首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Managing water in rainfed agriculture—The need for a paradigm shift   总被引:1,自引:0,他引:1  
Rainfed agriculture plays and will continue to play a dominant role in providing food and livelihoods for an increasing world population. We describe the world's semi-arid and dry sub-humid savannah and steppe regions as global hotspots, in terms of water related constraints to food production, high prevalence of malnourishment and poverty, and rapidly increasing food demands. We argue that major water investments in agriculture are required. In these regions yield gaps are large, not due to lack of water per se, but rather due to inefficient management of water, soils, and crops. An assessment of management options indicates that knowledge exists regarding technologies, management systems, and planning methods. A key strategy is to minimise risk for dry spell induced crop failures, which requires an emphasis on water harvesting systems for supplemental irrigation. Large-scale adoption of water harvesting systems will require a paradigm shift in Integrated Water Resource Management (IWRM), in which rainfall is regarded as the entry point for the governance of freshwater, thus incorporating green water resources (sustaining rainfed agriculture and terrestrial ecosystems) and blue water resources (local runoff). The divide between rainfed and irrigated agriculture needs to be reconsidered in favor of a governance, investment, and management paradigm, which considers all water options in agricultural systems. A new focus is needed on the meso-catchment scale, as opposed to the current focus of IWRM on the basin level and the primary focus of agricultural improvements on the farmer's field. We argue that the catchment scale offers the best opportunities for water investments to build resilience in small-scale agricultural systems and to address trade-offs between water for food and other ecosystem functions and services.  相似文献   

2.
The Burdekin Delta is a major irrigation area situated in the dry tropics of North Queensland. It is unique in that (i) it overlies shallow groundwater systems that serve as a major water supply for the irrigation of sugarcane, and (ii) it is adjacent to the world heritage listed Great Barrier Reef. Water management practices include large recharge pits and surface spreading of water to assist with replenishment of the groundwater. This has been useful in maintaining groundwater levels to help control seawater intrusion. This technique, however, can be costly and ineffective in unconfined aquifer systems, which are subjected to large amounts of groundwater pumping for irrigation. There are more than 1800 production bores currently used for irrigation in the Burdekin Delta and the large volumes of water extracted have at times lowered the regional water tables and made it difficult to control seawater intrusion.  相似文献   

3.
Data is presented comparing infiltration of irrigation and rain water to potato crops planted in ridges and beds in East Anglia, UK. An automatic soil water station (ASWS) was used to monitor soil water content and potential in the two cultivation systems. The ASWS data indicated that most of the water bypassed the potatoes planted in ridges as irrigation water applied to the crop from a boom irrigator was shed off the ridges infiltrating in the furrows. This was due to the water repellent nature of the sandy soil and meant that the irrigation water bypassed the potatoes. A soil water deficit built up in the core of the ridge as the crop grew and was not replenished by irrigations. A second early potato crop planted in beds was more successful at capturing water as the flat bed increased water infiltration around the crop. This has major implications for cultivation practice, scab control and crop water management. Instruments measuring soil water potential, content, temperature and rainfall were connected to a data logger powered by a solar panel and proved a successful way of monitoring infiltration. Hourly data was collected so that a high temporal resolution data set could be constructed in order to increase conceptual understanding of hydrological processes at a scale appropriate to the crop.  相似文献   

4.
Although spate irrigation systems are risk-prone, they can be an important component for livelihood security in semi-arid areas. Spate uses water (flood water), which upstream users often do not require, as rainfall during these periods is more than sufficient. The use of this flood water for spate irrigation is therefore a good opportunity to convert water with a low opportunity cost to high value water. As more rivers are closing, due to socio-economic and climate changes, spate irrigation may become increasingly relevant in semi-arid areas. Spate irrigation systems pose institutional and technical challenges: collective action is challenged by complex upstream-downstream interactions between users within the system, and the high labour demands for regular reconstruction of temporary diversion weirs and intake structures. This paper describes a spate irrigation system in Makanya village, Tanzania that emerged in response to increased upstream water use. We use three of the four dimensions (hydrological, hydraulic and sociological) of spate irrigation proposed by Van Steenbergen (1997) to assess the Makanya spate irrigation system. The Makanya spate irrigation system has an organisational structure that is similar to the canal irrigation (furrow) committees located upstream, and effectively deals with the institutional demands of managing water in spate irrigation systems. Water allocation is reminiscent to the water sharing arrangements existing in the full irrigation system, which previously was in place at the site and in the high- and midlands of the Makanya catchment and therefore set this system apart from the traditional spate irrigation practice elsewhere. Technically, a major challenge is the reconstruction of the head works after each flood. Another aspect is the changes in the river bed. Flash floods carry sediments that deposit on the fields, raising the elevation of the irrigated land every year and making it increasingly difficult for the river water to enter the plots. Improving system efficiency through modernisation of the diversion and distribution structures in this case is not feasible due to the huge amounts of sediments delivered to the system each year. Instead investments in conjunctive use of groundwater could be the solution because it involves a relatively small intervention, minimises the physical disturbance of the system, and therefore is likely to respect the existing locally developed water management arrangements.  相似文献   

5.
A methodology for up-scaling irrigation losses   总被引:1,自引:1,他引:0  
This paper presents a methodology for up-scaling field irrigation losses and quantifying relative losses at the irrigation area level for potential water savings. Two levels of analysis were considered: First, the field level where irrigation is applied. Second, the irrigation area level, where the field level losses are aggregated, or up-scaled, using average loss functions. In this up-scaling approach, detailed crop-soil-water modelling can capture the variability of physical parameters (such as soils, crops, water table depth, and management practices) at the field level which are then used to derive loss functions for aggregating losses at higher scales (irrigation area level). This allows potential field-level adaptations and water management changes made by individual farmers to be assessed for impact at the larger irrigation area level. The APSIM farming systems model was used for simulation of crops (wheat, rice, and soybean) and their interaction with the wider system processes at the field level. Given the climate, soil, and management information (sowing, fertilisation, irrigation, and residue management), the model simulates infiltration, the soil moisture profile, plant water uptake, soil evaporation, and deep drainage on a daily basis. Then, by placing the field level analysis in the context of the wider irrigation system or catchment, it is possible to correlate field level interventions (e.g. water savings measures) with water requirements at these higher levels. Application of this method in the Coleambally Irrigation Area in NSW, Australia, demonstrated that an exponential function can describe the relationship between deep drainage losses and the water table depth for different soil, crop, and water table depth combinations. The rate of loss increase (slope of the curve) with the water table depth is higher on lighter (higher intake rates) soils than on heavy soils and is more pronounced in areas under rice cultivation. We also demonstrate that this analysis technique can assist in identifying spatial distribution of losses in irrigation areas, considering water table depth as an additional factor, leading to targeted areas for water-saving measures.  相似文献   

6.
This paper provides an introduction to systems approaches to water management research. Common concepts in systems thinking are defined and the concepts of level, system boundaries and emergent properties are described. Differences between hard- and soft-systems approaches are presented with examples. Finally, the spectrum of approaches to water management research are discussed in terms of their level and degree of holism and in the context of the U.K. Department for International Development's Renewable Natural Resources Research Strategy. A greater emphasis on more subjective and holistic approaches is recommended in order to define more clearly the researchable constraints in water management.  相似文献   

7.
Performance indicators for locally managedirrigation systems in the Gediz Basin,Turkey, show that during the first fouryears after management transfer there wasbeen a continued improvement in irrigationperformance. While the area cropped usingsurface water has only marginally improved,yields and water productivity have shownsignificant increases. These benefits canbe attributed in part to favorable marketconditions for cotton and grapes, but alsoto a management system that values level ofservice so that farmers are not constrainedby uncertainties in water deliveries. Individual systems are managed quitedifferently within the Gediz Basin showingthat there is scope for considerablediversity in Irrigation Associationspractices without affecting the resultingperformance of systems.  相似文献   

8.
In sub-Saharan Africa problems associated with water scarcity are aggravated by increasing demands for food and water, climate change and environmental degradation. Livestock keeping, an important livelihood strategy for smallholder farmers in Africa, is a major consumer of water, and its water consumption is increasing with increasing demands for livestock products. At the same time, current low returns from livestock keeping limit its contribution to livelihoods, threaten environmental health and aggravate local conflicts. The objectives of this review are to: (1) synthesize available knowledge in the various components of the livestock and water sectors in sub-Saharan Africa, (2) analyze livestock-water interactions and (3) identify promising strategies and technological interventions for improved livestock water productivity (LWP) using a framework for mixed crop-livestock systems. The interventions are grouped in three categories related to feed, water, and animal management. Feed related strategies for improving LWP include choosing feed types carefully, improving feed quality, increasing feed water productivity, and implementing grazing management practices. Water management for higher LWP comprises water conservation, watering point management, and integration of livestock production in irrigation schemes. Animal management strategies include improving animal health and careful animal husbandry. Evidence indicates that successful uptake of interventions can be achieved if institutions, policies, and gender are considered. Critical research and development gaps are identified in terms of methodologies for quantifying water productivity at different scales and improving integration between agricultural sectors.  相似文献   

9.
Much of inland Australia has been in perpetual drought since 1997 except during 2010 when above average rainfall occurred. It has been the worst drought since 1788 when European settlement began. Water scarcity poses a serious threat to the sustainability of the irrigated agriculture in major irrigation systems across the Murray-Darling Basin (MDB). There is a need for water-saving measures and a structured approach to assess water loss in earthen supply channels. This paper presents such an approach to assess and reduce seepage losses for improving irrigation efficiencies. Main elements of this approach are the following: field measurements, hydrologic modelling, potential options for seepage reduction, economic analysis and financing water-saving investments. Using data from two irrigation systems in the southern MDB, a case is made for reducing seepage water losses in irrigation supply channels in a cost-effective manner using low-cost technologies. Increasing the level of security for investments in water-saving programs provides incentives to key stakeholders to achieve water-saving targets. Considering the value of water recovered from reducing seepage loss at irrigation system level, this study demonstrates how reducing just one component (seepage) from the total water losses in irrigation systems can help improve water supplies as well as the environmental flows. Potential options for financing infrastructure improvement for saving irrigation water are proposed and discussed.  相似文献   

10.
Worldwide growing water scarcity has increased the call for economic instruments to stimulate rational water use in agriculture. Furthermore, cost-recovery is now widely accepted as a cornerstone of sustainable water management. In many developing countries, where agricultural water use is often still subsidised, water pricing policies are developed for allocating water efficiently and achieving sustainability of water systems. However, the impacts of water pricing policies on irrigation water use and on farm production systems is mostly unknown. We introduce an innovative two-stage methodology that allows estimating these effects at farm level. Applying the method to small-scale irrigators in South Africa, we show that water demand is quite responsive even to small changes in water price. In addition, the introduction of a water price significantly decreases farm profit. This appears to be a problem primarily for the poorer farmers.  相似文献   

11.
It is important to promote efficient use of water through better management of water resources, for social and economical sustainability in arid and semi-arid areas, under the conditions of severe water shortage. Based on the developments in deficit irrigation research, a recurrence control model for regional optimal allocation of irrigation water resources, aiming at overall maximum efficiency, is presented, with decomposition-harmonization principles of large systems. The model consists of three levels (layers). The first level involves dynamic programming (DP) for optimization of crop irrigation scheduling. The second level deals with optimal allocation of water resources among various crops. The last level concerns optimal allocation of water resources among different sub-regions. As a test, this model was applied to the combined optimal allocation of multiple water resources (surface, ground and in-take from the Weihe river) of Yangling, a semi-arid region on the Loess Plateau, China. Exemplary computation showed that not only are the results rational, but the method can also effectively overcome possible “dimensional obstacles” in dynamic programming of multiple dimensions. Furthermore, each sub-model is relatively independent by using various optimization methods. The model represents a new approach for improving irrigation efficiency, implementing water-saving irrigation, and solving the problem of water shortage in the region studied. The model can be extended in arid and semi-arid areas for better water management.  相似文献   

12.
Soil, water and production systems constitute the most important natural resources of a watershed in the rainfed agro-ecosystem; and for sustainability of the production systems they need to be in harmony with the environment. To learn from the past research, a review is made of literature on the impact of natural resource management practices on soil and water quality in the semi-arid tropical regions of India. The results from long-term on station field experiments show that an integrated use of soil and water conservation practices with balanced plant nutrition can not only sustain increased productivity but also maintain soil quality at the watershed or catchment level. Natural resource management practices that conserve soil and water also help to maintain surface and groundwater quality. The changes in soil and water quality, as impacted by natural resource management practices, need to be monitored and assessed on a continuing basis as the outcome of such research offers valuable opportunity for the implementation of corrective management practices, as and when needed.  相似文献   

13.
滦河流域是京津冀重要的水源保护区,但同时也是生态抑制性贫困区.本文首先从滦河流域生态环境恶化的现状及目前分散管理体制的弊端入手分析滦河流域生态保护的困境及重置滦河流域生态保护管理机构的必要性;接着,从水资源自然流域特性的理论层面、我国水资源所有权和流域管理法规的法律层面以及国际上流域统一开发管理的实践经验层面这三个角度论证重置滦河流域生态保护管理机构的可行性;最后,从滦河流域统一开发管理委员会的性质、组织构成、职能与职责这三大方面对滦河流域统一开发管理机构进行了法律制度框架设计.滦河流域统一开发管理委员会的设置有利于更好协调流域生态环境保护与地方行政区域管理的关系,实现滦河流域生态环境保护与社会经济发展的共赢.  相似文献   

14.
Land development, improved systems of irrigation and drainage, and proper irrigation scheduling are becoming more and more important for the success of command area development of the various major and minor irrigation schemes. For realistic planning and execution of such programmes or for improving existing ones, a systematic evaluation of the various components of the existing systems would be necessary but is invariably lacking. This paper presents an attempt made in this direction at C.S.S.R.I. farm, Karnal (India) to evaluate the integrated effect of water management technology on the efficiency of the irrigation system. The parameters selected for evaluation were the efficiencies of pumping, conveyance and field application. Besides these three parameters, water use efficiency, an index of crop production per unit of water applied, was also evaluated.Investigations revealed that pumping efficiency for electrically driven centrifugal pumps was about 52% and the corresponding value for diesel engine run pumps sets was 30%. The conveyance efficiency in the study area was as high as 93% because the seepage loss in the field channels laid in the alkali soils of the study area was only 7%. The field layout for water application in the study area consisted of long, narrow borders. The water application efficiency for this system was 58% for a wheat crop and 42% for rice. The overall system efficiency for wheat crops was observed to be 54% as against a value of 39% for rice.The observed average total water requirements and water use efficiencies for wheat were 46 cm and 70 kg/ha cm?1 and for rice 150 cm and 46 kg/ha cm?1, respectively. At these efficiencies, it was also noted that a cavity tubewell would command an area of 4.5 ha, with rice and wheat as the principal crop rotation.From this study, it can be inferred that reasonably high irrigation system efficiencies (54% as against the national average of about 30%) are possible with good water management at farm level.  相似文献   

15.
On-farm measurements and observations of water flow, water costs and irrigation labour inputs at the individual parcel level were made in case studies of smallholder irrigation systems in sub-Saharan Africa and south-eastern Arabia. The systems, in which the water source supplied either single or multiple users, were analysed to address the fundamental issues of labour allocation for on-farm water management as this has important consequences for the success of such systems. Results show that the costs associated with accessing water influenced labour input, because when they were low the farmers tended to increase the irrigation rate and reduce the amount of time they spent distributing the water within their parcels. Conversely when water costs were high, lower flow rates and more time spent in water distribution were observed, and this resulted in more uniform irrigation and higher irrigation efficiency. Also, opportunities and demands for farmers to use their labour for activities other than irrigation can lead them to modify operational or physical aspects of the system so that they can reduce the time they spend distributing water within the parcels, particularly when the water is relatively cheap. Awareness and better understanding of how farmers may allocate their labour for water management will lead to more effective planning, design and management of smallholder irrigation systems.  相似文献   

16.
In the dry areas, water, not land, is the most limiting resource for improved agricultural production. Maximizing water productivity, and not yield per unit of land, is therefore a better strategy for dry farming systems. Under such conditions, more efficient water management techniques must be adopted. Supplemental irrigation (SI) is a highly efficient practice with great potential for increasing agricultural production and improving livelihoods in the dry rainfed areas. In the drier environments, most of the rainwater is lost by evaporation; therefore the rainwater productivity is extremely low. Water harvesting can improve agriculture by directing and concentrating rainwater through runoff to the plants and other beneficial uses. It was found that over 50% of lost water can be recovered at a very little cost. However, socioeconomic and environmental benefits of this practice are far more important than increasing agricultural water productivity. This paper highlights the major research findings regarding improving water productivity in the dry rainfed region of West Asia and North Africa. It shows that substantial and sustainable improvements in water productivity can only be achieved through integrated farm resources management. On-farm water-productive techniques if coupled with improved irrigation management options, better crop selection and appropriate cultural practices, improved genetic make-up, and timely socioeconomic interventions will help to achieve this objective. Conventional water management guidelines should be revised to ensure maximum water productivity instead of land productivity.  相似文献   

17.
In places where rice is grown in paddy fields with permanent bunds, considerable quantities of water are lost through lateral seepage of water into the bund and from there vertically to the groundwater. Lateral percolation losses increase with increases in field water depth, bund width, aquifer thickness and depth to groundwater. These losses do not occur in systems where the bunds are reformed every year. The paper discusses the areas of research required to quantify the magnitude of these `losses' at a scheme level and suggests management interventions to improve the efficiency of water use.  相似文献   

18.
Banana monocultures (Musa spp., AAA, Cavendish sub-group cv. Grande Naine) can have a detrimental impact on the environment. In these agro-systems, pesticide treatments can lead to surface and groundwater pollution, as is the case in the tropical insular conditions of the French West Indies. Using models to design alternative cropping systems is of growing interest but most of the research work has been concentrated on annual crops and most often in temperate climate. A specific model called SIMBA was built to assess environmental risks under a large range of cropping techniques and to help design more sustainable cropping systems. SIMBA simulates banana-cropping systems at field level over several cropping cycles. It includes sub-models that simulate soil structure, water balance, root nematode populations, yield, and economic outputs with a sound balance between representing the major phenomena well and keeping the model simple to reduce the parameterization costs in a large range of conditions. Agro-environmental indicators generated by the model make it possible to assess the major potential environmental impacts. The model has been developed and calibrated in Guadeloupe and Martinique and is used to draw up practical recommendations for farmers and for virtual experiments of agro-technological innovations or field management strategies. The structure of SIMBA is presented and a methodology is proposed for designing sustainable banana-based cropping systems using the model. SIMBA has been evaluated in a broad range of cropping systems in Guadeloupe by comparing model estimates to data collected in field experiments and surveys. Simulations lead to trends in rotation-based cropping systems characterized by systems that can be considered as intensive for profit evaluation, and combinations of frequent replanting, low nematicide application, no ploughing, and low fertilization level, for environmental evaluation. Simulations performed to optimize the replanting decision rule showed that relatively frequent replanting is good for profit while low frequency replantations (over four banana cycles) give a better environmental evaluation.  相似文献   

19.
The HYDRUS 2D finite difference two-dimensional water balance model was experimentally tested for transient and steady state seepage flux, mound height, and piezometric water level from soil surface as a function of time and horizontal distance from the centre of the canal (half width = 45 cm) under different canal bed elevations (20, 0, −40, −80 and −120 cm denoted as experiments D1, D2, D3, D4 and D5, respectively) and constant water head of 5 cm in a sand box (200 cm × 170 cm × 150 cm) filled with Hisar loam soil. Differences of means between measured and predicted values of infiltration flux, seepage flux and mound height as tested by paired t test were not found significant (P = 0.05). Seepage flux and mound height increased with increasing canal bed elevation. Phreatic level depths were everywhere much shallower than the piezometric water level depths in experiments D1, D2 and D3. However, in experiments D4 and D5 both phreatic and piezometric levels were at similar depths. The seepage parameters and mound height increased, and water table depth decreased, linearly with increasing canal bed elevation. Lowering the canal bed to 120 cm below the soil surface reduced the seepage rate to that of lined canals. The projections in a large flow domain also revealed that lowering the canal to −2 and −4 m below soil surface stabilized the water table at 2.5 and 4.5 m below soil surface, respectively. The practical implications are that open drains should be used for irrigation in areas underlain with a brackish groundwater aquifer and gravity canals may be allowed only where groundwater aquifer is of good quality and sub-surface water withdrawal is practiced for irrigation.  相似文献   

20.
Beyond irrigation efficiency   总被引:3,自引:2,他引:3  
Parameters for accounting for water balance on irrigation projects have evolved over the past century. Development of the classic term irrigation efficiency is summarized along with recent modifications such as effective irrigation efficiency. The need for terms that describe measurable water balance components of irrigated agriculture is very important, as demands and competition for available renewable water supplies continue to increase with increasing populations. Examples of irrigation efficiency studies conducted during the past few decades are summarized along with related irrigation terminology. Traditional irrigation efficiency terminology has served a valid purpose for nearly a century in assisting engineers to design better irrigation systems and assisting specialists to develop improved irrigation management practices. It still has utility for engineers designing components of irrigation systems. However, newer irrigation-related terminology better describes the performance and productivity of irrigated agriculture. On a river-basin level, improved terminology is needed to adequately describe how well water resources are used within the basin. Brief suggestions for improving irrigation water management are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号