首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The great expansion of irrigated lands using groundwater has often caused the exploitation of aquifer reserves beyond their recharge capacity. The development of management tools which can harmonize resource exploitation with reserve sustainability is the objective of an interesting experience being accomplished in the aquifer 08.29 in Mancha Oriental, Spain. This paper offers a summary of this ongoing project (GESMO), pointing out the specific role of the Irrigation Advisory Service. The general objective of the project is to create an integrated and integral management system of the aquifer as well as to prepare appropriate techniques for its adequate exploitation. Integral management means that both supply and demand management are considered, including the socio-economic and environmental perspectives. The concept of integrated management implies that the process must involve the majority of economic and social agents affected.

Management is founded on a Decision Support System (DSS) which takes into consideration different possible options. The DSS must contemplate the impacts on the environment, mainly the aquifer reserve losses and the increase of nitrates concentration in groundwater. The project directly affects more than 5000 agricultural users, irrigating about 100 000 ha with the aquifer water resources, as well as the whole population living in this region. Results of this project, including irrigation technologies developed may be useful for other areas in the Mediterranean Basin where similar cases occur.  相似文献   


2.
A linear programming (LP) based optimization model and a simulation model are developed and applied in a typical diversion type irrigation system for land and water allocation during the dry season. Optimum cropping patterns for different management strategies are obtained by the LP model for different irrigation efficiencies and water availability scenarios. The simulation model yields the risk-related irrigation system performance measures (i.e. reliability, resiliency and vulnerability) for the management policies defined by the optimization model. The alternative strategies are evaluated in terms of all performance criteria (i.e. net economic benefit, equity and reliability) simultaneously through a trade-off analysis using a multi-criteria decision making method (compromise programming). For the case study of the Kankai irrigation system in Nepal, with equal preference to the objectives, a management strategy with equal share of water among the project subareas appears to be the most satisfactory alternative under water shortage conditions. The existing water allocation policy is not economically efficient. Deficit irrigation in Early paddy appears attractive under favorable hydrologic scenario, particularly if accompanied by measures to improve existing irrigation system efficiency.  相似文献   

3.
The Government of Egypt is currently implementing projects that expand irrigated area on the Sinai Peninsula and in the southern desert. Those projects will reduce the supply of Nile River water available to farmers in the Nile Delta, which is a heavily populated and highly productive agricultural region. The southern desert project will obtain water directly from Lake Nasser, while a mixture of Nile River water and drainage water will be delivered to the Sinai. The true costs of the projects include the opportunity costs of water and capital that could be used alternatively in the Nile Valley and Delta, or in other productive endeavors. Economic analysis generates optimizing criteria that describe the role of scarcity values (opportunity costs) in determining the allocation of Nile River water that will maximize net social benefits. Policy implications are derived by comparing those criteria with the criterion that farmers implement when maximizing profits from crop production. A small-scale simulation model demonstrates the potential impact of water allocation policies on regional net revenues. Results are discussed within the context of a broader view of national goals that include promoting economic growth, achieving food security, and enhancing the quality of life for Egyptians.  相似文献   

4.
This paper develops a non-linear programming optimization model with an integrated soil water balance, to determine the optimal reservoir release policies, the irrigation allocation to multiple crops and the optimal cropping pattern in irrigated agriculture. Decision variables are the cultivated area and the water allocated to each crop. The objective function of the model maximizes the total farm income, which is based on crop–water production functions, production cost and crop prices. The proposed model is solved using the simulated annealing (SA) global optimization stochastic search algorithm in combination with the stochastic gradient descent algorithm. The rainfall, evapotranspiration and inflow are considered to be stochastic and the model is run for expected values of the above parameters corresponding to different probability of exceedence. By combining various probability levels of rainfall, evapotranspiration and inflow, four weather conditions are distinguished. The model takes into account an irrigation time interval in each growth stage and gives the optimal distribution of area, the water to each crop and the total farm income. The outputs of this model were compared with the results obtained from the model in which the only decision variables are cultivated areas. The model was applied on data from a planned reservoir on the Havrias River in Northern Greece, is sufficiently general and has great potential to be applicable as a decision support tool for cropping patterns of an irrigated area and irrigation scheduling.  相似文献   

5.
A mathematical model is developed to arrive at an optimal conjunctive use policy for irrigation of multiple crops in a reservoir-canal–aquifer system. The integration of the reservoir operation for canal release, ground water pumping and crop water allocations during different periods of crop season (intraseasonal periods) is achieved through the objective of maximizing the sum of relative yields of crops over a year considering three sets of constraints: mass balance at the reservoir, soil moisture balance for individual crops, and governing equations for ground water flow. The conjunctive use model is formulated with these constraints linked together by appropriate additional constraints as a deterministic linear programming model. A two-dimensional isotropic, homogeneous unconfined aquifer is considered for modeling. The aquifer response is modeled through the use of a finite element ground water model. A conjunctive use policy is defined by specifying the ratio of the annual allocation of surface water to that of ground water pumping at the crop level for the entire irrigated area. A conjunctive use policy is termed stable when the policy results in a negligible change in the ground water storage over a normal year. The applicability of the model is demonstrated through a case study of an existing reservoir command area in Chitradurga district, Karnataka State, India.  相似文献   

6.
Due to the competitive use of available water resources, it has become important to define appropriate strategies for planning and management of irrigated farmland. To achieve effective planning, accurate information is needed for crop water use requirements, irrigation withdrawals, runoff and nitrate leaching as a function of crop, soil type and weather conditions at a regional level. Interfacing crop models with a geographic information system (GIS) extends the capabilities of the crop models to a regional level. The objective of this study was to determine the irrigation requirements, annual runoff and annual nitrate leaching for the most important crops of the Tibagi river basin in the State of Parana, Brazil. The computer tool selected for this study was the Decision Support System for Agrotechnology Transfer (DSSAT) version 3.5 (98.0) and its associated crop modeling and spatial application system AEGIS/WIN. It was assumed that farms within the same county use similar management practices. To achieve representative estimates of irrigation requirements, the weather data from stations located within each county or the nearest weather station were used. A weighting factor based on the proportion of soil type and crop acreage was applied to determine total annual irrigation withdrawals, annual runoff and nitrate leaching for each county in the river basin. The model predicted outputs, including yield, irrigation requirements, runoff and nitrate leached for different soil types in each county, were analyzed, using spatial analysis methods. This allowed for the display of thematic maps for irrigation requirements, annual runoff and nitrate leaching, and to relate this information with irrigation management and planning. The maximum annual irrigation withdrawal, runoff and nitrate leaching were 22,969 m3 per year, 31,152 m3 per year and 1488 t N per year in the Tibagi river basin. This study showed that crop simulation models linked to GIS can be an effective planning tool to help determine irrigation requirements for river basins and large watersheds.  相似文献   

7.
Approaches to modular model development   总被引:9,自引:0,他引:9  
One of the main goals of the International Consortium for Agricultural Systems Applications (ICASA) is to advance the development and application of compatible and complementary models, data and other systems analysis tools. To help reach that goal, it will adopt and recommend modular approaches that facilitate more systematic model development, documentation, maintenance, and sharing. In this paper, we present criteria and guidelines for modules that will enable them to be plugged into existing models to replace an existing component or to add a new one with minimal changes. This will make it possible to accept contributions from a wide group of modellers with specialities in different disciplines. Two approaches to modular model development have emerged from different research groups in ICASA. One approach was developed by extending the programming methods used in the Fortran Simulation Environment developed in The Netherlands. This method is being used in revisions of some of the Decision Support Systems for Agrotechnology Transfer crop models. A simple example of this approach is given in which a plant growth module is linked with a soil water balance module to create a crop model that simulates growth and yield for a uniform area. The second approach has been evolving within the Agricultural Production Systems Research Unit group in Australia. This approach, implemented in software called Agricultural Production Systems Simulator, consists of plug-in/pull-out modules and an infrastructure for inter-module communication. The two approaches have important similarities, but also differ in implementation details. In both cases, avoiding reliance on any particular programming language has been an important design criterion. By comparing features of both approaches, we have started to develop a set of recommendations for module design that will lead to a ‘toolkit’ of modules that can be shared throughout the ICASA network.  相似文献   

8.
Tradable water right systems are becoming important ways to achieve distributive efficiency in water resources. In 2002, China's Ministry of Water Resources initiated a pilot project in Zhangye City in Northwest China. The project was designed to establish a new water use rights system with tradable water quotas with the hope of reallocating water resources more efficiently through market-based instruments. However, the tradable water right system is not well enforced. Based on both primary and secondary data, we find that mutual monitoring can improve the effectiveness of a water allocation and trading program. For both surface water and groundwater irrigation systems, the conditions needed to stimulate mutual monitoring include: (1) a hierarchical management system; (2) well defined water rights or quotas; (3) control of total water quotas and water sources by the upper hierarchy; and (4) an approximate balance between the water supply or pumping capacity and the water quota. We describe also the institutional requirements for stimulating mutual monitoring.  相似文献   

9.
黄河流域典型灌区灌溉节水管理模型研究   总被引:2,自引:0,他引:2  
以黄河流域上下游2个典型灌区为背景,针对灌区有其农业水管理现状,开发了灌溉节水策略分析决策支持系统(DSS)原型。DSS是一个规划工具,通过对不同策略下田间配水及供水系统的模拟分析及综合决策,寻求最优的策略集合,以达到节约灌溉用水量、提高农业用水效率及维持农业可持续发展的目的。该DSS系统主要用于黄河流域灌区提高农业水管理水平的策略分析,也可用于评估灌区续建配套及土地最佳利用方案等方面。  相似文献   

10.
In southwestern Ontario, rain-fed crop production frequently fails to achieve its yield potential because of growing-season droughts and/or uneven rainfall distribution. The objective of this study was to determine if the Decision Support System for Agrotechnology Transfer (DSSAT) v4.5 model could adequately simulate corn and soybean yields, near-surface soil water contents, and cumulative nitrate-N losses associated with regular free tile drainage (TD) and controlled tile drainage with optional subsurface irrigation (CDS). The simulations were compared to observations collected between 2000 and 2004 from both TD and CDS field experiments on a Perth clay loam soil at the Essex Region Conservation Authority demonstration farm, Holiday Beach, Ontario, Canada. There was good model-data agreement for crop yields, near-surface (0-30 cm) soil water content and cumulative annual tile nitrate-N loss in both the calibration and validation years. For both TD and CDS, the CENTURY soil C/N model in DSSAT simulated water content and cumulative tile nitrate-N loss with normalized root mean square error (n-RMSE) values ranging from 9.9 to 14.8% and 17.8 to 25.2%, respectively. The CERES-Maize and CROPGRO-Soybean crop system models in the DSSAT simulated corn and soybean yields with n-RMSE values ranging from 4.3 to 14.0%. It was concluded that the DSSAT v4.5 model can be a useful tool for simulating near-surface soil water content, cumulative tile nitrate-N losses, and corn and soybean yields associated with CDS and TD water management systems.  相似文献   

11.
该文介绍了两种适用于半干旱灌区某次配水的实用优化模型。第一种以作物水分生产函数为基础,以全灌区净灌溉增产值最大为目标函数;第二种根据灌溉管理部门的要求,以某次灌水全灌区的水费收入最高为目标函数。这两种配水模型以陕西省洛惠渠灌区 1989、1990年夏灌的实际用水资料进行了验证,可供各自流引水灌区在渠系水量调配中实际应用。  相似文献   

12.
Groundwater in Spain, as in other arid and semiarid countries worldwide, has been widely used in the expansion of irrigated agriculture. In the Spanish Mancha Occidental aquifer, the excessive, and sometimes illegal, water abstraction for irrigation has promoted outstanding socioeconomic development in the area, but it has also resulted in exploitation of the aquifer and degradation of valuable wetlands. Water policies implemented in the region have not yet managed to restore the aquifer and face strong social opposition. This paper uses a multi-scale modeling approach to explore the environmental and socio-economic impacts of alternative water conservation measures at the farm and basin levels. It also analyzes their comparative cost-effectiveness to help policy makers identify the least costly policy option for achieving the goal of the Mancha Occidental aquifer's sustainability. To conduct this analysis, a Mathematical Programming Model has been developed to simulate: the closing-up and taxed-legalization of unlicensed wells, uniform volumetric and block-rate water prices, water quotas, and water markets. Aggregate results show that net social costs are not substantially different across policy option, so none of the considered policy options will be clearly more cost-effective than the others. However, there are significant differences between private and public costs (at the farm and sub-basin levels), which will be critical for determining the application in practice of these policies. Results show that controlling illegal water mining (through the legalization of unlicensed wells) is necessary, but is not sufficient to recover the aquifer. Rather, effective water management in this area will require the implementation of other water management policies as well. Among them, uniform volumetric and block-rate water pricing policies will entail the lowest net social cost, but will produce important income losses in the smallest and most water-intensive farms, which might put at risk the viability of these farms and the social acceptance of the policies. Further investigations on social costs, policy enforcement capacity and public participation in water management are highly recommended.  相似文献   

13.
针对传统灌区水资源多目标模型求解过程中难以兼顾多维配置要求的问题,基于目标协调度、可持续发展指数、目标实现度3个指标提出了一种复合多目标方法。为验证该方法有效性,以甘肃省黑河中游17个灌区间水资源优化配置为例,以经济效益、社会效益、生态效益为目标函数构建多目标优化模型,并分别使用传统方法与复合多目标方法进行求解。结果表明,使用复合多目标方法所获得的优化配置方案可以将灌溉水利用系数提高5.42%~7.57%。结果验证了传统多目标模型在协调多个冲突目标方面较单目标模型有显著优势,而复合多目标方法所获得的优化方案更能体现决策者对研究区域种植业发展与灌区水资源配置的多元要求。  相似文献   

14.
The impact of climate change on maize yields in the United States and China   总被引:1,自引:0,他引:1  
This study analyzes the impacts of climate change on maize yields using an econometric model that incorporates climate, economic, and technology variables. The major finding is climate change will not universally cause negative impacts of maize yields in the United States and China. The results of a simulation of climate change on maize yields over the period 2008-2030 show that a combination of changes in temperature and precipitation can either bring positive or negative effects on maize yields. Furthermore, variation in regional climatic and economic conditions makes the impacts of climatic change on maize yields substantially different in different regions. In this research, the impacts of climate change on maize yields are not simply examined by climate factors. Economic and technology adaptation effects on maize yields are also incorporated. Thus, even with significant changes in climate conditions that alter the maize crop’s growing environment and affect crop yields, a decrease in maize supply due to a decrease in maize yields would lead to an increase in the maize price, which in turn would induce farmers to add more investments in production inputs to raise yields. Thus, the decrease in actual yields may not be as dramatic as predicted in only climate factor considered cases. In this research, findings gained from the study can be used for early-staged policymaking decisions and advanced problem prevention programs. To ensure the continuous increase in maize yields in the future, further studies and research, as well as efficient environmental policies and actions are required.  相似文献   

15.
作物优化灌溉制度理论与方法研究进展   总被引:1,自引:0,他引:1  
重点论述了国内外作物优化灌溉制度理论与方法的研究进展,其中问题有:在单一作物模型中基于SPAC理论的研究不够充分,作物需水时间划分不够具体;多种作物水资源优化配置注重经济效益而在面向生态的综合效益研究较少。文中还比较了在模型设计中多种方法的优缺点,提出了在今后作物灌溉制度研究中应运用多种模型组合优化方法,加强学科交流以解决灌溉决策支持系统的问题,以期为解决区域内不同节水模式下作物优化灌溉制度和面向生态的水资源配置提供灵活可行的科学依据。  相似文献   

16.
南水北调工程是缓解我国北方部分地区水资源短缺的特大型水资源配置战略工程.其实施将显著改善我国北方地区的水资源条件及其配置格局,并为受水区生态环境的保护与修复创造有利条件.以邯郸市受水区为研究对象,利用GMS软件对研究区地下水进行数值模拟,并对模型参数进行识别与验证,进而开展整个研究区的水均衡分析工作.结果表明:所建模型较好地模拟了该区的含水层结构、边界条件,所模拟的地下水位与实测水位较为接近,可用于预测不同水源配置方案下未来该区的地下水位变化情况,以此为该区的地下水压采工作提供决策依据.  相似文献   

17.
There is continuing debate about the role of water productivity and the potential to increase it in response to significantly increased water demand to meet the future needs for food—estimated to be roughly double that of today by 2050. The debate centers round the relative potential benefits of enhancing rainfed agriculture, improving irrigation and expanding areas of both. All expansion and intensification options will require significantly more water to be used, often in places where the ecosystem impacts of agriculture are already severe. Improvement in water productivity can result from improving the provision and management of the other factor inputs of crop production. There is considerable debate on the ability of other inputs—typically nitrogen—to substitute for water. This paper describes a set of simulations undertaken with well calibrated maize (Zea mays L.) crop model in Decision Support System for Agro-technology Transfer (DSSAT). The simulations investigate the response to nitrogen under rainfed conditions in Florida, and show that neither the transpiration ratio nor the harvest index are constant in practice, and that fertilizer use can enhance water productivity, even in quite high yield conditions and that the transpiration ratio can be increased by N fertilizer application at low levels of crop water use.  相似文献   

18.
将系统动力学方法应用于区域水资源可持续利用研究,结合河南省实际情况,在宏观调控的基础上,建立了河南省水资源的系统动力学模型,涉及到河南省整个区域的经济、社会、人口、环境等诸多因素,通过计算机仿真模拟,预测了未来几十年水资源的需求状况,改善了水环境的严峻形式,提出了较为合理的水资源配置方案。  相似文献   

19.
基于多目标模糊规划的灌区多水源优化配置   总被引:2,自引:0,他引:2  
付强  肖圆圆  崔嵩  刘东  李天霄 《农业机械学报》2017,48(7):222-227,221
以黑龙江省和平灌区为例,构建基于多目标模糊规划的灌区多水源优化配置模型,该模型能够在提高农业灌溉用水净效益的同时有效减少农业灌溉水量,促进和平灌区多水源高效配置。采用具有非线性隶属度函数的模糊多目标规划求解模型,得到不同流量不同水源下的最优配水方案。结果表明:不同流量水平下水稻不同生育阶段均存在缺水现象,低流量下需从柳河水库引入外调水才能保证水稻的最小需水量。为保证灌区整体效益,按照引水工程、提水工程、井灌工程的先后顺序进行配水,并得到多目标配水模型在不同情景下的运行稳定情况。该模型可以高效地进行灌区多水源在作物各生育阶段的优化配置。  相似文献   

20.
灌溉用水管理是整个灌区的工作重点。决策支持系统等人工智能应用于灌溉管理,辅助管理人员及高层领导正确决策,解决知识处理中的半结构、非结构化问题,缩短预报周期,提高调度的实时性和可靠性,是二十一世纪灌溉系统管理的发展方向。最后介绍了霍泉灌区灌溉用水管理决策支持系统(简记:HQIWADSS)的程序结构和主要功能  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号