,他引:0  
【目的】丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)侵染作物根系形成菌根共生体系对于作物吸收磷具有重要作用,但该结果大多来源于室内受控试验,有限的田间试验因环境条件、试验材料与接种技术等差异致使AMF菌剂应用效果不一。本研究通过玉米菌根化育苗和田间移栽,分析了接种AMF对玉米生长、养分吸收、籽粒产量及养分含量的影响,以期推进菌根技术的实际生产应用。【方法】以自交品系玉米B73为供试作物,于2018年5月至10月在北京市延庆区进行了田间试验。田间小区设置基施磷(+P)和不施磷(–P)处理。供试AMF为Rhizophagus irregularis Schenck&Smith BGC AH01。玉米种子催芽后,分别播入加入AMF菌剂(+M)和菌剂过滤液(–M)的育苗钵内,培养两周后移栽至田间。玉米在田间条件下生长至拔节期时,使用便携式光合仪测定叶片光合速率与气孔导度,取样测定地上部与根部干重和养分元素含量,同时测定菌根侵染率;在玉米完熟期取样,测定籽粒百粒重、籽粒产量及养分含量。【结果】无论田间施磷与否,接菌植株根系的菌根侵染强度和丛枝丰度均显著高于不接菌植株。不施磷情况下,+M处理显著提高了玉米根系干重,玉米生长的菌根依赖性(163.7%)显著高于施磷情形(124.1%)。–P–M处理玉米叶片的光合速率和气孔导度显著低于其他3个处理。–P+M处理玉米叶片的光合参数、玉米地上部和根部磷含量与+P+M均无显著差异。与–P–M处理相比,–P+M显著提高了玉米籽粒产量和百粒重,同时也提高了籽粒中锌、锰、镁等矿质养分的含量,且与+P+M处理相比均无显著差异。【结论】玉米幼苗接种AMF后再移栽到田间,可以显著提高拔节期玉米根系的菌根侵染率,促进玉米地上部和根部对磷及锌、锰和镁的吸收,进而促进玉米的生长,提高籽粒产量和养分含量。本试验条件下,菌根化育苗可以达到与施磷同样的效果,在保障作物不减产的前提下减少磷肥施用量。  相似文献   

12.
Summary Wheat plants (Triticum aestivum) grown in pots and in the field under the Mediterranean climate of the south of France were inoculated with a strain of Azospirillum brasilense. Comparisons with non-inoculated plants grown under the same conditions showed significant responses to inoculation with an increase in the number of fertile tillers, shoot and root dry weight, and root to shoot biomass ratio. The roots of inoculated plants attracted relatively more assimilates than those of the control plants until a late stage of growth (heading stage) but the rhizosphere respiration expressed per unit of root growth was not increased by inoculation. Nitrogen yield, both total and in grains, was also enhanced; however, N percentages of all aerial parts of the plants grown in pots were always statistically lower after inoculation than in the control. At maturity, the N % in seeds was 1.81 and 2.45, respectively. The possible mechanisms of this effect of inoculation under the experimental conditions of this study are discussed.  相似文献   

13.
This study was carried out to investigate the interaction of maize and Aspergillus niger as influenced by arbuscular mycorrhizal fungi (AMF). Three quality protein maize (QPM) genotypes (ILE1-OB, ART-98-SW5-OB and ART-98-SW6-OB) and two market accessions (Ilishan and Shagamu) were evaluated in a pot experiment conducted under natural environment conditions at the Research and Teaching Farm of Babcock University, Ogun State, Nigeria. AMF (Glomus deserticola) in mixtures of soil and root fragments was inoculated at the rate of 15 g per plant, while maize was artificially infected with A. niger (15 cfu ml?1) in each designated pots. The coefficient of emergence (COV), percentage emergence (% E) and disease severity were determined using standard methods. Generally, plants treated with AMF only produced the highest cumulative cob yield (18 g), followed by plants treated with AMF and A. niger (15 g) and then control (12 g), while the least was recorded for only A. niger-treated plants (4 g).  相似文献   

14.
Invasion of non-native species is among the top threats for the biodiversity and functioning of native and agricultural ecosystems worldwide. We investigated whether the herbivory of the slug Arion vulgaris (formerly Arion lusitanicus; Gastropoda), that is listed among the 100 worst alien species in Europe, is affected by soil organisms commonly present in terrestrial ecosystems (i.e. earthworms—Annelida: Lumbricidae and arbuscular mycorrhizal fungi—AMF, Glomerales). We hypothesized that slug herbivory would be affected by soil organisms via altered plant nutrient availability and plant quality. In a greenhouse experiment, we created a simple plant community consisting of a grass, a forb, and a legume species and inoculated these systems with either two earthworm species and/or four AMF taxa. Slugs were introduced after plants were established. Earthworms significantly reduced total slug herbivory in AMF-inoculated plant communities (P?=?0.013). Across plant species, earthworms increased leaf total N and secondary metabolites, AMF decreased leaf thickness. Mycorrhizae induced a shift in slug feeding preference from non-legumes to legumes; the grass was generally avoided by slugs. AMF effects on legume herbivory can partly be explained by the AMF-induced increase in total N and decrease in C/N ratio; earthworm effects are less clear as no worm-induced alterations of legume plant chemistry were observed. The presence of earthworms increased average AMF colonization of plant roots by 140 % (P?<?0.001). Total shoot mass was significantly increased by AMF (P?<?0.001). These data suggest that the feeding behavior of this invasive slug is altered by a belowground control of plant chemical quality and community structure.  相似文献   

15.
In Venezuela, low yields of black bean crops are attributed, in part, to the low manganese (Mn) and phosphorus (P) contents in the Quartzipsamment soils where this crop is usually sown. To test this hypothesis, black bean plants were grown in sterilized sand to simulate soil physical properties, were fertilized with increasing Mn concentrations (0.1-20 μM) and inoculated with a commercial mixture of Rhizobium leguminosarum bv phaseoli strains 127K44, 127K89, 127K105 (+Rh), in combination with arbuscular mycorrhizal fungi Scutellospora heterogama and Entrophospora colombiana (+AMF). Non-inoculated plants fertilized with 6 mM NO3 and 2 mM P served as controls. Plants were harvested at 18, 25, 33, and 40 days after emergence. At all harvests, the greatest growth and highest P and iron (Fe) leaf concentrations occurred in control plants grown in 5 μM Mn. The growth of +AMF plants was promoted at 0.1 μM Mn and inhibited at higher than 1 μM Mn. Whereas, concentrations of 5-10 μM Mn enhanced the growth and the Mn concentrations in leaves of +Rh plants 40 days after emergence. The tripartite symbiosis (+Rh+AMF) decreased growth, nodulation and leaf ureide and chlorophyll concentrations in plants grown in less than 20 μM Mn, imputed to severe ultrastructural alterations in the leaf and nodule tissues. Only +Rh+AMF plants grown in 20 μM Mn were effectively nodulated, AMF colonized and reached the flowering stage, although with diminished growth and low chlorophyll concentrations. Results confirm the high Mn requirement of +Rh plants for growth and nodulation and question the implementation of the tripartite symbiosis to improve yields in early flowering black bean varieties planted in soils deficient in Mn and P.  相似文献   

16.
蒲子天  张林  张弛  王红  王鑫鑫 《土壤》2022,54(5):882-889
丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)能与宿主植物形成共生体,广泛存在于陆地生态系统中。大量研究表明,不同水分条件下,植物通过接种AMF比未接种AMF的植物具有更强的水分吸收能力和更高的水分利用效率。在干旱、盐胁迫下,接种AMF能有效提高宿主植物的耐旱性与耐盐性。本文综述了不同水分条件下,与植物共生的AMF通过扩大植物根系吸收面积、改善根系结构,增强植物根系吸收水分能力的相关研究进展。土壤中根外菌丝网络的形成,不但为植物增加了水分吸收途径(菌根途径),还通过改善植物体内的矿质营养来调节植物对水分的吸收,进而影响植物的水分吸收状况;不同水分条件下,根系被AMF侵染后植物的光合作用、蒸腾作用以及气孔导度都得到增强,植物蒸腾作用的增强能够直接有效的提升植物的蒸腾拉力,因此植物对水分的吸收能力得以提升。同时,被AMF侵染的植物的水分利用率、蒸腾速率以及净光合速率得以提升从而提高了植物的水分利用能力。进一步总结了缺水胁迫(干旱胁迫、盐胁迫)严重影响植物体内的水分状况,通过接种AMF可以有效调节植物在缺水胁迫下植物体内渗透调节物质的含量、抗氧化酶的活性,平衡植物体内离子平衡,提升植物光合、蒸腾作用水平,从而提高植物的耐胁迫能力。本文通过综述不同水分条件下,接种AMF对植物的影响及机制,期望为未来新型菌剂的研发与菌根互作对植物水分状况的改善提供支撑。  相似文献   

17.
Rice plants (Oryza sativa L.) were grown in microcosms containing soil with a diverse bacterial community (control) and inoculated either with an axenic arbuscular mycorrhizal fungus (Glomus intraradices) or an axenic inoculum of protozoan grazers of bacteria (Acanthamoeba castellanii), or both, in a factorial design.Amoebae and mycorrhiza affected the root architecture of rice in opposite directions, with mycorrhiza reducing and protozoa increasing early root growth. Rice biomass did not increase in presence of mycorrhiza (×1.08), but strongly increased in presence of Acanthamoebae (×1.29). The positive effects of amoebae were always reduced when plants were also infected with mycorrhiza. Microbial biomass increased (×1.4) and microbial growth was less limited by phosphorus in presence of mycorrhiza. However, plant phosphorus uptake did not increase, rather, plant concentrations of carbon and nutrients decreased in presence of mycorrhiza, suggesting a sequestration of resources during the establishment of a mycorrhizal network. Amoebae strongly interacted with, and partly compensated for, the effects of mycorrhiza, demonstrating that interactions between AM fungi and the microbial food web in the rhizosphere significantly feed back on early plant performance.  相似文献   

18.
This study is the first report assessing the effect of soil inoculation on the signalling interaction of Bradyrhizobium japonicum, arbuscular mycorrhizal fungi (AMF) and soybean plants throughout the early stages of colonisation that lead to the tripartite symbiosis. In a study using soil disturbance to produce contrasting indigenous AMF treatments, the flavonoids daidzein, genistein and coumestrol were identified as possible signals for regulating the establishment of the tripartite symbiosis. However, it was unclear whether soil disturbance induced changes in flavonoid root accumulation other than through changing the potential for AMF colonization. In this study, soil treatments comprising all possible combinations of AMF and B. japonicum were established to test whether (1) modifications in root flavonoid accumulation depend on the potential for AMF colonization, and (2) synthesis and accumulation of flavonoids in the roots change over time as a function of the early plant-microbial interactions that lead to the tripartite symbiosis. The study was comprised of two phases. First, maize was grown over 3-week periods to promote the development of the AM fungus Glomus clarum. Second, the interaction between soybean, G. clarum and B. japonicum was evaluated at 6, 10, 14 and 40 days after plant emergence. Root colonization by G. clarum had a positive effect on nodulation 14 days after emergence, producing, 30% more nodules which were 40% heavier than those on roots solely inoculated with B. japonicum. The tripartite symbiosis resulted in 23% more N2 being fixed than did the simpler symbiosis between soybean and B. japonicum. The presence of both symbionts changed accumulation of flavonoids in roots. Daidzein and coumestrol increased with plant growth. However, development of the tripartite symbiosis caused a decrease in coumestrol; accumulation of daidzein, the most abundant flavonoid, was reduced in the presence of AMF.  相似文献   

19.
VA菌根对蚕豆吸收钼、磷营养的研究   总被引:8,自引:0,他引:8  
刘柏玉  雷泽周 《土壤学报》1992,29(3):290-295
在肥力较低的灰棕紫泥土上,研究了VA菌根(Glomus epigaeum)对蚕豆(Vicia faba)的钼、磷营养及其效应。盆裁试验结果表明,接种VA菌根不仅有利于植物对磷的吸收,而且还有利于钼的吸收。并能促进根系生长和根瘤形成,进而促进地上部分生长,植株健壮,抗赤斑病能力和抗衰老能力增强,从而使产量和品质等都优于未接种VA菌根处理的植株。其中以Mo+P+VA处理的植株最好,Mo+VA处理的植株次之.  相似文献   

20.
VA菌根对绿豆(Phaseolus aureus)生长及水分利用的影响   总被引:21,自引:1,他引:21  
以绿豆作为实验植物,通过含水量不同的三个等级进行砂培,研究了VA菌根对寄主植物的生长和水分利用的影响.实验结果表明,接种VA菌根不仅有利于植物对磷的吸收,促进植物的生长,而且显著提高了水分的利用效率.接种菌根的绿豆制造1克干物质所需的水分大约是未接种的对照植株所需水分的一半,大大提高了水分的利用率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号