首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Summary The inheritance of resistance to Nasonovia ribis nigri in L. sativa was investigated. Parents and F1 and F2 populations from crosses between the susceptible cultivar Ravel and two resistant breeding lines were tested. In both breeding lines one dominant gene appeared responsible for resistance.  相似文献   

2.
Genetic analysis of resistance to soybean cyst nematode in PI 438489B   总被引:2,自引:0,他引:2  
Soybean (Glycine max L. Merr.) plant introduction PI 438489B is a unique source that has resistance to all known populations of soybean cyst nematode (Heterodera glycines Ichinohe, SCN). This PI line also has many desirable agronomic characteristics, which makes it an attractive source of SCN resistance for use in a soybean breeding program. However, characterization of SCN resistance genes in this PI line have not been fully researched. In this study, we investigated the inheritance of resistance to populations of SCN races 1, 2, 3, 5, and 14 in PI 438489B. PI 438489B was crossed to the susceptible cultivar ‘Hamilton’ to generate F1 hybrids. The random F2 plants and F3 lines were evaluated in the greenhouse for reaction to these five populations of SCN races. Resistance to SCN races 1, 3, and 5 were mostly conditioned by three genes (Rhg Rhg rhg). Resistance to race 2 was controlled by four genes (Rhg rhg rgh rgh). Three recessive genes were most likely involved in giving resistance to race 14. We further concluded that resistance to different populations of SCN races may share some common genes or pleiotropic effects may be involved. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Summary The inheritance of resistance in cauliflower to stalk rot (Sclerotinia sclerotiorum (Lib.) de Bary) was investigated in population from six generations of six crosses. Disease incidence was recorded on 4 parents, 6 Fs 1, 6 Fs 2 and 12 back-crosses in a screenhouse under artificially created epiphytotic conditions. Resistance to stalk rot in this set of parents was found to be polygenic and under the control of recessive genes and due primarily to additive gene action. A breeding strategy emphasizing recurrent selection should lead to improvement in resistance.  相似文献   

4.
T. Danon  Z. Eyal 《Euphytica》1990,47(3):203-214
Summary All possible crosses (including reciprocals) were made among four winter bread (Aurora, Bezostaya 1, Kavkaz, and Trakia) and two Israeli spring wheat cultivars (spring x winter diallel), and among two South American spring wheats (Colotana and Klein Titan) with the same Israeli cultivars (spring x spring diallel) to study the inheritance of resistance to septoria tritici blotch. Parents, F1, F2 and backcrosses were grown in two separated blocks in the field over two years. One block was inoculated with isolate ISR398A1 and another with ISR8036. Each plant was assessed for plant height (cm), days to heading (from emergence or transplanting), and percent pycnidia coverage on the four uppermost leaves. Plant height and maturity had insignificant effects on pycnidia coverage. No cytoplasmic effects could be detected. In the spring x winter diallel general combining ability (GCA) was the major component of variation. Significant specific combining ability (SCA) was present in all cases. Partial dominance was operative in populations inoculated with ISR398A1. Resistance in the winter wheats was controlled by a small number of genes (usually two). The four winter wheats derive their resistance to ISR398A1 from their common parent Bezostaya 1 which lacks the 1B/1R wheat-rye translocation. Their resistance is readily overcome by ISR8036. Inheritance of the South American wheats can be explained by additive effects, with a small number of genes of recessive mode affecting resistance to both isolates. Breeding strategies that favor additive, and additive x dominance gene action should be pursued.  相似文献   

5.
Bruchid beetles or seed weevils are the most devastating stored pests of grain legumes causing considerable loss to mungbean (Vigna radiata (L.) Wilczek). Breeding for bruchid resistance is a major goal in mungbean improvement. Few sources of resistance in cultivated genepool were identified and characterized, however, there has been no study on the genetic control of the resistance. In this study, we investigated the inheritance of seed resistance to Callosobruchus chinensis (L.) and C. maculatus (F.) in two landrace mungbean accessions, V2709BG and V2802BG. The F1, F2 and BC generations were developed from crosses between the resistant and susceptible accessions and evaluated for resistance to the insects. It was found that resistance to bruchids in seeds is controlled by maternal plant genotype. All F1 plants derived from both direct and reciprocal crosses exhibited resistance to the bruchids. Segregation pattern of reaction to the beetles in the F2 and backcross populations showed that the resistance is controlled by a major gene, with resistance is dominant at varying degrees of expressivity. Although the presence of modifiers was also observed. The gene is likely the same locus in both V2709BG and V2802BG. The resistant gene is considered very useful in breeding for seed resistance to bruchids in mungbean.  相似文献   

6.
Summary Studies were conducted to determine the inheritance and allelic relationships of genes controlling resistance to the Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko), in seven wheat germplasm lines previously identified as resistant to RWA. The seven resistant lines were crossed to a susceptible wheat cultivar Carson, and three resistant wheats, CORWA1, PI294994 and PI243781, lines carrying the resistance genes Dn4, Dn5 and Dn6, respectively. Seedlings of the parents, F1 and F2 were screened for RWA resistance in the greenhouse by artificial infestation. Seedling reactions were evaluated 21 to 28 days after the infestation using a 1 to 9 scale. All the F1 hybrids had equal or near equal levels of resistance to the resistant parent indicating dominant gene control. Only two distinctive classes were present and no intermediate types were observed in the F2 segregation suggesting major gene actions. The resistance in PI225262 was controlled by two dominant genes. Resistance in all other lines was controlled by a single dominant gene. KS92WGRC24 appeared to have the same resistance gene as PI243781 and STARS-9302W-sib had a common allele with PI294994. The other lines had genes different from the three known genes.  相似文献   

7.
Inheritance of resistance to rice stripe virus in rice line `BL 1'   总被引:9,自引:0,他引:9  
Rice stripe is the most serious virus disease in temperate rice-growing countries. The most economical and environmentally safe practice for controlling this disease is virus-resistant cultivars. ‘BL 1’ is an elite germplasm line with the blast resistance gene Pib, and has been used as a differential line for testing the pathogenicity of the blast fungus. We found that certain progenies from BL 1 showed resistance to both blast and rice stripe virus (RSV). The objectives of this study were to evaluate the RSV resistance in the field and under artificial conditions, to assess the reaction to the insect vector(small brown plant hopper, SBPH), and to examine its inheritance and its relationship to blast resistance in BL 1.BL 1 was susceptible to SBPH, but resistant to RSV in field and artificial inoculation tests. The inheritance of RSV resistance in F3 lines from the cross Nipponbare (NPB)/BL 1 was studied using artificial inoculation with a population of viruliferous SBPH. A serological assay for RSV infection using an enzyme-linked immunosorbent assay (ELISA) was used. RSV resistance in BL 1 was controlled by a single major gene with incomplete dominance. The locus responsible for RSV resistance was genetically independent of the blast resistance gene Pib. The resistance gene for RSV infection in BL 1 was also independent of Stvb-i, a gene widely distributed in resistant Japanese cultivars. Resistance to RSV must be diversified in rice cultivars considering the potential for future emergence of new RSV strains. The new resistance gene identified in BL 1, which has improved plant type and blast resistance, is considered useful for breeding RSV-resistant cultivars in japonica rice. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
L. Crespel  S. Gudin 《Euphytica》2003,133(1):65-69
The objective of this study was to determine the mode of inheritance of field resistance to downy mildew (Peronospora parasitica (Pers. ex Fr.) Fr.) in broccoli (Brassica oleracea var.italica) at the adult plant stage. The F1, F2 and F3 progeny of resistant and susceptible plants of broccoli were tested in the field under natural infection, in central Portugal, from August to December in two successive years. The plants were evaluated for resistance to downy mildew at maturity using a five-class scale of increasing susceptibility to the disease, which took into account the number of infected leaves and the size of the sporulating lesions. The F1 was completely resistant, the F2 segregated a clear 3 resistant: 1susceptible and the F3 confirmed the F2 segregation, which suggests a dominant character controlled by a single locus. This resistance has good potencial for direct use in commercial broccoli breeding or for transfer to other Brassica vegetables. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
Summary The inheritance of resistance to white-backed planthopper, Sogatella furcifera Horvath, was investigated in a rice, Oryza sativa L., cultivar N22. Resistance to the white-backed planthopper in the cross IR30×N22 appears to be governed by a single dominant gene-designated Wbph. The classification for various characteristics of 397 F3 families of the IR30×N22 cross confirmed earlier results about the monogenic dominant control of resistance to brown planthopper, green leafhopper, and bacterial leaf blight, and about the monogenic recessive control of short stature. Additionally, the genes governing plant height and resistance to white-backed planthopper, brown planthopper, green leafhopper, and bacterial leaf blight were found to segregate independently of each other in these 397 F3 families.  相似文献   

10.
Summary Resistance toMeliodogyne chitwoodi races 1 (MC1) and 2 (MC2) andM. hapla (MH) derived fromSolanum bulbocastanum was introduced into the cultivated potato gene pool through somatic fusion. The initial F1 hybrids showed resistance to the three nematodes. Resistance to reproduction on roots by MC1 was accompanied by resistance to tuber damage in F1 clones. Tuber damage sometimes occurred, however, in hybrids of BC1 progeny resistant to reproduction on roots when MC2 and MH were the challenging nematodes. Resistance to reproduction was transferred into BC1 individuals, but a greater proportion of BC1 progeny was resistant to MC1 than to MC2 or MH. Resistance to MC1 appears to be dominant and discretely inherited. F1 and BC1 progeny were pollen sterile, but seed were produced from crosses using cultivated tetraploid pollen sources. Approximately 11 and 33 per cent of pollinations produced berries on F1 and BC1 pistillate parents, respectively. Seed yield increased fourfold overall in crosses with F1 compared to BC1 individuals.Abbreviations MC1 Meloidogyne chitwoodi race 1 - MC2 Meloidogyne chitwoodi race 2 - MH Meloidogyne hapla - Rf Reproductive factor  相似文献   

11.
Cucurbita moschata cv. Nigerian Local has been used as a source of resistance to Zucchini yellow mosaic virus (ZYMV), Watermelon mosaic virus (WMV), Papaya ringspot virus W (PRSV-W) and Cucumber mosaic virus (CMV) in breeding both Cucurbita moschata and Cucurbita pepo. We used the F1, F2 and BC1 generations derived from the cross C.-moschata cv. Waltham Butternut × Nigerian Local to study the inheritance of resistance to each of the viruses. We confirmed monogenic dominant resistance to ZYMV previously attributed to Zym, and we report monogenic dominant resistance to WMV and CMV which we propose to designate Wmv and Cmv, respectively. A single recessive gene, which we propose to designate prv, controls resistance to PRSV. DNA samples were extracted from a Waltham Butternut BC1 F1 population screened with ZYMV and analyzed using randomly amplified polymorphic DNA markers. No RAPD markers linked to ZYMV resistance were found. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
The legume pod borer, Helicoverpa armigera, is one of the most devastating pests of pigeonpea. High levels of resistance to pod borer have been reported in the wild relative of pigeonpea, Cajanus scarabaeoides. Trichomes (their type, orientation, density and length) and their exudates on pod wall surface play an important role in the ovipositional behavior and host selection process of insect herbivores. They have been widely exploited as an insect defense mechanism in number of crops. In the present investigation, inheritance of resistance to pod borer and different types of trichomes (A, B, C and D) on the pod wall surface in the parents (C. cajan and C. scarabaeoides) and their F1, F2, BC1 (C. cajan × F1), and F3 generations has been studied. Trichomes of the wild parents (high density of the non-glandular trichomes C and D, and glandular trichome B and low density of glandular trichome A) were dominant over the trichome features of C. cajan. A single dominant gene as indicated by the segregation patterns individually will govern each trait in the F2 and backcross generation. Segregation ratio of 3 (resistant): 1 (susceptible) for resistance to pod borer in the F2 generation under field conditions was corroborated with a ratio of 1:1 in the backcross generation, and the ratio of 1 non-segregating (resistant): 2 segregating (3 resistant: 1 susceptible): 1 non-segregating (susceptible) in F3 generation. Similar results were obtained for pod borer resistance under no-choice conditions. Resistance to pod borer and trichomes associated with it (low density of type A trichome and high density of type C) are governed individually by a dominant allele of a single gene in C. scarabaeoides. Following backcrossing, these traits can be transferred from C. scarabaeoides into the cultivated background.  相似文献   

13.
Summary In studies of the inheritance of resistance, pea seedlings of seven lines in which stems and leaves were both resistant to Mycosphaerella pinodes were crossed with a line in which they were both susceptible. With seven of the crosses resistance was dominant to susceptibility. When F2 progenies of five crosses were inoculated on either stems or leaves independently, phenotypes segregated in a ratio of 3 resistant: 1 susceptible indicating that a single dominant gene controlled resistance. F2 progenies of one other cross gave ratios with a better fit to 9 resistant: 7 susceptible indicating that two co-dominant genes controlled resistance. The F2 progeny of another cross segregated in complex ratios indicating multigene resistance.When resistant lines JI 97 and JI 1089 were crossed with a susceptible line and leaves and stems of each F2 plant were inoculated, resistance phenotypes segregated independently demonstrating that leaf and stem resistance were controlled by different genes. In two experiments where the F2 progeny of the cross JI 97×JI 1089 were tested for stem and leaf resistance separately, both characters segregated in a ratio of 15 resistant:1 susceptible indicating that these two resistant lines contain two non-allelic genes for stem resistance (designated Rmp1 and Rmp2) and two for leaf resistance (designated Rmp3 and Rmp4). Evidence that the gene for leaf resistance in JI 1089 is located in linkage group 4 of Pisum sativum is presented.  相似文献   

14.
J. W. Scott  J. P. Jones 《Euphytica》1989,40(1-2):49-53
Summary Resistance to fusarium wilt, incited by Fusarium oxysporum (Schlecht.) f. sp. lycopersici (Sacc.) Snyder & Hansen race 3 in tomato (Lycopersicon esculentum Mill.) was discovered in LA 716, a L. pennellii accession. A resistant BC1F3 breeding line, E427, was developed from LA 716. E427 was crossed with the susceptible cv. Suncoast and F1, BCP1, BCP2 (to Fla 7155, a susceptible parent) F2, F3, and BCP2S1 seeds were obtained. Segregation for resistance following root dip inoculation over three experiments indicated a single dominant gene controlled resistance. Five of the 12 BCP1S1's segregated more susceptible plants, whereas one of the 12 segregated more resistant plants than expected (P<0.05). Three of 23 F3 lines segregated more susceptible plants than expected while 1 of the 23 had more resistant plants than expected (P<0.05). Segregation in all other lines fit expected ratios. Five of the 23 F3's were homozygous resistant which was an acceptable fit to expectations (P=0.1–0.5). The gene symbol I 3 is proposed for resistance to race 3 of the wilt pathogen. Deviations from expected ratios in data reported here and for other breeding lines indicate an effect of modifier genes and/or incomplete penetrance. Plant age at inoculation and seed dormancy did not affect results.Florida Agricultural Experiment Station Journal Series No. 8101.  相似文献   

15.
Summary The inheritance of resistance to the twospotted spider mite and of bitterness in cucumber has been studied in three sets of P1, P2, F1, F2, B11 and B12 of crosses between three bitter, resistant lines and one non-bitter, susceptible line. Resistance to the twospotted spider mite as measured by acceptance and oviposition appeared to be determined by several to many genes, which are inherited mainly in an additive fashion. Bitterness is basically governed by the gene Bi, which, contrary to earlier reports, is inherited in an intermediary way, while the expression of Bi is influenced by additively inherited intensifier genes. Whereas Bi and the bitterness intensifier genes are not related to the resistance factors acceptance and oviposition, they are related to resistance or tolerance as measured by the damage index. This relation is explained by linkage rather than by identity of the genes concerned. Changes in the test methods and breeding consequences are discussed.  相似文献   

16.
Resistance to the southern root-knot nematode Meloidogyne incognita Chitwood would be an important attribute of lettuce Lactuca sativa L. cultivars adapted to both protected and field cultivation in tropical regions. `Grand Rapids' and a few other cultivars are reported to be resistant to this nematode. In this paper, we studied the inheritance of the resistant reaction of `Grand Rapids' (P2) in a cross with a standard nematode-susceptible cultivar Regma-71 (P1). F1(Regina-71 × Grand Rapids) and F2 seed were obtained, and inoculated along with the parental cultivars with different races of M. incognita to evaluate nematode resistance. Broad sense heritability estimates for the number of galls and of egg masses per root system, gall size and gall index were generally in the order of 0.5 or higher. Class distributions of these variables over generations P1, P2, F1 and F2 were in agreement with simulated theoretical distributions based on monogenic inheritance models. F3 families were obtained from randomly sampled F2 plants and tested for reaction to the nematode. The frequency ratio of homozygous resistant, segregating and homozygous susceptible F3 families did not differ from the 1:2:1 ratio expected from monogenic inheritance. M. incognita resistance appears to be under control of a single gene locus. The Grand Rapids allele (for which the symbol Me is proposed) is responsible for the resistant reaction, and shows high (though incomplete) penetrance, variable expressivity and predominantly additive gene action. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
B. Y. Chen  W. K. Heneen 《Euphytica》1992,59(2-3):157-163
Summary Seed colour inheritance was studied in five yellow-seeded and one black-seeded B. campestris accessions. Diallel crosses between the yellow-seeded types indicated that the four var. yellow sarson accessions of Indian origin had the same genotype for seed colour but were different from the Swedish yellow-seeded breeding line. Black seed colour was dominant over yellow. The segregation patterns for seed colour in F2 (Including reciprocals) and BC1 (backcross of F1 to the yellow-seeded parent) indicated that the black seed colour was conditioned by a single dominant gene. Seed colour was mainly controlled by the maternal genotype but influenced by the interplay between the maternal and endosperm and/or embryonic genotypes. For developing yellow-seeded B. napus genotypes, resynthesized B. napus lines containing genes for yellow seed (Chen et al., 1988) were crossed with B. napus of yellow/brown seeds, or with yellow-seeded B. carinata. Yellow-seeded F2 plants were found in the crosses that involved the B. napus breeding line. However, this yellow-seeded character did not breed true up to F4. Crosses between a yellow-seeded F3 plant and a monogenomically controlled black-seeded B. napus line of resynthesized origin revealed that the black-seeded trait in the B. alboglabra genome was possibly governed by two independently dominant genes with duplicated effect. Crossability between the resynthesized B. napus lines as female and B. carinata as male was fairly high. The sterility of the F1 plants prevented further breeding progress for developing yellow-seeded B. napus by this strategy.  相似文献   

18.
The Asian rice gall midge, Orseolia oryzae Wood Mason (Diptera: Cecidomyiidae), is a major pest of rice in several South and South East Asian countries. The maggots feed internally on the growing tips of the tillers and transform them into tubular galls, onion leaf-like structures called ‘silver shoots’ resulting into severe yield loss to the rice crop. We studied the mode of inheritance and allelic relationships of the resistance genes involved in resistant donor Line 9, a sib of a susceptible cultivar ‘Madhuri’. The segregation behaviour of F1, F2 and F3 populations of the cross between Line 9 and susceptible cultivar MW10 confirmed the presence of a single dominant gene for resistance. Tests of allelism with all the known genes giving resistance to this population indicated that Line 9 possessed a new gene which was designated Gm 9 This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Soybean Cyst nematode (SCN) Heterodera glycines Ichinohe is the most serious pest of soybean [Glycine max (L.) Merr.] in the world and genetic resistance in soybean cultivars have been the most effective means of control. Nematode populations, however, are variable and have adapted to reproduce on resistant cultivars over time due mainly to the narrow genetic base of SCN resistance in G. max. The majority of the resistant cultivars trace to two soybean accessions. It is hoped that new sources of resistance might provide durable resistance. Soybean plant introductions PI 467312 and PI 507354, are unique because they provide resistance to several nematode populations, i.e. SCN HG types 0, 2.7, and 1.3.6.7 (corresponding to races 3, 5, and 14) and HG types 2.5.7, 0, and 2.7 (corresponding to races 1, 3, and 5), respectively. The genetic basis of SCN resistance in these PIs is not yet known. We have investigated the inheritance of resistance to SCN HG types 0, 2.7, and 1.3.6.7 (races 3, 5, and14) in PI467312 and the SCN resistance to SCN HG types 2.5.7 and 2.7 (races 1 and 5) in PI 507354. PI 467312 was crossed to ‘Marcus’, a susceptible cultivar to generate F1 hybrids, 196 random F2 individuals, and 196 F2:3 families (designated as Pop 467). PI 507354 and the cultivar Hutcheson, susceptible to all known SCN races, were crossed to generate F1 hybrids, 225 random F2 individuals and 225 F2:3 families (designated as Pop 507). The F2:3 families from each cross were evaluated for responses to the specific SCN HG types in the greenhouse. Chi-square (χ2) analyses showed resistance from PI 467312 to HG types 2.7, and 1.3.6.7 (races 5 and 14) in Pop 467 were conditioned by one dominant and two recessive genes (Rhg rhg rhg) and resistance to HG type 0 (race 3) was controlled by three recessive genes (rhg rhg rhg). The 225 F2:3 progenies in Pop 507 showed a segregation of 2:223 (R:S) for response to both HG types 2.5.7 and 2.7 (corresponding to races 1 and 5). The Chi-square analysis showed SCN resistance from PI 507354 fit a one dominant and 3 recessive gene model (Rhg rhg rhg rhg). This information will be useful to soybean breeders who use these sources to develop SCN resistant cultivars. The complex inheritance patterns determined for the two PIs are similar to the three and four gene models for other SCN resistance sources known to date.  相似文献   

20.
Grain moulds are a major constraint to sorghum production and to adoption of improved cultivars in many tropical areas. Information on the inheritance of grain mould reaction is required to facilitate breeding of resistant cultivars. The genetic control of grain mould reaction was studied in 7 crosses of 2 resistant sorghum genotypes. P1, P2, F1, F2, BC1 and BC2 families of each cross were evaluated under sprinkler irrigation for field grade and threshed grade scores and subjected to generation mean analysis. Frequency distributions for grain mould reaction were derived and F2 and BC1 segregation ratios were calculated. Grain mould reaction in crosses of coloured grain sorghum was generally controlled by two or three major genes. Resistance to grain moulds was dominant. Significant additive gene effects were also found in all cross/season combinations. Significant dominance effects of similar magnitude to additive effects were also observed in five out of ten cross/season combinations. Gene interactions varied according to the parents with both resistant and susceptible parents contributing major genes. Choice of parents with complementary resistance genes and mechanisms of resistance will be critical to the success of resistance breeding. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号