首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cuphea (Cuphea viscosissima Jacq. × C. lanceolata W.T. Aiton; PSR23) is a potential new oilseed crop. Its oil is high in medium-chain fatty acids that are suitable for detergent/cleaner applications and also for cosmetics. The objective of this study was to determine the critical temperatures for cuphea seed germination. To determine the base, maximum, and optimum temperatures for seed germination, mature cuphea seeds were harvested from plants grown at Prosper, ND, in 2004, 2005, and 2006. Seeds were germinated on a temperature-gradient bar varying between 5 and 35 °C. Cumulative germination was calculated for each temperature treatment. Base temperature (Tb) and optimum temperature (To) were estimated from the third-order polynomial temperature-response functions for each year. In addition, germination rate per day was used in a linear model to estimate the base temperature below which germination rate was equal to zero (Tb), and the maximum temperature above which germination was equal to zero (Tm). The optimum temperature (To) was calculated as the intercept of sub-optimal and supra-optimal temperature-response functions. Through the third-order polynomial temperature-response functions and the sub-optimal/super-optimal intercept approaches, we were able to generate six estimates for each critical value. Estimates of the base temperature for cuphea seed germination ranged between 3.3 and 11 °C, with the most reliable estimates between 6 and 10 °C, similar to many warm-season crops such as corn (Zea mays L.) and sorghum (Sorghum bicolor L.). The optimum temperature for cuphea seed germination ranged between 18.5 and 24 °C with a mean value of 21 °C. The maximum temperature for seed germination ranged 33–38 °C. On this basis, a cuphea planting date after 20 May is recommended for east-central North Dakota.  相似文献   

2.
In the present work, thermogravimetric analysis of 17 organosolv lignin samples was carried out to determine their thermal stability and calculate the kinetic parameters of their pyrolysis. The thermal stability has been estimated by the measurement of the degradation temperature (Td), calculated according to the maximum reaction rate. In addition, degradation temperature at 10% of conversion (T10%) has been obtained in order to compare the initial stability of the samples with Td for all samples. The values of Td are comprised between 262 and 389 °C and the average value is 340 °C. The range for T10% is 251–320 °C and the average value is 270 °C. The ashes content of the samples has been analyzed and all the residues presented values lower than 4 wt%. Kinetic parameters of lignin pyrolysis were calculated by Borchardt–Daniels’ method assuming nth order reaction. The activation energy values obtained are comprised between 17.9 and 42.5 kJ/mol and the average value is 28.1 kJ/mol. These results are in agreement with the bibliography.  相似文献   

3.
《Field Crops Research》2001,70(2):101-109
Field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) were intercropped and sole cropped to compare the effects of crop diversity on productivity and use of N sources on a soil with a high weed pressure. 15N enrichment techniques were used to determine the pea–barley–weed-N dynamics. The pea–barley intercrop yielded 4.6 t grain ha−1, which was significantly greater than the yields of pea and barley in sole cropping. Calculation of land equivalent ratios showed that plant growth factors were used from 25 to 38% more efficiently by the intercrop than by the sole crops. Barley sole crops accumulated 65 kg soil N ha−1 in aboveground plant parts, which was similar to 73 kg soil N ha−1 in the pea–barley intercrop and significantly greater than 15 kg soil N ha−1 in the pea sole crop. The weeds accumulated 57 kg soil N ha−1 in aboveground plant parts during the growing season in the pea sole crops. Intercropped barley accumulated 71 kg N ha−1. Pea relied on N2 fixation with 90–95% of aboveground N accumulation derived from N2 fixation independent of cropping system. Pea grown in intercrop with barley instead of sole crop had greater competitive ability towards weeds and soil inorganic N was consequently used for barley grain production instead of weed biomass. There was no indication of a greater inorganic N content after pea compared to barley or pea–barley. However, 46 days after emergence there was about 30 kg N ha−1 inorganic N more under the pea sole crop than under the other two crops. Such greater inorganic N levels during early growth phases was assumed to induce aggressive weed populations and interspecific competition. Pea–barley intercropping seems to be a promising practice of protein production in cropping systems with high weed pressures and low levels of available N.  相似文献   

4.
Hard red spring wheat (Triticum aestivum cv Butte86) was grown under controlled environmental conditions and grain produced under 24/17 °C, 37/17 °C or 37/28 °C day/night regimens with or without post-anthesis N supplied as NPK. Flour proteins were analyzed and quantified by differential fractionation and RP-HPLC, and endosperm proteins were assessed by two-dimensional gel electrophoresis (2-DE). High temperature or NPK during grain fill increased protein percentage and altered the proportions of S-rich and S-poor proteins. Addition of NPK increased protein accumulation per grain under the 24/17 °C but not the 37/28 °C regimen. However, flour protein composition was similar for grain produced with NPK at 24/17 °C or 37/28 °C. 2-DE of gluten proteins during grain development revealed that NPK or high temperature increased the accumulation rate for S-poor proteins more than for S-rich proteins. Flour S content did not indicate S-deficiency, however, and addition of post-anthesis S had no effect on protein composition. Although, high-protein flour from grain produced under the 37/28 °C regimen with or without NPK had loaf volumes comparable to flour produced at 24/17 °C with NPK, mixing tolerance was decreased by the high temperature regimen.  相似文献   

5.
The color (L*, a*, b* parameters), the total phenols content and the global chemical composition (moisture, protein, fat, carbohydrates and ash) of four fresh varieties of olive leaves (Chemlali, Chemchali, Zarrazi and Chetoui) were determined. Fresh olive leaves are characterized by a green color (greenness parameter, a*, varying from ?5.01 ± 0.26 to ?9.14 ± 1.21), an intermediate moisture content (0.85 to 1.00 g/g dry matter, i.e. 46 to 50 g/100 g fresh matter) and a variable amount of total phenols according to the olive leaf variety (from ≈2.32 to ≈1.40 g caffeic acid/100 g dry matter).Fresh leaves were submitted to blanching and/or infrared drying at 40, 50, 60 and 70 °C in order to be stabilized by reducing their moisture contents. The impact of IR drying temperature on some quality attributes (color, total phenols and moisture rate removal) was evaluated. Nevertheless, the effect of prior blanching treatment on the quality attributes of dried leaves is less significant and it depends on the olive leaf variety. The infrared drying induces a considerable moisture removal from the fresh leaves (more than 85%) and short drying durations (varying from ≈162 at 40 °C to 15 min at 70 °C). IR drying temperature showed a significant effect of on total phenols content and the color of the leaves whatever the leaf variety. In fact, total phenols content of dried olive leaves increased if compared to fresh ones. For example, total phenols of Chemlali leaves increased from 1.38 ± 0.02 (fresh leaves) to 2.13 ± 0.29 (dried at 40 °C) and to 5.14 ± 0.60 g caffeic acid/100 g dry matter (dried at 70 °C). IR drying allows preserving the greenness color of fresh leaves and enhancing their luminosity. It could be suggested for preserving olives leaves before their use in food or cosmetic applications.  相似文献   

6.
Lesquerella (Lesquerella fendleri) is a potential alternative crop that is being studied for commercial oilseed production. Understanding the minimum temperatures for germination and seedling growth is important for determining potential areas for lesquerella production. The objectives of this study were to determine the cardinal temperatures for germination and seedling growth, and to screen ecotypes for germination and growth characteristics. A temperature gradient table arrangement was used to observe seed germination over a range of temperatures, and time to germination and shoot appearance. Times to 5 mm root length and 5 mm shoot length were also measured to assess cardinal temperatures for seedling survival and growth. Two different species were examined, L. fendleri and a species we refer to as ‘L. pallida aff.’ because it differed from typical L. pallida plants in chromosome number and in oil quality. We concluded that both germination and growth of L. pallida aff. occurred fastest at 22 °C, whereas L. fendleri germinated earlier at 18 °C, but grew faster at 22 °C. L. pallida aff. also had lower germination than L. fendleri over the range studied. Non-dormant seeds of improved lines of L. fendleri had better performance at temperatures above 22 °C than did unimproved accessions. Lines of L. fendleri selected for high oil content and salt tolerance had similar temperature requirements for germination except for improved line WCL-LO3, the current line being used in production. This line had optimal temperatures 6 °C higher for germination and growth than the other improved lines. Accessions of L. fendleri collected from elevations above 2000 m performed better at warmer temperatures, whereas those collected from elevations below 2000 m tended to perform better at cooler temperatures. Dormant seeds of L. fendleri germinated more quickly at low temperatures and had lower base (<3 °C) and optimal (22 °C) temperatures than non-dormant seeds (>7 °C and 28 °C, respectively). We speculate that this partial dormancy trait allows populations of L. fendleri to exploit a wider range of temperature conditions in the wild in order to thrive in extreme environments.  相似文献   

7.
Cuphea (Cuphea viscosissima Jacq. x C. lanceolata W.T. Aiton; PSR23) is a new oilseed crop rich in medium-chain fatty acids similar to tropical palms. Agronomic studies suggest that temperature is a key determinant of cuphea seed yields. However, little is known about the growth and photosynthesis response of cuphea to temperature. The following study is the first of its kind to evaluate cuphea's growth and photosynthesis response to temperature. Cuphea was grown under day/night temperature regimes of 18/12, 24/18, and 30/24 °C and regression analysis was used to assess its responses of growth and photosynthesis and determine their optimum temperature range. Vegetative growth and leaf photosynthesis adapted well over the temperature range studied. However, reproductive growth was more sensitive showing a decline with increasing temperature. Reproductive growth rate was greatest under the lowest (18/12 °C) temperature treatment and declined by 43% at the highest growth temperatures. In contrast, vegetative growth, which was greatest under the 24/18 °C treatment, declined by just 25 and 10% at the lowest and highest temperatures, respectively. Photosynthesis acclimated to temperature by up-regulation of in vivo Rubisco activity with declining growth temperature. Maximum Rubisco activity (Vcmax) in leaves under the 18/12 °C treatment was 76% greater than that of leaves grown at 30/24 °C. Photosynthetic acclimation permitted cuphea to vegetatively grow well over a wide temperature range, but does not explain the sensitivity of reproductive growth to temperature, which will require further research to elucidate.  相似文献   

8.
《Field Crops Research》2001,69(1):69-79
Chronological and physiological age of seed tubers have major impacts on potato yields. This paper presents a new, simple and reliable physiological age index (PAI) that considers and reconciles the effects of chronological and physiological age. PAI calculation is based on the haulm killing date of the seed crop (T0) and the end of the incubation period of seed tubers, measured under standardized conditions. The PAI formula is T1/T2, where T1 is the time from haulm killing date (T0) to possible planting date and T2 the time from T0 to the end of the incubation period. The PAI expresses physiological ageing of seed potato tubers within a range from 0 (for physiologically young) to 1 (old) tubers. To test the PAI existing data were re-evaluated and re-elaborated and specific experiments regarding seed origin and storage conditions for different cultivars were performed during 1994–1999. The PAI proved useful in assessing differences due to differences in growing conditions, cultivar, haulm killing, seed origin and storage system, and pre-planting treatments. For example, for cv. Spunta 6 days after haulm killing the PAI was 0.025 and after 100-storage days the PAI was 0.56, 0.52 and 0.49 for seed tubers stored in heaps in the field, at relatively high temperatures, natural diffuse light and a cold (4°C) and ventilated store, respectively. The PAI is related to ground cover duration and yield of the future crop. For a PAI of 0.55 tuber yield was 55 t ha−1, while for a PAI of 0.80 tuber yield was 40 t ha−1. The PAI is easy to measure, non-invasive, objective, reproducible and reliable and could be used for modelling purposes to describe performance of seed tubers.  相似文献   

9.
《Field Crops Research》2007,100(1):10-23
Timely sowing is critical for achieving high grain yields in winter cereals. However, inadequate seed-zone moisture for germination commonly delays sowing to reduce biomass and subsequent yield in semi-arid environments. Sowing deep to reach soil moisture is often avoided by growers of Rht-B1b and Rht-D1b semi-dwarf wheat as these wheat show poor emergence when sown deep. Their reduced cell elongation associated with insensitivity to endogenous gibberellins, results in shorter coleoptiles and smaller early leaf area. Alternative dwarfing genes responsive to endogenous gibberellins (e.g. Rht8) are available for use in wheat breeding. These reduce plant height without affecting coleoptile length and offer potential to select longer coleoptile wheat for deep sowing. Nine semidwarf (Rht8, Rht-B1b, and Rht-D1b) and seven tall (rht) wheat genotypes were sown at depths of 50, 80 and 110 mm at three locations in 2 or 3 years. Coleoptile lengths measured in a growth cabinet at four temperatures (11, 15, 19 and 23 °C) were strongly correlated with coleoptile length (rp = 0.77–0.79**) and plant number (rp = 0.49*–0.79**) in deep-sown plots in the field. Furthermore, differences in coleoptile length were genetically correlated with greater numbers of emerged seedlings (rg = 0.97**), shallower crown depth (−0.58**), greater seedling leaf area (0.59**) and seedling biomass (0.44*). Wheat containing the Rht-B1b or Rht-D1b dwarfing genes produced significantly (P < 0.01) shorter coleoptiles (97 mm) than both Rht8 (118 mm) and tall (117 mm) wheat. In turn, compared with emergence from 50 mm depth, the Rht-B1b and Rht-D1b wheat produced significantly fewer seedlings at 110 mm sowing depth (−62%) than either Rht8 (−41%) or tall (−37%) wheat. Effects of deep sowing early in the season were maintained with reductions in spike number and biomass at both anthesis and maturity. Kernel number was also reduced with deep sowing leading to reductions in grain yield. Over all entries, genotypic increases in plant number were associated with increases in fertile spike (rg = 0.61**) and kernel number (0.21*), total biomass (0.26*) and grain yield (0.28*). Reduction in spike number and grain yield with deep sowing was smallest for the Rht8 (−18 and −10%) and rht (−15 and −7%) wheat, and largest for the Rht-B1b/D1b (−39 and −16%) wheat. Plant height and coleoptile length were independent among Rht8 and tall wheat genotypes. This study demonstrates the importance of good seedling emergence in achieving high wheat yields, and the potential use of alternative dwarfing genes such as Rht8 in development of long coleoptile, reduced height wheat suitable for deep sowing.  相似文献   

10.
《Field Crops Research》2006,95(2-3):115-125
Groundnut (Arachis hypogaea L.) is one of the chief foreign exchange earning crops for Vietnam. However, owing to lack of appropriate management practices, the production and the area under cultivation of groundnut have remained low. Mulches increase the soil temperature, retard the loss of soil moisture, and check the weed growth, which are the key factors contributing to the production of groundnut. On-farm trials were conducted in northern Vietnam to study the impact of mulch treatments and explore economically feasible and eco-friendly mulching options. The effect of three mulching materials (polythene, rice straw and chemical) on weed infestation, soil temperature, soil moisture and pod yield were studied. Polythene and straw mulch were effective in suppressing the weed infestation. Different mulching materials showed different effects on soil temperature. Polythene mulch increased the soil temperature by about 6 °C at 5 cm depth and by 4 °C at 10 cm depth. Mulches prevent soil water evaporation retaining soil moisture. Groundnut plants in polythene and straw mulched plots were generally tall, vigorous and reached early flowering. Use of straw as mulch provides an attractive and an environment friendly option in Vietnam, as it is one of the largest rice growing countries with the least use of rice straw. Besides, it recycles plant nutrients effectively.  相似文献   

11.
In this work, the forward extraction of defatted wheat germ protein (DWGP) by reverse micelles was studied. The reverse micellar systems were formed by sulphosuccinic acid bis (2-ethylhexyl) ester sodium salt (AOT), isooctane and KCl solution. The effects of AOT concentration, pH, KCl concentration, extraction time, the amounts of defatted wheat germ flour (DWGF), W0 (the molar ratio of water to surfactant, i.e. W0 = [H2O]/[AOT]) and temperature on the forward extraction efficiency of DWGP were tested. On the basis of single-factor experiments, the optimum extraction was achieved by response surface methodology (RSM). The experimental results lead to the conclusion that the highest forward extraction efficiency of DWGP was reached at the AOT concentration 0.06 g/mL, pH 8, KCl concentration 0.1 mol/L, time 30 min, the amounts of DWGF 0.500 g, W0 25 and temperature 36 °C. Under these conditions, the forward extraction efficiency of DWGP achieved 37%.  相似文献   

12.
《Field Crops Research》1999,61(1):23-35
Field experiments were conducted to investigate the performance of temperate legume species in rice-based cropping systems in a warm-temperate environment in Nepal. Over the period 1994–1996, various legume species were grown during the winter season (October–May) in the Kathmandu valley (27° N, 1350 m asl) with the aim of evaluating their biomass production and N fixation. A wide range of legume species including food, feed and green manure crops proved to be very well adapted to the winter growing conditions in this environment. The cultivation of temperate legume crops therefore, constitutes an alternative to traditional cropping practices such as growing wheat or leaving the land fallow. The temperate species appeared to capitalise on generally favourable growing conditions such as long growing season, low pest and disease pressure, high radiant energy receipt and cool night temperatures. However, performance varied greatly between species and years. Total dry matter yields ranged from 2 to 20 t ha−1 obtained with lentil (Lens culinaris Medic) and bitter lupin (Lupinus mutabilis), respectively. Highest seed yields were produced by fababean (Vicia faba) (5 t ha−1) and field pea (Pisum sativum var. arvense) (3 t ha−1) in the first season. Nitrogen yields and quantities of N fixed ranged from 18 to 481 kg ha−1 and from 0 to 463 kg ha−1, respectively. Large amounts of N were fixed by species such as fababean, Persian clover (Trifolium resupinatum) and bitter lupin. Early sowing in autumn was shown to be beneficial for some crops such as fababean, vetch (Vicia benghalensis) and Persian clover. In these cases, it is, therefore, important to reduce the turn-around interval after rice. Further research is required to fully determine the potential of temperate legume species in these environments with particular emphasis given to the identification of the most adapted cultivars and to reduce the need for irrigation of these winter crops.  相似文献   

13.
Gluten-free bread was prepared from commercial zein (20 g), maize starch (80 g), water (75 g), saccharose, NaCl and dry yeast by mixing above zein's glass transition temperature (Tg) at 40°C. Addition of hydroxypropyl methylcellulose (HPMC, 2 g) significantly improved quality, and the resulting bread resembled wheat bread having a regular, fine crumb grain, a round top and good aeration (specific volume 3.2 ml/g). In model studies, HPMC stabilized gas bubbles well. Additionally, laser scanning confocal microscopy (LSCM) revealed finer zein strands in the dough when HPMC was present, while dynamic oscillatory tests showed that HPMC rendered gluten-like hydrated zein above its Tg softer (i.e. |G*| was significantly lower). LSCM revealed that cooling below Tg alone did not destroy the zein strands; however, upon mechanical impact below Tg, they shattered into small pieces. When such dough was heated above Tg and then remixed, zein strands did not reform, and this dough lacked resistance in uniaxial extension tests. When within the breadmaking process, dough was cooled below Tg and subsequently reheated, breads had large void spaces under the crust. Likely, expanding gas bubbles broke zein strands below Tg resulting in structural weakness.  相似文献   

14.
Reduced plant biomass and increased plant-to-plant variability are expected responses to crowding in monocultures, but the underlying processes that control the onset of interplant interference and the establishment of hierarchies among plants within a stand are poorly understood. We tested the hypothesis that early determined plant types (i.e. dominant and dominated individuals) are the cause of the large variability in final kernel number per plant (KNP) usually observed at low values of plant growth rate (PGR) around silking in maize (Zea mays L.). Two hybrids (DK696 and Exp980) of contrasting response to crowding were cropped at different stand densities (6, 9 and 12 plants m−2), row spacings (0.35 and 0.70 m), and water regimes (rainfed and irrigated) during 1999/2000 and 2001/2002 in Argentina. The onset of interplant competition started very early during the cycle, and significant differences (P<0.05) in estimated plant biomass between stand densities were detected as soon as V4–6 (DK696) and V6–7 (Exp980). Plant population and row spacing treatments did not modify the onset of the hierarchical growth among plants, but did affect (P<0.02–0.08) the dynamic of the process. For both hybrids, the rate of change in relative growth between plant types was larger at 9 and 12 plants m−2 (ca. 0.12 g/g per 100 °C day) than at 6 plants m−2 (ca. 0.07 g/g per 100 °C day). For all treatments, the largest difference in estimated shoot biomass between plant types took place between 350 (V7) and 750 °C day (V13) from sowing, and remained constant from V13 onwards. Dominant plants always had more kernels per plant (P<0.05) than the dominated ones, but differences between plant types in PGR around silking were significant (P<0.05) only at 12 plants m−2. Our research confirmed the significant (P<0.01) curvilinear response of KNP to PGR around silking, but also determined a differential response between plant types: the mean of residual values were significantly (P<0.01) larger for dominant than for dominated individuals. Estimated ear biomass at the onset of active kernel growth (R3) reflected the variation in KNP (r2≥0.62), and was significantly (P<0.01) related to estimated plant biomass at the start of active ear growth (ca. V13). This response suggested that the physiological state of each plant at the beginning of the critical period had conditioned its reproductive fate. This early effect of plant type on final KNP seemed to be exerted through current assimilate partitioning during the critical period.  相似文献   

15.
Soybean oil cake (SOC) has been studied to produce bio-oil in a fixed-bed pyrolysis unit. The effect of pyrolysis parameters on the product yields and compositions were investigated. The highest bio-oil yield of a ca 25.8 wt.% was obtained at 400 °C pyrolysis temperature with a heating rate of 50 °C/min for particles of 0.425–0.600 mm in size. The various characteristics of bio-oil acquired under these conditions were identified. The empirical formula of bio-oil with a calorific value of 33.6 MJ/kg was established as CH1.37O0.15N0.14. The chemical characterization studies showed that the bio-oil obtained from SOC might be a potentially valuable source as renewable fuel and chemical feedstocks.  相似文献   

16.
《Field Crops Research》2006,96(1):48-62
In order to quantify the effects, at different stages during grain filling, of alternating day/night high temperature regimes on sunflower grain yield and quality, heads were exposed to high temperatures during 7 or 6 days starting either 10–12 days after anthesis (daa, HT1), 18 daa (HT2) or 24 daa (HT3). Also, heads were exposed to high temperatures for periods of 2, 4 or 6 days in each of HT1 and HT2. Temperatures covered a range of mean daily grain temperature of 20–40 °C and peak grain temperatures (i.e., those prevailing during the central 5 h of the daylight period) of 26–45 °C. High temperature stress for periods of 4 days or longer produced significant (p < 0.05) reductions in grain yield and grain quality. Early (HT1) exposure to stress reduced yield by 6%/°C above a mean grain temperature threshold of 29 °C; later (HT2 + HT3) exposures reduced yield by 4%/°C above a threshold of 33 °C. These reductions in yield were attributable to reductions in unit grain weight at all positions (periphery, intermediate, central) on the head, and an increase in the proportion of very small (10–30 mg) grains, termed half-full (HF) grains in this paper. In both full and HF grains, stress in either HT1 or HT2 reduced final pericarp weight, associated with fewer number of cell layers and thinner cell walls in the schlerenchyma. High temperatures reduced both the rate and duration of oil deposition in the grain, with the greatest effects being found with early (HT1) exposures. The unsaturation (oleic acid/linoleic acid) ratio of oil from mature grain was altered only when exposure to heat stress overlapped with the cessation of deposition of storage lipids. The effects of duration and intensity of heat stress on relative (to control) grain yield and oil content could be reasonably summarized using a linear response to cumulative hourly heat load calculated with a base temperature of 30 °C. We conclude that: (i) 4 days of alternating day/night temperatures resulting in mean daily grain temperatures of >30 °C can reduce sunflower grain yield and quality; (ii) the magnitude of these effects is strongly dependent on the timing of exposure and their nature on the grain growth processes active at the time of stress; and (iii) an hourly heat load (base = 30 °C) provides a useful integrative estimator of the effects of exposure to heat stress on grain yield and oil content for a given phase of grain filling.  相似文献   

17.
《Field Crops Research》2004,89(1):17-25
The pigeonpea (Cajanus cajan (L.) Millsp.) crop retains appreciable amounts of green foliage even after reaching physiological maturity, which if allowed to defoliate, could augment the residual benefit of pigeonpea to the following wheat (Triticum aestivum L.) in a pigeonpea–wheat rotation. The effect of addition of leaves present on mature pigeonpea crop to the soil was examined on the following wheat during the 1999/2000 growing season at Patancheru (17°4′N, 78°2′E) and during the 2001–2003 growing seasons at Modipuram (29°4′N, 77°8′E). At Patancheru, an extra-short-duration pigeonpea cultivar ICPL 88039 was defoliated manually and using foliar sprays of 10% urea (30 kg/ha) and compared with a millet (Pennisetum glaucum (L.) R.Br.) crop, naturally senesced leaf residue and no-leaf residue controls. At Modipuram, the effect of 10% urea spray treatment on mature ICPL 88039 was compared with the unsprayed control. At both locations, the rainy season crops were followed by a wheat cultivar UP 2338 at four nitrogen levels applied in a split plot design, which at Patancheru were 0, 30, 90 and 120 kg N ha−1 and at Modipuram 0, 60, 120 and 180 kg N ha−1. At Patancheru, urea spray added 0.5 t ha−1 of extra leaf litter to the soil within a week without significantly affecting pigeonpea yield. This treatment, however, increased mean wheat yield by 29% from 2.4 t ha−1 in the no-leaf residue pigeonpea or pearl millet plots to 3.1 t ha−1. At Modipuram, the foliar sprays of urea added more leaf litter to the soil than at Patancheru. Here, increase in subsequent wheat yield due to additional pigeonpea leaf litter was 7–8% and net profit 21% more than in the unsprayed control. The addition of pigeonpea leaf litter to the soil resulted in a saving of 40–60 kg N for the following wheat crops in both the environments. The results demonstrated that pigeonpea leaf litter could play an important role in the fertilizer N economy in wheat. The urea spray at maturity of the standing pigeonpea crop significantly improved this contribution in increasing wheat yield, the effect of which was additional to the amount of urea used for inducing defoliation. The practice, if adopted by farmers, may enhance sustainability of wheat production system in an environmentally friendly way, as it could reduce the amount of fertilizer N application to soil and enhance wheat yield.  相似文献   

18.
The fine structures and rheological behaviours of aqueous flour dispersions and of β-glucan, (1→3,1→4)-β-d-glucan isolates obtained from 18 registered varieties of normal covered barley seeds and four registered oat varieties, grown in the same location in Greece, were investigated. The β-glucan content of the barleys and oats varied between 2.5–5.4 and 2.1–3.9%, respectively (dry matter basis). Heat treatment of the barley and oat flour dispersions with 80% (v/v) ethanol, to inactivate endogenous β-glucanases, had a stabilizing effect on the viscosity profile of the flour slurries. The relationship between total β-glucan content and aqueous slurry viscosity (at 247 s−1) of the heat-treated barley flours was weak (r2=0.45, p<0.05, n=18). β-Glucans were isolated by water extraction at temperatures slightly below the gelatinization temperature of starch, enzymatic removal of starch and partial removal of contaminating proteins by adjustment to pH 4.0–4.5, and subsequent precipitation of the water-soluble β-glucans with 80% (v/v) ethanol. The cellulosic oligomers released by the action of a (1→3,1→4)-β-d-glucan hydrolase showed cellotriosyl and cellotetraosyl units, accounted for 91.1–92.1% for barley and between 92.4 and 94.1% for the oat preparations; the respective molar ratios of tri- to tetra-saccharides (DP3/DP4) ranged between 2.73–3.05 (barley) and 2.16–2.42 (oat). Steady shear measurements confirmed the random coil type behaviour of freshly prepared β-glucan solutions (5 and 7%, w/v). The rate at which shear thinning began was dependent on both concentration and molecular size of the polysaccharide. Most of the β-glucan dispersions followed the Cox–Merz rule, except Mucio, a variety with high Mw β-glucan (2.39×105). Viscoelastic characterization, at 8% (w/v), of three barley β-glucan aqueous dispersions differing in molecular size, indicated that the low molecular weight sample exhibited shorter gelation time and higher gelation rate (IE=[dlog G′/dt]max) than its higher molecular weight counterparts. Small deformation oscillatory measurements on gels of all barley β-glucan isolates (10% (w/v), 7 d storage, 25 °C) revealed a strong negative relationship (r2=0.88, p<0.01) between G′ (1 Hz, strain 0.1%) and apparent Mw of the polysaccharide.  相似文献   

19.
Steam explosion of corn stalk in the presence of 3% sulphuric acid at 200 °C for 5 min gave the highest recovery of lignin. Lignin has Mw = 2640 and Mz = 93,994. In the UV spectrum absorptions at λ = 231 and 280 nm were recorded. 1H NMR spectrum of lignin showed signals attributable to cinnamaldehyde units, guaiacyl units, and syringyl units. Syringyl and guaiacyl units are in 1:1 ratio. 13C NMR spectrum showed signals for guaiacyl, syringyl, and p-hydroxyphenyl units. The spectrum showed a prevalence of guaiacyl units. The 13C NMR spectrum is in agreement with the presence of cinnamic units. The same characterization was performed on lignin from pine. The irradiation of lignin from pine from steam explosion process in the presence of oxygen, in conditions described for the formation of superoxide ion, for different irradiation time was followed isolating the lignin and determining the average molecular weight. The experiments showed that, until 8 h irradiation, Mn decreases, while Mw and Mz increases. After 8 h irradiation an inverse behaviour was observed, with an increase of Mn and a decrease of Mw and Mz. These results are in agreement with an initial polymerization process followed by a photoinduced degradation. Ozonization was carried out in acetonitrile–methanol solution. The reaction showed a zero-order kinetics. After 50 min the average molecular weight of lignin is the half. The reaction mixture was analyzed by using GC–MS. Oxalic acid was determined.  相似文献   

20.
《Field Crops Research》2004,86(1):53-65
Deceleration in rice (Oryza sativa L.) yield over time under fixed management conditions is a concern for countries like Bangladesh, where rice is the primary source of calories for the human population. Field experiments were conducted from 1990 to 1999 on a Chhiata clay loam soil (Hyperthermic Vertic Endoaquept) in Bangladesh, to determine the effect of different doses of chemical fertilizers alone or in combination with cow dung (CD) and rice husk ash (ash) on yield of lowland rice. Two rice crops—dry season rice (December–May) and wet season rice (July–November) were grown in each year. Six treatments—absolute control (T1), one-third of recommended fertilizer doses (T2), two-thirds of recommended fertilizer doses (T3), full doses of recommended fertilizers (T4), T2+5 t CD and 2.5 t ash ha−1 (T5) and T3+5 t CD and 2.5 t ash ha−1 (T6) were compared. The CD and ash were applied on dry season rice only. The 10-year mean grain yield of rice with T1 was 5.33 t ha−1 per year, while the yield with T2 was 6.86 t ha−1 per year. Increased fertilizer doses with T3 increased the grain yield to 8.07 t ha−1 per year, while the application of recommended chemical fertilizer doses (T4) gave 8.87 t ha−1 per year. The application of CD and ash (T5 and T6) increased rice yield by about 1 t ha−1 per year over that obtained with chemical fertilizer alone (T2 and T3, respectively). Over 10 years, the grain yield trend with the control plots was negative, but not significantly, both in the dry and wet seasons. Under T3 through T6, the yield trend was significantly positive in the dry season, but no significant trend was observed in the wet season. The treatments, which showed positive yield trend, also showed positive total P uptake trend. Positive yield trends were attributed to the increasing P supplying power of the soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号