首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The analysis of irrigation and drainage management and their effects on the loading of salts is important for the control of on-site and off-site salinity effects of irrigated agriculture in semi-arid areas. We evaluated the irrigation management and performed the hydrosalinity balance in the D-XI hydrological basin of the Monegros II system (Aragón, Spain) by measuring or estimating the volume, salt concentration and salt mass in the water inputs (irrigation, precipitation and Canal seepage) and outputs (evapotranspiration and drainage) during the period June 1997–September 1998. This area is irrigated by solid-set sprinklers and center pivots, and corn and alfalfa account for 90% of the 470 ha irrigated land. The soils are low in salts (only 10% of the irrigated land is salt-affected), but shallow (<2 m) and impervious lutites high in salts (average ECe=10.8 dS m−1) and sodium (average SARe=20 (meq l−1)0.5) are present in about 30% of the study area.The global irrigation efficiency was high (Seasonal Irrigation Performance Index=92%), although the precipitation events were not sufficiently incorporated in the scheduling of irrigation and the low irrigation efficiencies (60%) obtained at the beginning of the irrigated season could be improved by minimising the large post-planting irrigation depths given to corn to promote its emergence. The salinity of the irrigation water was low (EC=0.36 dS m−1), but the drainage waters were saline (EC=7.5 dS m−1) and sodic (SAR=10.3 (meq l−1)0.5) (average values for the 1998 hydrological year) due to the dissolution and transport of the salts present in the lutites. The discharge salt loading was linearly correlated (P<0.001) with the volume of drainage. The slope of the daily mass of salts in the drainage waters versus the daily volume of drainage increased at a rate 25% higher in 1997 (7.6 kg m−3) than in 1998 (6.1 kg m−3) due to the higher precipitation in 1997 and the subsequent rising of the saline watertables in equilibrium with the saline lutites. Drainage volumes depended (P<0.001) on irrigation volumes and were very low (194 mm for the 1998 hydrological year), whereas the salt loading was moderate (13.5 Mg ha−1 for the 1998 hydrological year) taking into account the vast amount of salts stored within the lutites. We concluded that the efficient irrigation and the low salinity of the irrigation water in the study area allowed for a reasonable control of the salt loading conveyed by the irrigation return flows without compromising the salinization of the soil’s root-zone.  相似文献   

2.
The potato (Solanum tuberosum L.) is widely planted in the Middle Anatolian Region, especially in the Nigde-Nevsehir district where 25% of the total potato growing area is located and produces 44% of the total yield. In recent years, the farmers in the Nigde-Nevsehir district have been applying high amounts of nitrogen (N) fertilizers (sometimes more than 900 kg N ha−1) and frequent irrigation at high rates in order to get a much higher yield. This situation results in increased irrigation and fertilization costs as well as polluted ground water resources and soil. Thus, it is critical to know the water and nitrogen requirements of the crop, as well as how to improve irrigation efficiency. Field experiments were conducted in the Nigde-Nevsehir (arid) region on a Fluvents (Entisols) soil to determine water and nitrogen requirements of potato crops under sprinkler and trickle irrigation methods. Irrigation treatments were based on Class A pan evaporation and nitrogen levels were formed with different nitrogen concentrations.The highest yield, averaging 47,505 kg ha−1, was measured in sprinkler-irrigated plots at the 60 g m−3 nitrogen concentration level in the irrigation treatment with limited irrigation (480 mm). Statistically higher tuber yields were obtained at the 45 and 60 g m−3 nitrogen concentration levels in irrigation treatments with full and limited irrigation. Maximum yields were obtained with about 17% less water in the sprinkler method as compared to the trickle method (not statistically significant). On the loam and sandy loam soils, tuber yields were reduced by deficit irrigation corresponding to 70% and 74% of evapotranspiration in sprinkler and trickle irrigations, respectively. Water use of the potato crop ranged from 490 to 760 mm for sprinkler-irrigated plots and 565–830 mm for trickle-irrigated treatments. The highest water use efficiency (WUE) levels of 7.37 and 4.79 kg m−3 were obtained in sprinkle and trickle irrigated plots, respectively. There were inverse effects of irrigation and nitrogen levels on the WUE of the potato crops. Significant linear relationships were found between tuber yield and water use for both irrigation methods. Yield response factors were calculated at 1.05 for sprinkler methods and 0.68 for trickle methods. There were statistically significant linear and polynomial relationships between tuber yield and nitrogen amounts used in trickle and sprinkler-irrigated treatments, respectively. In sprinkler-irrigated treatments, the maximum tuber yield was obtained with 199 kg N ha−1. The tuber cumulative nitrogen use efficiency (NUEcu) and incremental nitrogen use efficiency (NUEin) were affected quite differently by water, nitrogen levels and years. NUEcu varied from 16 to 472 g kg−1 and NUEin varied from 75 to 1035 g kg−1 depending on the irrigation method. In both years, the NH4-N concentrations were lower than NO3-N, and thus the removed nitrogen and nitrogen losses were found to be 19–87 kg ha−1 for sprinkler methods and 25–89 kg ha−1 for trickle methods. Nitrogen losses in sprinkler methods reached 76%, which were higher than losses in trickle methods.  相似文献   

3.
A 2-year experiment was conducted at Tal Amara Research Station in the Bekaa Valley of Lebanon to determine water use and lint yield response to the length of irrigation season of drip irrigated cotton (Gossypium hirsutum L.). Crop evapotranspiration (ETcrop) and reference evapotranspiration (ETrye-grass) were directly measured at weekly basis during the 2001 growing period using crop and rye-grass drainage lysimeters. Crop coefficients (Kc) in the different growth stages were calculated as ETcrop/ETrye-grass. Then, the calculated Kc values were used in the 2002 growing period to estimate evapotranspiration of cotton using the FAO method by multiplying the calculated Kc values by ETrye-grass measured in 2002. The length of irrigation season was determined by terminating irrigation permanently at first open boll (S1), at early boll loading (S2), and at mid boll loading (S3). The three treatments were compared to a well-watered control (C) throughout the growing period. Lint yield was defined as a function of components including plant height at harvest, number of bolls per plant, and percentage of opened bolls per plant.Lysimeter-measured crop evapotranspiration (ETcrop) totaled 642 mm in 2001 for a total growing period of 134 days, while when estimated with the FAO method in 2002 it averaged 669 mm for a total growing period of 141 days from sowing to mature bolls. Average Kc values varied from 0.58 at initial growth stages (sowing to squaring), to 1.10 at mid growth stages (first bloom to first open boll), and 0.83 at late growth stages (early boll loading to mature bolls).Results showed that cotton lint yields were reduced as irrigation amounts increased. Average across years, the S1 treatment produced the highest yield of 639 kg ha−1 from total irrigations of 549 mm, compared to the S2 and S3 treatments, which yielded 577 and 547 kg ha−1 from total irrigations of 633 and 692 mm, respectively, while the control resulted in 457 kg ha−1 of lint yield from 738 mm of irrigation water. Water use efficiency (WUE) was found to be higher in S1 treatment and averaged 1.3 kg ha−1 mm−1, followed by S2 (1.1 kg ha−1 mm−1), and S3 (1.0 kg ha−1 mm−1), while in the control WUE was 0.80 kg ha−1 mm−1. Lint yield was negatively correlated with plant height and the number of bolls per plant and positively correlated with the percentage of opened bolls. This study suggests that terminating irrigation at first open boll stage has been found to provide the highest cotton yield with maximum WUE under the semi-arid conditions of the Bekaa Valley of Lebanon.  相似文献   

4.
The great challenge of the agricultural sector is to produce more food from less water, which can be achieved by increasing Crop Water Productivity (CWP). Based on a review of 84 literature sources with results of experiments not older than 25 years, it was found that the ranges of CWP of wheat, rice, cotton and maize exceed in all cases those reported by FAO earlier. Globally measured average CWP values per unit water depletion are 1.09, 1.09, 0.65, 0.23 and 1.80 kg m−3 for wheat, rice, cottonseed, cottonlint and maize, respectively. The range of CWP is very large (wheat, 0.6–1.7 kg m−3; rice, 0.6–1.6 kg m−3; cottonseed, 0.41–0.95 kg m−3; cottonlint, 0.14–0.33 kg m−3 and maize, 1.1–2.7 kg m−3) and thus offers tremendous opportunities for maintaining or increasing agricultural production with 20–40% less water resources. The variability of CWP can be ascribed to: (i) climate; (ii) irrigation water management and (iii) soil (nutrient) management, among others. The vapour pressure deficit is inversely related to CWP. Vapour pressure deficit decreases with latitude, and thus favourable areas for water wise irrigated agriculture are located at the higher latitudes. The most outstanding conclusion is that CWP can be increased significantly if irrigation is reduced and crop water deficit is intendently induced.  相似文献   

5.
A study was conducted to determine the effects of different drip irrigation regimes on yield and yield components of cucumber (Cucumbis sativus L.) and to determine a threshold value for crop water stress index (CWSI) based on irrigation programming. Four different irrigation treatments as 50 (T-50), 75 (T-75), 100 (T-100) and 125% (T-125) of irrigation water applied/cumulative pan evaporation (IW/CPE) ratio with 3-day-period were studied.Seasonal crop evapotranspiration (ETc) values were 633, 740, 815 and 903 mm in the 1st year and were 679, 777, 875 and 990 mm in the 2nd year for T-50, T-75, T-100 and T-125, respectively. Seasonal irrigation water amounts were 542, 677, 813 and 949 mm in 2002 and 576, 725, 875 and 1025 mm in 2003, respectively. Maximum marketable fruit yield was from T-100 treatment with 76.65 t ha−1 in 2002 and 68.13 t ha−1 in 2003. Fruit yield was reduced significantly, as irrigation rate was decreased. The water use efficiency (WUE) ranged from 7.37 to 9.40 kg m−3 and 6.32 to 7.79 kg m−3 in 2002 and 2003, respectively, while irrigation water use efficiencies (IWUE) were between 7.02 and 9.93 kg m−3 in 2002 and between 6.11 and 8.82 kg m−3 in 2003.When the irrigation rate was decreased, crop transpiration rate decreased as well resulting in increased crop canopy temperatures and CWSI values and resulted in reduced yield. The results indicated that a seasonal mean CWSI value of 0.20 would result in decreased yield. Therefore, a CWSI = 0.20 could be taken as a threshold value to start irrigation for cucumber grown in open field under semi-arid conditions.Results of this study demonstrate that 1.00 IW/CPE water applications by a drip system in a 3-day irrigation frequency would be optimal for growth in semiarid regions.  相似文献   

6.
Freshwater eutrophication is usually controlled by inputs of phosphorus (P). As point source controls have decreased P inputs, the relative contributions of nonpoint inputs from agriculture have increased. Thus, remedial strategies are now being directed towards minimizing P export from agriculture. To identify critical sources of P, we investigated chemical and hydrologic factors controlling P export from a mixed land use (30% wooded, 40% cultivated, 30% pasture) 39.5 ha watershed in east-central Pennsylvania. The watershed was divided into four hydrologically distinct segments and streamflow and P concentration from each segment measured since June 1996. Mehlich-3 extractable soil P, determined on a 30-m grid over the watershed, ranged from 7 to 788 mg kg−1. Generally, soils in wooded areas had low Mehlich-3 P (<30 mg kg−1), grazed pasture had Mehlich-3 P values between 100 and 200 mg kg−1, and cropped fields receiving manure and fertilizer applications were in most cases above 200 mg kg−1. Average flow-weighted P concentrations for ten storms during August–November 1996 decreased 60% downstream from segments 4–1 (watershed outlet). Streamflow P concentrations were more closely related to the near-stream (within 60 m) than whole watershed distribution of high-P soils in each watershed segment. This suggests that near-stream surface runoff and soil P, control P export form the watershed. Thus, managing P application in the primary surface runoff-producing areas near the stream has a greater potential to decrease P export in streamflow than for areas further from the channel. Clearly, the integration of areas of high soil P with areas of surface runoff production must be considered when guidelines are developed for P applications. Considering the distribution of high P soils alone may unnecessarily restrict farm management options without providing the desired reduction in P export from watersheds.  相似文献   

7.
《Agricultural Systems》2005,83(2):113-134
A farm-level framework for assessing the economic impact of measures to reduce nitrate loss by leaching is described. The framework links a database of crop treatments and nitrogen loss generated with the IACR SUNDIAL model for 10 years of weather and an economic model, Farm-adapt, for a root-cropping farm on sandy loam in the East Midlands of England. Weather induced variation in nitrate loss over time was greater than that resulting from differences in management practice. Limits on nitrate loss per hectare resulted in a relatively small annual mean cost to the farm when allowed to choose the optimal management practice (including doing nothing) in each year (e.g. £8 ha−1 for a 30 kg ha−1 limit, resulting in a 6.2 kg ha−1 and 3.2 mg l−1 reduction in mean nitrate-N loss and mean nitrate-N concentration, respectively). In no years was it feasible with the treatments tested to reduce concentration of nitrate-N to the EU limit of 11.3 mg l−1 in every week of the year. A mean annual loss of 11.3 mg l−1 was feasible in four out of 10 years at a mean cost of £10 ha−1. The most cost-effective reductions of loss (in terms of £ kg−1 nitrate-N ha−1) were achieved by targeted reductions in N application followed by a combination of reduced N and growing winter cover before spring crops. Untargeted limits (quotas) on nitrogen, nitrogen taxes and application of single management practices were less cost effective than combinations of practices. Three management strategies, based on these combinations, were imposed for all years. Mean costs were greater than where the farm could choose the optimal management practice in each year; a 4.67 mg l−1 reduction in nitrate-N concentration cost £19 ha−1 and a 5.88 mg l−1 reduction £33 ha−1.  相似文献   

8.
Based on a field study on the semi-arid Loess Plateau of China, the strategies of limited irrigation in farmland in dry-period of normal-precipitation years are studied, and the effects on water use and grain yield of spring wheat of dry-period irrigation and fertilizer application when sowing are examined. The study includes four treatments: (1) with 90 mm dry-period irrigation but without fertilizer application (W); (2) with fertilizer application but without dry-period irrigation (F); (3) with 90 mm dry-period irrigation plus fertilizer application (WF); (4) without dry-period irrigation and fertilizer application (CK). The results indicate that dry-period irrigation resulted in larger and deeper root systems and larger leaf area index (LAI) compared with the non-irrigated treatments. The root/shoot ratio (R/S) in the irrigated treatments was significantly higher than in the non-irrigated treatments. The grain yields in F, W and WF are 1509, 2712 and 3291 kg ha−1, respectively, which are 13.7, 104.3 and 147.9% higher than that (1328 kg ha−1) of CK, and at the same time the grain yields in W and WF are also significantly higher than in F. Water use efficiencies (WUE) in terms of grain yield are 5.70 and 6.91 kg ha−1 mm−1 in W and WF, respectively, being 65.7 and 101.1% higher than that (3.44 kg ha−1 mm−1) of CK. The highest WUE and grain yield consistently occurred in WF, suggesting that the combination of dry-period irrigation and fertilizer application has a beneficial effect on improving WUE and grain yield of spring wheat.  相似文献   

9.
Different irrigation scheduling methods and amounts of water ranging from deficit to excessive amounts were used in cotton (Gossypium hirsutum L.) irrigation studies from 1988 to 1999, at Lubbock, TX. Irrigation scheduling treatments based on canopy temperature (Tc) were emphasized in each year. Surface drip irrigation and recommended production practices for the area were used. The objective was to use the 12-year database to estimate the effect of irrigation and growing season temperature on cotton yield. Yields in the irrigation studies were then compared with those for the northwest Texas production region. An irrigation input of 58 cm or total water application of 74 cm was estimated to produce maximum lint yield. Sources of the total water supply for the maximum yielding treatments for each year averaged 74% from irrigation and 26% from rain. Lint yield response to irrigation up to the point of maximum yield was approximated as 11.4 kg ha−1 cm−1 of irrigation between the limits of 5 and 54 cm with lint yields ranging from 855 to 1630 kg ha−1. The intra-year maximum lint yield treatments were not limited by water input, and their inter-year range of 300 kg ha−1 was not correlated with the quantity of irrigation. The maximum lint yields were linearly related to monthly and seasonal heat units (HU) with significant regressions for July (P=0.15), August (P=0.07), and from May to September (P=0.01). The fluctuation of maximum yearly lint yields and the response to HU in the irrigation studies were similar to the average yields in the surrounding production region. The rate of lint yield increase with HU was slightly higher in the irrigation studies than in the surrounding production area and was attributed to minimal water stress. Managing irrigation based on real-time measurements of Tc produced maximum cotton yields without applying excessive irrigation.  相似文献   

10.
Frequent fertigation of crops is often advocated in the technical and popular literature, but there is limited evidence of the benefits of high-frequency fertigation. Field experiments were conducted on an Indo-American Hybrid var., Creole Red, of onion crop during three winter seasons of 1999–2000 through 2001–2002 in coarse-textured soil of Delhi under the semi-arid region of India. Three irrigation levels of 60, 80 and 100% of the crop evapotranspiration (ET) and four fertigation frequencies of daily, alternate day, weekly and monthly comprised the fertigation treatment. Analysis of soil samples indicated considerable influence of fertigation frequency on NO3-N distribution in soil profile. NO3-N in lower soil profiles (30.0–60.0 cm soil depth) was marginally affected in daily, alternate day and weekly fertigation. However, fluctuations of NO3-N content in 0.0–15.0, 15.0–30.0, 30.0–45.0 and 45.0–60.0 cm soil depth was more in monthly fertigation frequency. The level of soil NO3-N after the crop season shows that more NO3-N leached through the soil profile in monthly fertigation frequency. Amounts of irrigation water applied in three irrigation treatments proved to be too small to cause significant differences in the content of NO3-N leached beyond rooting depth of onion. Yield of onion was not significantly affected in daily, alternate day and weekly fertigation, though there was a trend of lower yields with monthly fertigation. The highest yield was recorded in daily fertigation (28.74 t ha−1) followed by alternate day fertigation (28.4 t ha−1). Lowest yield was recorded in monthly fertigation frequency (21.4 t ha−1). Application of 56.4 cm irrigation water and 3.4 kg ha−1 urea per fertigation (daily) resulted in highest yield of onion with less leaching of NO3-N.  相似文献   

11.
Soil water and salinity are crucial factors influencing crop production in arid regions. An autumn irrigation system employing the application of a large volume of water (2200–2600 m3 ha−1) is being developed in the Hetao Irrigation District of China, since the 1980s with the goal to reduce salinity levels in the root zone and increase the water availability for the following spring crops. However, the autumn irrigation can cause significant quantities of NO3 to leach from the plant root zone into the groundwater. In this study, we investigated the changes in soil water content, NO3–N and salinity within a 150 cm deep soil profile in four different types of farmlands: spring wheat (FW), maize (FM), spring wheat–maize inter-planting (FW–M) and sunflower (FS). Our results showed that (1) salt losses mainly occurred in the upper 60 cm of the soil and in the upper 40 cm for NO3–N; (2) the highest losses of salt and NO3–N could be observed in FW, whereas the lowest losses were found in FW–M.NO3–N concentration, pH and electrical conductivity (EC) in the groundwater were also monitored before and after the autumn irrigation. We found that the autumn irrigation caused the groundwater concentration of NO3–N to increase from 1.73 to 21.6 mg L−1, thereby, exceeding the standards of the World Health Organization (WHO). Our results suggest that extensive development of inter-planting tillage might be a viable measure to reduce groundwater pollution, and that the application of optimized minimum amounts of water and nitrogen to meet realistic yield goals, as well as the timely application of N fertilizers and the use of slow release fertilizers can be viable measures to minimize nitrate leaching.  相似文献   

12.
A field experiment was conducted during summer season of 1998 at the Main Research Station, University of Agricultural Sciences, Hebbal, Bangalore. Experiment consisted of four irrigation levels and two methods of planting. Drip irrigation at 0.8 Epan with normal planting recorded significantly higher green cob (20.07 t ha−1) and fodder yield (24.87 t ha−1) compared to either drip at 0.6 Epan or weekly surface irrigation at 0.8 Epan, while drip at 0.4 Epan under paired planting (10.53 and 15.23 t ha−1, respectively registered the lowest. Drip at 0.4 Epan with normal planting recorded higher WUE of green cob and fodder (48.21 and 61.22 kg ha mm−1) with total water requirement of 330.46 mm. With increase in water use (drip at 0.6 Epan, drip/surface irrigation at 0.8 Epan) the water use efficiency decreased. Drip irrigation at 0.8 Epan resulted in higher leaf water potential (−4, −7, −8 bars) at 20, 40 and 60 DAS before irrigation. Consequently, the RWC in the leaf was 81.10% and the available soil moisture ranged from 55.62 to 61.91%.  相似文献   

13.
Tie-ridging is being promoted in Malawi as an on-field rainwater harvesting technique to ensure a maize (Zea mais L.) crop during a dry or drought year. Resource-poor smallholder farmers are likely to take up tie-ridging if it increases and not decreases maize yield in most years. A numerical study was conducted to calculate the expected maize yield gain due to tie-ridging taking into account the probability of occurrence of drought, dry, normal and wet years (climatic uncertainty). Mean yields due to tie-ridging in drought, dry, normal and wet years at different N levels were derived from observed smallholder maize yield data using a linear nitrogen response model and field-observed retained rainwater amounts in tie-ridged fields. Simulation results indicate that tie-ridging will result in hybrid maize yield gain in a drought year (1050 kg ha−1) and dry year (560 kg ha−1). There will be a hybrid maize yield loss in a normal year (350 kg ha−1) and wet year (700 kg ha−1). For local maize, there will be a yield gain in a drought year (500 kg ha−1), dry year (220 kg ha−1) and normal year (120 kg ha−1). There will be a slight yield loss in a wet year (60 kg ha−1). Considering observed probability of the occurrence of drought, dry, normal and wet years in Malawi, the study reveals that there will be no hybrid maize yield gain in any coming year with tie-ridging. For local maize, the expected yield gain in any coming year was positive (133.3 kg ha−1) but this gain is less than the minimum gain required considering the opportunity cost of labour (142.5 kg ha−1). Thus under the smallholder conditions and climate of Malawi, the expected yield gain in any coming year due to tie-ridging is likely to be minimal and uneconomic.  相似文献   

14.
Fertilization is an important cause of groundwater contamination with nitrate in agricultural soils. The objectives of the present work were: (i) to quantify the nitrate leaching in two fertilized and irrigated soils of the Pampas Region, Argentina; (ii) to test the ability of the NLEAP model to predict residual and leached nitrate in those soils. The soils were a Typic Hapludoll and a Typic Argiudoll. The treatments were: natural grassland never ploughed or fertilized; maize with a short history of fertilization; maize with a long history of fertilization; irrigated maize with a long history of fertilization. Both sites were sampled after harvest in two consecutive years to a 3 m depth. Residual nitrate and potential losses below 150 cm were estimated by NLEAP model. The average amount of nitrate (NO3-N), including values of all treatments, in the upper layer (0–1.5 m) was 128 kg NO3-N ha−1 in the first sampling date and was consistently lower in the second sampling date (38 kg NO3-N ha−1). In the deeper layer (1.5–3 m) these values were 80 and 28 kg NO3-N ha−1 for the first and second sampling date, respectively. Differences between the non-fertilized and the fertilized treatments were significantly smaller in the second sampling date. Obtained results suggest that the rainfall previous to the first sampling was not enough to displace nitrate below 3 m depth. The afterwards heavy rainfall leached nitrate previously accumulated in the soil. Complementary irrigation did not affect nitrate movements. Simulated residual and leached nitrate showed a high correlation with observed values. Nitrate leaching was more associated to rainfall regime and crop yields than to soil type. Simulated residual and leached nitrate showed a high correlation with measured values in both soils, which suggests that NLEAP was appropriate to predict soil nitrate leaching under the studied conditions.  相似文献   

15.
The West Asia and North Africa (WANA) region, with a Mediterranean climate type, has an increasing deficit in cereal production, especially bread wheat. Rainfed cropping in the highlands of this region coincides with the severely cold winter with mostly, snow from November to April. Cereal yields, are low and variable mainly as a result of inadequate and erratic seasonal rainfall and associated management factors, such as late sowing (or late crop emergence). In an area where water is limited, small amounts of supplemental irrigation (SI) water can make up for the deficits in seasonal rain and produce satisfactory and sustainable yields. This field study (1999–2002) on a deep clay silty soil in north west of Iran was conducted with four SI levels (rainfed, 1/3, 2/3 and full irrigation requirements) combined with different N rates (0, 30, 60, 90 and 120 kg ha−1) with one wheat variety (Sabalan). Yields of rainfed wheat varied with seasonal rainfall and its distribution. A delay in the crop emergence from October (SI treatment) to November (rainfed) consistently reduced yields. With irrigation, crop responses to nitrogen were generally significant up to 60 kg N ha−1. An addition of only limited irrigation (1/3 of full irrigation) significantly increased yields and maximized water use efficiency (WUE). Use efficiency for water and N was greatly increased by SI. Under deficit irrigation, maximum WUE would be achieved when 60 kg N ha−1 is combined with 1/3 of full SI. Early crop germination is essential to ensure adequate crop stand before the winter frost and to achieve high yield. Early emergence can be achieved by applying a small amount (40–50 mm) of SI after sowing. Thus, when limited SI is combined with appropriate management, wheat production can be substantially and consistently increased in this highland semi-arid zone.  相似文献   

16.
Soil moisture availability is the main limiting factor for growing second crops in rainfed rice fallows of eastern India. Only rainfed rice is grown with traditional practices during the rainy season (June–October) with large areas (13 m ha−1) remaining fallow during the subsequent dry season (November–March) inspite of annual rainfall of the order 1000–2000 mm. In this study an attempt was made to improve productivity of rainfed rice during rainy season and to grow second crops in rice fallow during dry (winter) season with supplemental irrigation from harvested rainwater. Rice was grown as first crop with improved as well as traditional farmers’ management practices to compare the productivity between these two treatments. Study revealed that 87.1–95.6% higher yield of rice was obtained with improved management over farmers’ practices. Five crops viz., maize, groundnut, sunflower, wheat and potato were grown in rice fallow during dry (winter) season with two, three and four supplemental irrigations and improved management. Sufficient amount of excess rainwater (runoff) was available (381 mm at 75% probability level) to store and recycle for supplementary irrigation to second crops grown after rice. Study revealed that supplemental irrigation had significant effect (P < 0.001) on grain yield of dry season crops and with two irrigation mean yields of 1845, 785, 905, 1420, 8050 kg ha−1 were obtained with maize (grain), groundnut, sunflower, wheat and potato (tuber), respectively. With four irrigations 214, 89, 78, 81, 54% yield was enhanced over two irrigations in respective five crops. Water use efficiency (WUE) of 13.8, 3.35, 3.39, 5.85 and 28.7 kg ha−1 was obtained in maize, groundnut, sunflower, wheat, potato (tuber), respectively with four irrigations. The different plant growth parameters like maximum above ground biomass, leaf area index and root length were also recorded with different levels of supplemental irrigation. The study amply revealed that there was scope to improve productivity of rainfed rice during rainy season and to grow another profitable crops during winter/dry season in rice fallow with supplemental irrigation from harvested rainwater of rainy season.  相似文献   

17.
Water productivity (WP) expresses the value or benefit derived from the use of water, and includes essential aspects of water management such as production for arid and semi-arid regions. A profound WP analysis was carried out at five selected farmer fields (two for wheat–rice and three for wheat–cotton) in Sirsa district, India during the agricultural year 2001–02. The ecohydrological soil–water–atmosphere–plant (SWAP) model, including detailed crop simulations in combination with field observations, was used to determine the required hydrological variables such as transpiration, evapotranspiration and percolation, and biophysical variables such as dry matter or grain yields. The use of observed soil moisture and salinity profiles was found successful to determine indirectly the soil hydraulic parameters through inverse modelling.Considerable spatial variation in WP values was observed not only for different crops but also for the same crop. For instance, the WPET, expressed in terms of crop grain (or seed) yield per unit amount of evapotranspiration, varied from 1.22 to 1.56 kg m−3 for wheat among different farmer fields. The corresponding value for cotton varied from 0.09 to 0.31 kg m−3. This indicates a considerable variation and scope for improvements in water productivity. The average WPET (kg m−3) was 1.39 for wheat, 0.94 for rice and 0.23 for cotton, and corresponds to average values for the climatic and growing conditions in Northwest India. Including percolation in the analysis, i.e. crop grain (or seed) yield per unit amount of evapotranspiration plus percolation, resulted in average WPETQ (kg m−3) values of 1.04 for wheat, 0.84 for rice and 0.21 for cotton. Factors responsible for low WP include the relative high amount of evaporation into evapotranspiration especially for rice, and percolation from field irrigations. Improving agronomic practices such as aerobic rice cultivation and soil mulching will reduce this non-beneficial loss of water through evaporation, and subsequently will improve the WPET at field scale. For wheat, the simulated water and salt limited yields were 20–60% higher than measured yields, and suggest substantial nutrition, pest, disease and/or weed stresses. Improved crop management in terms of timely sowing, optimum nutrient supply, and better pest, disease and weed control for wheat will multiply its WPET by a factor of 1.5! Moreover, severe water stress was observed on cotton (relative transpiration < 0.65) during the kharif (summer) season, which resulted in 1.4–3.3 times lower water and salt limited yields compared with simulated potential yields. Benefits in terms of increased cotton yields and improved water productivity will be gained by ensuring irrigation supply at cotton fields, especially during the dry years.  相似文献   

18.
《Agricultural Systems》2005,86(1):97-114
Actions to moderate the major emission contributors of enteric fermentation, fertiliser and manure management on farms should not simply move the emissions elsewhere in the system, but actually reduce them. Life cycle assessment methodology was used to provide an objective framework for estimating emissions and to evaluate emission management scenarios with respect to kg CO2 eq emitted per unit of milk produced. An average dairy unit was defined and emissions were compartmentalised to calculate a total emission of 1.50 kg CO2 eq kg−1 (energy corrected milk) yr−1 and 1.3 kg CO2 eq kg−1 yr−1 with economic allocation between milk and meat. Of the total emissions, 49% was enteric fermentation, 21% fertiliser, 13% concentrate feed, 11% dung management and 5% electricity and diesel consumption. Scenario testing indicated that more efficient cows with extensive management could reduce emissions by 14–18%, elimination of non-milking animals could reduce emissions by 14–26% and a combination of both could reduce emissions by 28–33%. It was concluded that the evolution of the Irish dairy sector, driven by the Common Agricultural Policy (CAP), should result in reduced GHG emissions.  相似文献   

19.
Groundwater contamination was studied in a rural setting of the Upper Pantanoso Stream Basin (UPSB) in the southeast of Buenos Aires Province, Argentina, where potential contaminant sources include inorganic fertilizer. Nitrate–N concentrations, greater than accepted level for safe drinking-water of 10 mg l−1 were present in 36% of sampled wells and 67% of samples had nitrate concentrations exceeding the background level of 5 mg l−1. Temporal fluctuation of nitrate concentrations in the groundwater was attributed to seasonal fluctuations in recharge and plant growth. Nitrate concentration was measured in deep soil profiles to determine the extent of leaching. Nitrate accumulation in the unsaturated zone of a soil cropped with potatoes was three times higher than the baseline N concentration found in the pasture. The greatest nitrate concentration in the soil profile occurred under irrigated corn where excessive nitrogen was applied. These results show that high fertilization rates and irrigation lead to increased hazards of groundwater pollution.  相似文献   

20.
《Agricultural Systems》2007,94(1-3):1-24
Site-specific nutrient management (SSNM) provides a field-specific approach for dynamically applying nutrients to rice as and when needed. This approach advocates optimal use of indigenous nutrients originating from soil, plant residues, manures, and irrigation water. Fertilizers are then applied in a timely fashion to overcome the deficit in nutrients between the total demand by rice to achieve a yield target and the supply from indigenous sources. We estimated environmental impact of SSNM and evaluated economic benefits in farmers’ fields in southern India, the Philippines, and southern Vietnam for two cropping seasons in 2002–2003. On-farm research comparing SSNM and the farmers’ fertilizer practice showed increased yield with SSNM for the three locations, even with reduced fertilizer N rates in some cases. SSNM increased partial factor productivity (kg grain kg−1 fertilizer N) when fertilizer N use efficiency with the farmers’ fertilizer practice was relatively low such as at locations in Vietnam and the Philippines. Use of on-farm data with the DNDC model revealed lower percentage of total N losses from applied fertilizers with SSNM during an annual cycle of cropping and fallows. At the location in India, SSNM showed the potential of obtaining higher yields with increased fertilizer N use while maintaining low N2O emissions. SSNM in the Philippines and Vietnam showed greater yields with less fertilizer N through improved fertilizer use efficiency, which could reduce N2O emissions and global warming. Use of SSNM never resulted in increased emissions of N2O per unit of grain yield, and in environments where higher yield could be obtained with less fertilizer N, the use of SSNM could result in reduced N2O emissions per unit of grain yield. For the economic analysis, data were generated through focus group discussions (FGD) with farmers practicing SSNM and with other farmers not practicing SSNM. Based on FGD, the seasonal increase in yield of farmers solely due to use of SSNM averaged 0.2 Mg ha−1 in southern Vietnam, 0.3 Mg ha−1 in the Philippines, and 0.8 Mg ha−1 in southern India. Farmers practicing SSNM at the study site in India used less pesticide. The added net annual benefit due to use of SSNM was 34 US$ ha−1 year−1 in Vietnam, 106 US$ ha−1 year−1 in the Philippines, and 168 US$ ha−1 year−1 in India. The increased benefit with SSNM was attributed to increased yield rather than reduced costs of inputs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号