首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was designed to determine if luteal cell receptors for luteinizing hormone/human chorionic gonadotropin (LH/hCG) contribute to the previously demonstrated abnormal function of induced corpora lutea (CL) in gilts. Twenty-five prepuberal (P) gilts, induced to ovulate with 1,500 IU pregnant mare serum gonadotropin followed 72 h later with 500 IU hCG (d 0 = day of hCG), and 22 mature (M) gilts that had displayed two or more estrous cycles were ovariectomized (OVX) on d 10, 14, 18, 22 or 26 after the onset of estrus. All gilts except those OVX on d 10 were hysterectomized between d 6 and 9 to ensure luteal maintenance. The CL were stored at -196 degrees C until determination of LH/hCG receptor number and dissociation constant (KD) by saturation analysis. Receptor number was greater for M than for P gilts on d 14 (P less than .07) and d 18 (P less than .01). The KD was greater in M than in P gilts on d 14 (P less than .01) and d 18 (P less than .0001). The LH/hCG receptor number and KD of P gilts remained the same throughout the days studied. The LH/hCG receptor number (fmol/mg protein) of M gilts was elevated on d 10, 14, and 18 (50.8, 50.4 and 51.4, respectively) and decreased on d 22 (26.5) and d 26 (25.4) to values similar to those of P gilts. In M gilts, KD increased on d 14, remained high on d 18 and decreased on d 22. We suggest that abnormal function of induced CL in P gilts may be due to an elevated LH receptor number.  相似文献   

2.
Prepuberal (P) gilts were induced to ovulate with pregnant mare serum gonadotropin followed 72 h later by human chorionic gonadotropin (hCG). Three P gilts and three mature (M) gilts each were ovariectomized on d 10, 14, 18, 22 and 26 (d 0 = day of hCG for P gilts and onset of estrus for M gilts). Gilts ovariectomized on d 14, 18, 22 and 26 were hysterectomized on d 6 to ensure maintenance of the corpora lutea (CL). Two to five grams of minced luteal tissue were dispersed using collagenase and hyaluronidase in HEPES buffered salt solution supplemented with glucose and bovine serum albumin. Dispersed cells were rinsed in Dulbecco's Modified Eagle Medium (DMEM), counted (ratio of large to total number of luteal cells determined) and then incubated for 1 h in DMEM. With aliquots standardized to 2.5 X 10(4) viable, large cells (greater than 25 micron diameter) were incubated in 1 ml DMEM for 2 h in the presence of either 10, 50, 100 or 1,000 ng luteinizing hormone (LH); .1, 1, 10 or 100 ng hCG; 10, 100 or 1,000 ng norepinephrine (NE) or either .75, or 1.5 mM dibutyrl cyclic adenosine monophosphate (dbcAMP). Progesterone (P4) in the medium was quantified by radioimmunoassay. Basal P4 production (no P4 stimulator added to the medium) on d 10, 14, 18, 22 and 26 for P gilts was 246 +/- 9, 66 +/- 4, 64 +/- 6, 41 +/- 3 and 69 +/- 6 ng/ml medium, respectively, and for M gilts was 281 +/- 12, 128 +/- 8, 53 +/- 4, 82 +/- 6, 101 +/- 5 ng/ml medium, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The effect of daily injections of human chorionic gonadotropin (HCG) on luteal maintenance in hysterectomized prepuberal gilts induced to ovulate and in hysterectomized mature gilts was studied. Twenty-four pre-puberal gilts, 120 to 130 d of age, were induced to ovulate with 1,000 IU pregnant mare serum gonadotropin followed 72 h later with 500 IU HCG. Nine of the 24 prepuberal gilts (bred controls) were artificially inseminated on d 0 (d 0 = d after HCG). Mature gilts that had displayed one or more estrous cycles of 17 to 22 d were used (d 0 = onset of estrus). All gilts, except the bred controls, were totally hysterectomized on d 6 to 9 and their corpora lutea (CL) marked with charcoal. From d 10 through 29, eight prepuberal and 10 mature hysterectomized gilts received daily injections of 500 IU HCG in saline while seven prepuberal and eight mature hysterectomized gilts received daily injections of saline vehicle. Jugular blood samples were quantitated by radioimmunoassay for estrogen and 13,14-dihydro-15-keto prostaglandin F2 alpha (PGFM), a metabolite of prostaglandin F2 alpha. One bred control gilt was pregnant on d 30, indicating that the prepuberal gilts used in the experiment were prepuberal. All mature gilts and six of seven prepuberal gilts that received saline had maintained CL to d 30. Eight of 10 mature gilts that received HCG had maintained CL to d 30, while only two of eight (P less than .05) prepuberal gilts that received HCG maintained CL to d 30. All gilts receiving HCG had numerous follicles and accessory luteal structures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
This study was conducted to determine whether chronic hCG treatment would cause regression of induced corpora lutea (CL) in mature cyclic gilts. Thirty-two mature gilts that had displayed one or more estrous cycles of 18 to 22 d were used. Sixteen gilts were hysterectomized (HYSTX) on d 6 to 9 (d 0 = onset of estrus) and their CL were marked with charcoal (spontaneous group). Sixteen gilts (induced group) were injected with 1,500 IU of pregnant mare's serum gonadotropin (PMSG) on d 6 and 500 IU of hCG on d 9 (day of hCG = d 0 of the induced cycle). Ovulation was assumed to occur on d 2 of the induced cycle. Induced gilts were HYSTX on d 8 to 9 (d 17 to 18 of the original spontaneous cycle) and their CL were marked with charcoal. Only gilts (n = 14) in which induced CL were present and in which the original CL had regressed were then subjected to treatment with saline or hCG. From d 10 to 29, gilts with spontaneous CL were injected daily with 500 IU of hCG (n = 8) or saline (n = 8). From d 10 to 29 of the induced cycle, induced gilts were injected daily with 500 IU of hCG (n = 6) or saline (n = 8). Jugular blood samples were collected every other day from all gilts beginning on the 1st d of daily hCG treatment and quantified for estradiol and progesterone by RIA. On the day after the last hCG injection, the number of charcoal-marked CL and charcoal-marked corpora albicantia (CA) were determined.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The influence of varying doses of human chorionic gonadotropin (hCG) on the preovulatory luteinizing hormone (LH) surge, estradiol-17 beta (E2) and progesterone (P4) was studied in synchronized gilts. Altrenogest (AT) was fed (15 mg X head-1 X d-1) to 24 cyclic gilts for 14 d. Pregnant mares serum gonadotropin (PMSG; 750 IU) was given im on the last day of AT feeding. The gilts were then assigned to one of four groups (n = 6): saline (I), 500 IU hCG (II), 1,000 IU hCG (III) and 1,500 IU hCG (IV). Human chorionic gonadotropin or saline was injected im 72 h after PMSG. No differences in ovulation rate or time from last feeding of AT to occurrence of estrus were observed. All gilts in Groups I and II expressed a preovulatory LH surge compared with only four of six and three of six in Groups III and IV, respectively. All groups treated with hCG showed a rapid drop (P less than .01) in plasma levels of E2 11, 17, 23 h after hCG injection when compared with the control group (35 h). The hCG-treated gilts exhibited elevated P4 concentrations 12 h earlier than the control group (3.1 +/- .5, 3.4 +/- .72, 3.1 +/- .10 ng/ml in groups II, III and IV at 60 h post-hCG vs .9 +/- .08 ng/ml in group I; P less than .05). These studies demonstrate that injections of ovulatory doses of hCG (500 to 1,500 IU) had three distinct effects on events concomitant with occurrence of estrus in gilts: decreased secretion of E2 immediately after hCG administration, failure to observe a preovulatory LH surge in some treated animals and earlier production of P4 by newly developed corpora lutea.  相似文献   

6.
We determined whether a single injection of slow-release estradiol-17beta (SRE2) would induce pseudopregnancy in gilts and whether PGF2alpha would regress the corpora lutea (CL) of pseudopregnancy. Crossbred gilts (n = 40) were induced to ovulate by treatment with 400 IU of hCG + 200 IU of eCG (PG600, Intervet, Millsboro, DE) given at 180 d of age (d = 0). On d 14, gilts were injected i.m. with one of five doses (n = 8 gilts/dose) of SRE2 (0, 12.5, 25, 50, or 100 mg). Blood samples were collected before SRE2 and twice weekly until d 73 to monitor serum progesterone (P4) and estradiol (E2). On d 59, gilts received (i.m.) 10 mg of PGF2alpha (Lutalyse, Pharmacia Upjohn, Kalamazoo, MI) and were checked for estrus for 7 d. On d 62, mammary development was scored (0 = no development; 1 = some development; 2 = teat and gland development) by a neutral observer. Treatment with SRE2 increased (P < .05) peak E2 concentrations, duration of luteal function, and mammary gland score. There were no differences (chi-square, P > .05) among doses of SRE2 in the percentage of pseudopregnant gilts that showed luteolysis after PGF2alpha. We conclude that a single injection of SRE2 can induce pseudopregnancy and that the CL can be regressed with PGF2alpha, providing a simple method for controlling estrus in gilts.  相似文献   

7.
Plasma follicle-stimulating hormone (FSH) was evaluated in gilts from two studies in which ovulation rate was increased through direct selection for number of corpora lutea (CL) to determine whether selection for ovulation rate affected FSH secretion during prepubertal development. In the first study, 76 control and 110 selected gilts of University of Nebraska gene pool lines were bled twice during prepubertal development. Plasma FSH concentrations were greater (P < 0.05) at 53 (13.5%) and 75 (21.3%) d of age in selected than in control gilts. In the second study, 254 control gilts, 261 gilts from a line selected for ovulation rate, and 256 gilts from a line selected for uterine capacity were bled at three prepubertal ages. Plasma FSH was greater (P < 0.05), relative to controls, on d 34 (> 24%), 55 (> 13%), and 85 (> 10%) in White Composite gilts selected for either increased ovulation rate or for greater uterine capacity. Unilateral ovariectomy and hysterectomy were performed at 160 d of age on random gilts in these three lines (n = 377); weights of these organs were evaluated to determine whether selection affected their development. Ovarian and uterine weights were less (P < 0.01) in the control than in the ovulation rate line. Subsequently, ovulation rate was determined during pregnancy (n > or = 130 gilts/line). Controls had fewer (P < 0.01) CL (14.6) than gilts of the ovulation rate line (17.7) but numbers similar (P > 0.10) to those of gilts of the uterine capacity line (14.7). Within each line, plasma FSH only on d 85 correlated positively with subsequent ovulation rate (P < 0.03, 0.001, and 0.08; r = 0.17, 0.30, and 0.15 for control, ovulation rate, and uterine capacity lines, respectively). Ovarian weight at 160 d of age also correlated with subsequent ovulation rate (P < 0.03 and 0.001; r = 0.23 and 0.38) in control and ovulation rate gilts but not in uterine capacity gilts (P > 0.10; r = 0.11). Gilts selected for increased number of CL, in two independent studies, had greater concentrations of FSH during prepubertal development than respective controls. The modest but significant, positive association of FSH at 85 d of age with subsequent ovulation rate provides additional support for using plasma FSH in prepubertal gilts to indirectly select for ovulation rate.  相似文献   

8.
The purpose of this experiment was to determine the ovulation rate after treatment with human chorionic gonadotropin (hCG) in two groups of gilts characterized by different ovarian morphology: grape-type (GT; n = 11) and honeycomb-type (HT; n = 7). At 170 d of age (d 0), gilts were examined by laparoscopy and ovarian type was determined by the distribution of macroscopic follicles present on the ovarian surface. Five to ten minutes after surgery, each gilt received a single injection (i.m.) of 750 IU of hCG. At d 0, GT ovaries had a greater number of large follicles (greater than or equal to 6 mm) than HT ovaries (10.0 +/- .5 vs 2.6 +/- .3; P less than .05), whereas HT ovaries had more small follicles (1 to 3 mm; HT: 42.3 +/- .8 vs GT: 26.7 +/- .9; P less than .05) and total follicles (HT: 59.4 +/- 2.3 vs GT: 52.2 +/- 1.5; P less than .05), although numbers of medium follicles (4 to 5 mm) were similar (GT: 15.6 +/- .8 vs HT: 14.6 +/- 1.7; P greater than .10). Number of induced corpora lutea (CL) per ovary was greater (P less than .05) in gilts with GT ovaries (10.59 +/- 2.9 CL) than in gilts with HT ovaries (5.21 +/- .66 CL). Total weight of luteal tissue (LT) per ovary and serum progesterone concentrations 8 d after induction of ovulation were greater in GT gilts than in HT gilts (GT: 6.37 +/- 1.09 g vs HT: 3.31 +/- .49 g for LT, P less than .05; GT: 21.08 +/- 4.76 ng/ml vs HT: 13.40 +/- 2.05 ng/ml for progesterone, P less than .07).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Ten trials involving 678 presumed prepuberal gilts (5.5 to 7.5 mo old) were conducted in North Carolina, Illinois and Missouri to evaluate the reproductive performance of gilts given a combination of 400 IU of pregnant mare's serum gonadotropin and 200 IU of human chorionic gonadotropin (P. G. 600). Gilts that were presumed to be prepuberal received P. G. 600 or no treatment (control) on the day of movement from finishing facilities to pens for breeding. Detection of estrus, with the aid of mature boars, was conducted daily for 28 d; gilts in estrus were mated naturally. Treatment with P. G. 600 increased the percentage in estrus within 7 (57.5 vs 40.9%) or 28 d (72.9 vs 59.5%); average interval to estrus was reduced (P less than .05) from 10.4 to 7.5 d. Farrowing rate (78.5 +/- 3.1%), number of pigs born alive (8.6 +/- .2) or dead (.26 +/- .06) and number of pigs weaned (8.0 +/- .2) were unaffected by treatment. Gilts that were heavier than the median for each farm were in heat sooner and more were detected in heat, but no other reproductive traits differed between heavy and light gilts. Overall, the results reveal that P. G. 600 was useful for induction of fertile estrus in prepuberal gilts.  相似文献   

10.
Twenty cyclic gilts were injected im with either saline (control) or 1,000 IU of human chorionic gonadotropin (hCG) on d 12 of the estrous cycle to determine the effects of hCG on follicular development and steroidogenesis. Blood was collected when gilts were sacrificed on d 13 or 16. Follicles were classified as medium (3 to 6 mm in diameter) or large (greater than 6 mm diameter), dissected from the ovary, measured and weighed. Pieces of follicle wall were incubated 3 h in Krebs Ringer bicarbonate buffer (KRB) on ice in an atmosphere of air or at 37 C in an atmosphere of 95% O2:5% CO2. Unconjugated estrogen and progesterone in blood plasma, follicular fluid and 10,000 X g supernatants of incubated follicular tissue homogenates were quantified by radioimmunoassay. On d 13 follicles on ovaries of control or hCG-injected gilts were less than or equal to 6 mm in diameter. On d 16, one of five control gilts had some large follicles, while all five hCG-treated gilts had large as well as medium follicles. On d 16 follicular fluid of large follicles from hCG-injected gilts contained twofold more estrogen and 40-fold more progesterone than medium follicles on the same ovaries. Tissue from large follicles of hCG-injected gilts produced more progesterone in vitro than did tissue from medium follicles (P less than .05), but estrogen production did not differ. On d 16 medium follicles from control or hCG-injected gilts were larger, contained more estrogen and less progesterone than those recovered on d 13 (P less than .01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Our objective was to determine whether priming with the progestogen norgestomet for 9 d would enhance estrual and ovulatory responses of prepubertal gilts to PG600 (400 IU eCG + 200 IU hCG). Gilts (140 to 190 d old) were assigned by litter, age, and weight to one of three treatments: 1) 9 d of norgestomet implant with an injection of PG600 after implant removal on d 9 (N+PG; n = 43); 2) no implant and an injection of PG600 on d 9 (PG; n = 36); or 3) neither implant nor PG600 (control; n = 29). Beginning on d 0, gilts were exposed once daily to a boar and checked until estrus was observed or until d 45 after the start of the experiment. Ovaries were examined for number of corpora lutea (CL) after estrus or at 45 d. Greater proportions of N+PG (63%, P < .05) and PG (69%, P < .01) gilts expressed estrus than did controls (34%), but proportions did not differ between N+PG and PG (P > .10). Among gilts in estrus following treatment with N+PG or PG, 100% showed estrus within 6 d after PG600 injection. For gilts that expressed estrus within 45 d, the average age at estrus was reduced (P < .05) by PG to 172 +/- 2 d compared with 182 +/- 4 d for controls. Average age at estrus did not differ (P > . 10) between PG and N+PG (177 +/- 2 d). Greater proportions of N+PG (82%; P < .001) and PG (65%; P < .001) gilts ovulated than controls (13%), but proportions did not differ between N+PG and PG (P > .10). The number of CL (20 +/- 2) was not affected by treatment and ranged from 2 to 71. There was no increase in ovarian cysts in response to treatment. Results indicated that norgestomet before PG600 did not enhance estrus expression or ovulation compared with PG600 alone, but use of PG600 increased the proportions of gilts that expressed estrus and ovulated compared with controls.  相似文献   

12.
We studied the effects of gonadotrophins and prostaglandin (PG) F on ovulation in gilts. Twenty-eight gilts were induced to ovulate using 750 IU pregnant mares serum gonadotrophin (PMSG) and 500 IU human chorionic gonadotrophin (hCG), administered 72 h apart. At 34 and 36 h after hCG, gilts received injections of either 500 μg or 175 μg PGF (cloprostenol), or had no injections. Laparotomies were performed at 36 h (cloprostenol gilts) or 38 h (controls) after hCG injection. The ovaries were examined and the proportion of preovulatory follicles that had ovulated (ovulation percent) was determined at 30 min intervals for up to 6 h. The number of gilts in which ovulation was initiated and the ovulation percent increased (p<0.001) with time, but was not affected by treatment. Many medium sized follicles (≤6 mm) were also observed to ovulate, or to exhibit progressive luteinization without overt ovulation, during the surgical period. A discrepancy between numbers of preovulatory follicles and corpora lutea suggests that luteal counts may not be an accurate assessment of ovulation rate following gonadotrophic stimulation.  相似文献   

13.
Evaluation of the uterine environment and embryos of prepubertal gilts   总被引:1,自引:0,他引:1  
A series of three experiments was conducted to test the functional status of the uterus and embryos in prepubertal gilts. In Exp. 1, gilts were induced to ovulate by treating with gonadotropins followed by hCG 72 or 96 h later, and were artificially inseminated 24 h after hCG. Five of the 10 gilts treated at 120 d of age, but none of the gilts treated at 100 of age, maintained pregnancies. We next tested the function of the uterine environment by transferring embryos from postpubertal females into gilts of various ages that had been induced to ovulate but not inseminated (Exp. 2). Pregnancy rate at d 50 of gestation was 44% (4/9) for 100-d-old recipients, 67% (2/3) for 140-d-old recipients, and 60% (3/5) for postpubertal recipients (P > 0.20). Therefore, uteri of 100-d-old gilts are able to maintain pregnancies with conceptuses from postpubertal gilts. In Exp. 3, embryos from 100-d-old and postpubertal gilts were transferred into postpubertal recipients. Uterine horns of recipients were surgically separated before transfer, and embryos from 100-d-old and post-pubertal females were transferred to opposite horns of some recipients (experimental). Other recipients received embryos from postpubertal females in both uterine horns (control). When examined on d 50 to 60 of gestation, three of five control gilts were pregnant and three of seven experimental gilts were pregnant (P > 0.50). In experimental recipients, the survival of embryos from 100-d-old gilts was 38% (8/21) compared to 57% (15/26) for embryos from postpubertal gilts (P > 0.30). Because all uterine horns of pregnant recipients contained fetuses, these results support the hypothesis that embryos from 100-d-old gilts are able to initiate and maintain pregnancies in the uteri of postpubertal gilts. Therefore, the uterine environment of 100-d-old gilts provides an environment that supports development of embryos produced by postpubertal gilts, and the embryos produced by 100-d-old gilts can survive and develop in the uteri of postpubertal gilts. It was only the combination of embryos and uteri of 100-d-old gilts that did not permit pregnancy to be maintained.  相似文献   

14.
We examined the relationship between the time elapsed after human chorionic gonadotropin (hCG) administration and developmental stage of porcine embryos after collection. Prepubertal gilts, 7 to 8 months old, were given 1500 IU equine chorionic gonadotropin (eCG) intramuscularly, followed by 500 IU hCG 72 h later. The treated gilts were inseminated artificially on Day 1 (Day 0=the day of hCG administration) and on Day 2. Embryos were collected surgically on Day 6 (140, 144, and 147 h after hCG administration) or on Day 7 (164, 168, and 171 h), and the developmental stages of the collected embryos were examined. From 75.2% (276/367) of the prepubertal gilts treated with hormones, we collected an average of 20.7 embryos per gilt with normal morphology. At 140 h after hCG administration, morulae (54.4%) could be collected. At 144 h, morulae and early blastocysts (57.7% and 28.9%, respectively) were collected. By 147 h, the proportion of embryos at the blastocyst to expanded blastocyst stages had increased (10.0%). From 164 h to 171 h, expanding or expanded blastocysts of more than 200 microm in diameter and hatched blastocysts could be collected. The proportion of hatched blastocysts increased from 3.2% (164 h) to 41.0% (171 h). These results suggests that although the number of ovulations differed among gilts, porcine embryos at the appropriate stages can be collected efficiently by controlling the time elapsed between hCG administration and embryo collection.  相似文献   

15.
Boar exposure has been used for estrus induction of prepubertal gilts, but has limited effect on estrus synchronization within 7 d of introduction. In contrast, PG600 (400 IU of PMSG and 200 IU of hCG; Intervet, Millsboro, DE) is effective for induction of synchronized estrus, but the response is often variable. It is unknown whether boar exposure before PG600 administration might improve the efficiency of estrus induction of prepubertal gilts. In Exp. 1, physical or fence-line boar contact for 19 d was evaluated for inducing puberty in gilts before administration of i.m. PG600. Exp. 2 investigated whether 4-d boar exposure and gilt age influenced response to PG600. In Exp. 1, 150-d-old prepubertal gilts were randomly allotted to receive fence-line (n = 27, FBE) or physical (n = 29, PBE) boar exposure. Gilts were provided exposure to a mature boar for 30 min daily. All gilts received PG600 at 169 d of age. Estrous detection continued for 20 d after injection. In Exp. 2, prepubertal gilts were allotted by age group (160 or 180 d) to receive no boar exposure (NBE) or 4 d of fence-line boar exposure (BE) for 30 min daily before receiving PG600 either i.m. or s.c. Following PG600 administration, detection for estrus occurred twice-daily using fence-line boar exposure for 7 d. Results of Exp. 1 indicated no differences between FBE and PBE on estrus (77%), age at puberty (170 d), interval from PG600 to estrus (4 d), gilts ovulating (67%), or ovulation rate (12 corpora lutea, CL). Results from Exp. 2 indicated no effect of age group on estrus (55%) and days from PG600 to estrus (4 d). A greater (P < 0.05) proportion of BE gilts expressed estrus (65 vs. 47%), had a shorter (P < 0.05) interval from PG600 to estrus (3.6 vs. 4.3 d), and had decreased (P < 0.05) age at estrus (174 vs. 189 d) compared with NBE. Ovulation rate was greater (P < 0.05) in the BE group for the 180-d-old gilts (12.7 vs. 11.9 CL) compared with the NBE group. However, age group had no effect on ovulation (77%) or ovulation rate (12 CL). Collectively, these results indicate that physical boar contact may not be necessary when used in conjunction with PG600 to induce early puberty. The administration of PG600 to 180-d-old gilts in conjunction with 4 d prior fence-line boar exposure may improve induction of estrus, ovulation, and decrease age at puberty.  相似文献   

16.
A series of experiments were conducted to investigate the relationship between the number of corpora lutea (CL) and concentration of progesterone (P4) on different days after induced and spontaneous ovulation of gilts of different ages. Possible relationship between the number of ovulations after injection of gonadotropin into the prepubertal gilt and the number at a second induced ovulation and finally the number of postpubertal, spontaneous ovulations, was also studied. Number of CL was related (r = .75 to .95, P less than .01) to levels of P4 on d 3 to 10 after induced ovulation of prepubertal gilts of 105 to 180 d of age. Relationship between the number of CL and level of P4 in cyclic gilts ranged from r = .28 to .67 with the highest relationship at d 4 to 9. Number of CL induced at 135 d of age was correlated (r = .67 to .91, P less than .01) with number of CL induced at 195 d. There were correlations (r = .75 to .99, P less than .01) between levels of P4 and number of CL on d 7 to 9 after induction of ovulation of gilts of 135 and 195 d of age with either pregnant mare's serum gonadotropin (PMSG) followed in 96 h by human chorionic gonadotropin (hCG) or estradiol benzoate (EB) followed in 72 h by hCG. There was a correlation (r = .84, P less than .001) between number of CL at the first spontaneous postpubertal estrus and number of CL at third estrus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The effects of s.c. and i.m. administration of P.G. 600 on estrual and ovulatory responses of prepubertal gilts were investigated. One hundred eighty-four crossbred gilts between 159 and 174 d of age were assigned to receive P.G. 600 s.c. (s.c. P.G. 600) in the flank, P.G. 600 i.m. in the neck (i.m. P.G. 600), or no treatment (control). At the beginning of the study (d 0), animals were selected from a modified, open-front barn, regrouped, relocated to new pens, and exposed once daily to a mature boar to check for estrus. On d 17, ovaries were collected from all gilts and analyzed for the presence of corpora lutea (CL), cystic follicles, and cystic CL. A higher proportion of gilts expressed estrus with s.c. P.G. 600 (76%) than with i.m. P.G. 600 (52%, P < .01) or controls (15%, P < .01). The interval from initiation of treatment on d 0 to estrus was reduced (P < .01) by P.G. 600 (4.6 d) compared to controls (5.9 d), but there was no significant difference between P.G. 600 treatments. Both s.c. P.G. 600 (86%) and i.m. P.G. 600 (77%) induced more gilts to ovulate (P < .01) than controls (18%), but there was no significant difference between P.G. 600 treatments. No significant effect of treatment was detected on number of CL (17.9), number of cystic follicles (1.5), or number of cystic CL (2.1). Proportions of gilts that developed cystic follicles or cystic CL were not influenced by treatment. Results of this study indicated that s.c. administration of P.G. 600 significantly improved the induction of estrus in prepubertal gilts compared to i.m. administration.  相似文献   

18.
Experiments were conducted to determine the effect of additional gonadotropic support on induced corpora lutea of anestrous ewes. In one series of experiments, ewes were superovulated and half the ewes received an i.v. injection of 500 IU human chorionic gonadotropin (hCG) on day 5 after ovulation. Corpora lutea were collected from both groups on day 10 after ovulation. Dissociated corpora lutea collected from ewes which received additional hCG contained proportionately more large luteal cells than did those from control ewes (P<.05). In neither cell type was content of receptors for luteinizing hormone (LH) or secretion of progesterone in response to LH affected by an additional injection of hCG. Large cells from anestrous ewes produced more progesterone in response to LH (P<.05) than did large cells from similarly treated ewes during the breeding season. Small cells collected during either season responded similarly to LH. In another series of experiments, anestrous ewes were induced to ovulate and were exposed to fertile rams. Half the ewes received an i.v. injection of 500 IU hCG on day 5 after ovulation. Serum content of progesterone was higher on day 10 in ewes which received hCG 5 days earlier than in control ewes, although progesterone levels declined to generally nondetectable levels in nonpregnant ewes of both groups by day 16. Pregnancy rates in the two groups were not different. We concluded that additional gonadotropic support affects the morphology and function of corpora lutea from anestrous ewes and may be useful for enhancing fertility during the nonbreeding season.  相似文献   

19.
Ability of induced corpora lutea to maintain pregnancy in beef cows   总被引:1,自引:0,他引:1  
Experiments were conducted in beef cows without a primary CL, in which pregnancy had been maintained with exogenous progestogen. In preliminary trials, replacement CL induced ipsilateral to the embryo and after, rather than before, d 36 of pregnancy, maintained more pregnancies after withdrawal of exogenous progestogen (13/13 vs 2/6; P < 0.05). In Exp. 1, in cows with replacement CL induced by treatment with hCG on d 28 of pregnancy, treatment with flunixin meglumine on d 31 through 37 did not increase maintenance of pregnancy. Experiment 2 was conducted to evaluate directly the effects of concentrations of PGF2alpha and estradiol-17beta during d 31 through 35 of pregnancy on maintenance of pregnancy by replacement CL induced between d 28 and 31. In cows that maintained pregnancy while progestogen was provided, maintenance of pregnancy after withdrawal of exogenous progestogen tended to be greater with high (5/5) than with low (2/6; P < 0.10) concentrations of PGF2alpha and greater with low (6/7) than with high (2/6; P = 0.10) concentrations of estradiol-17beta. Secretion of progesterone by replacement CL was greater (P < 0.05) in cows with high than in those with low concentrations of PGF2, during d 31 through 35. Prostaglandin F2alpha may facilitate attachment of the bovine embryo (d 30 to 40) in a manner similar to that reported for implantation in other species. Cows that did not form CL in response to hCG on d 28 to 31 responded well when retreated after d 36. Again, maintenance of pregnancy was greater when replacement CL were induced after (9/9) rather than before d 36 (8/16; P < 0.05).  相似文献   

20.
The hypothesis that subnormal luteal function after induced ovulation in anestrous ewes was the result of uterine influences exerted during the periovulatory period was tested. Crossbred ewes (n = 27) in seasonal anestrus were induced to ovulate by administration of 12 doses of 250 ng of LHRH at 2-h intervals, followed immediately by a bolus injection of LHRH (250 micrograms; d 0). Ewes were unilaterally hysterectomized on either d -3 (PRELHRH) or 2 (POSTLHRH). Daily blood samples were collected and assayed for progesterone (P4) and 13,14-dihydro-15-keto-prostaglandin F2 alpha (PGFM). All ewes were slaughtered on d 10, and corpora lutea (CL) were collected, weighed, and assayed for concentration of P4. All ewes that ovulated exclusively in the ovary ipsilateral to the remaining uterine horn had a transient increase in plasma P4 of 2 to 3 d (short luteal phase). In ewes with at least one CL in the isolated ovary, elevated plasma P4 was maintained after hysterectomy but was consistently lower (P less than .05) in POSTLHRH ewes than in PRELHRH ewes. Concentrations of PGFM did not differ between treatments. The CL ipsilateral to the remaining uterine horn weighted less (P less than .01) and contained less P4 (P less than .01) than contralateral CL. These data confirm the hypothesis that premature regression of subnormal CL is uterine-dependent in a local fashion. Presence of the uterus during the follicular and(or) early luteal phase inhibited subsequent luteal function in seasonally anestrous ewes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号