首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
以黑龙江省佳木斯市桦南县孟家岗林场为研究对象,利用2017年的机载激光雷达(ALS)数据构建冠层高度模型(CHM),探索坡度对单木参数估测的影响。研究区域内坡度分为4级,Ⅰ级为平坡:坡度<5°;Ⅱ级为缓坡:坡度5°~14°;Ⅲ级为斜坡:坡度15°~24°;IV为陡-急-险坡:坡度≥25°。每一级选取8块高郁闭度的人工针叶林样地(50 m×50 m),应用基于区域的分层横截面分析法(RHCSA)进行单木树冠提取,估测单木位置、树高和冠幅信息,利用目视解译的单木树顶和树冠作为参考数据进行精度检验(包括单木树冠提取精度和单木参数估测精度检验)。结果表明:不同坡度下单木树冠提取和单木定位估测均有显著差异(p<0.05)。其中,平坡上的单木树冠提取总体精度最高(均值为84.61%),陡-急-险坡上的总体精度最低(均值为41.31%);缓坡上的单木定位精度最高,平均的均方根误差为1.16 m,陡-急-险坡上单木定位精度最低,平均均方根误差为1.58 m。但是,不同坡度下单木树高和冠幅的估测结果差异并不显著(p>0.05)。因此,应用CHM进行单木参数估测时,虽然进行了地形标准化,但还是需要考虑坡度对单木树冠提取和单木定位的影响,而其对树高和冠幅的影响不大。  相似文献   

2.
树冠是林木重要的组成部分之一,林木冠幅信息精确提取对森林资源调查和树木生长动态监测有着重要的意义。通过设置不同的无人机飞行高度,以哈尔滨市城市林业示范基地中的樟子松样地为对象,分别利用传统分水岭算法和改进分水岭算法对单木树冠和林隙进行提取,并对树冠冠幅和树冠投影面积进行估算,最后与实测数据进行对比分析。结果表明:1)基于传统分水岭算法平均单木冠幅识别率为51.11%,平均欠分割率为25.18%,平均过分割率为11.11%;树冠冠幅和树冠投影面积平均提取精度分别为69.72%和53.59%,说明传统分水岭算法对单木冠幅提取效果一般。2)改进分水岭算法平均单木冠幅识别率为80.74%,平均欠分割率为8.15%,平均过分割率为6.67%;树冠冠幅和树冠投影面积平均提取精度约分别为79.84%和76.04%,表明改进的分水岭算法对林木单木冠幅提取精度较高。3)50 m飞行高度下样地中林隙面积在0~5 m2和5~10 m2各占57.89%和31.58%;林隙形状指数分布在1.14~1.85,平均值为1.36;研究表明,利用改进分水岭算法在50 m无人机飞行高度获取的林木影像可以有效提取林木树冠和林隙面积信息,研究结果可为森林资源调查提供有效参考。  相似文献   

3.
针对机载激光雷达点云中基于栅格化的冠层高度模型(CHM)所导致的原始点云数据丢失问题,提出了一种应用高斯模型聚类的单木信息提取方法。采用形态学开运算和高斯平滑方法形成高斯冠层最大模型(GCMM)能减少无关局部最大值对单木分割的影响,利用局部最大值法初步探测树冠顶点,通过最速下降法建立混合高斯模型得到树木位置和冠幅。利用聚类分析划分临近点云归属,进而实现单木参数准确提取,并提取单木最高点为树高。将点云分割方法应用于美国蓝岭地区6块圆形针叶林样地(r=30 m)。结果表明:单木分割F为0.89,正确分割单木树高提取精度95%,冠幅提取精度91%。结合实测数据对提取到的树高和冠幅进行相关性分析,树高R2=0.92,平均误差为-0.83 m;冠幅R2=0.84,平均误差为-0.42 m。相比于分水岭算法,高斯模型聚类方法F提高了11.2%,正确分割单木树高及冠幅提取精度提高了5.5%、5.8%,树高R2提高0.08,平均误差减少0.58 m;冠幅R2提高0.11,平均误差减少0.63 m。  相似文献   

4.
森林冠层的三维重建研究能够更加直观反映森林空间结构,提高森林参数的测量精度。目前小光斑激光雷达已经广泛应用于林业研究中。为建立落叶松树冠三维形状模型,以长春净月潭实验区落叶松机载LiDAR(LiDAR,Light Detection And Ranging)数据为基础,采用K-means算法提取建模参数。该算法以单木树冠顶点作为初始聚类中心,经过4次迭代估测出单木树高和单木树冠直径,通过与试验区的单木实测数据对比,进行相关性分析,得到估测树高和估测树冠与实测数据相关系数分别为0.892 4和0.769 0,经过验证,估测树高和估测树冠的精度为94.06%和82.21%。利用激光雷达提取出的单木坐标、树高、树冠和冠基高采用旋转抛物线方法重建森林尺度三维模型呈现森林结构。  相似文献   

5.
以福建顺昌埔上国有林场的杉木新造林为研究对象,采用大疆Phantom 4 Multispectral无人机分2次获取研究区的无人机影像,并以无人机影像为数据源,从研究区的数字表面模型(DSM)中提取冠层高度模型(CHM)。根据局部最大值算法和分水岭算法,从CHM中获取研究区杉木的树高和冠幅数据;同时在研究区设立15个标准地,采用测量杆测定各标准地内所有杉木的树高和南北冠幅;以随机选取、且在影像中具有精确位置的265棵杉木为单木水平的实测数据,以及各标准地内杉木的平均树高和平均南北冠幅为林分水平的实测数据,分别从单木和林分角度对杉木树高和冠幅的遥感估测精度进行评价。结果表明:2次飞行作业之间树高的估测精度分别为90.86%和91.34%,南北冠幅的估测精度分别为83.55%和83.95%;在单木水平上,遥感估测的树高精度为R2=0.89、RMSE=22.37 cm、EA=91.00%;南北冠幅精度为R2=0.70、RMSE=27.33 cm、EA=82.22%;在林分水平上,树高的估测精度为R2=0.95、RMSE=12.27 cm、EA=94.61%;南北冠幅的估测精度为R2=0.82、RMSE=11.24 cm、EA=92.20%。遥感估测的树高均值比野外测量的树高均值小0.07 m,南北冠幅均值比野外测量的均值小0.04 m。基于无人机三维信息实现了研究区杉木树高和冠幅的精确估测,且在飞行参数一致的情况下,不同飞行区域和飞行批次之间的估测精度相近。研究可以为杉木新造林快速、稳定的监测和经营管理策略的科学制定提供基础数据。  相似文献   

6.
目的应用高分辨率遥感影像快速准确提取单木树冠信息,对现代森林管理具有重要意义。面向对象的多尺度分割方法能有效地解决基于像元特征分析的局限,是单木树冠提取的重要技术途径。本文对比分析了不同遥感平台和人工林树种的树冠提取精度,探究实验方法针对不同尺度影像数据和树种的优势及适用性,并结合调查目的为影像数据的选取提供参考。方法以广西壮族自治区高峰林场为研究区,选取低空无人机CCD、机载CCD和星载高分二号遥感影像数据,针对树冠区域与背景区域的对比度效果不佳的问题,首先采用小波变换进行图像增强处理,去除影像噪声,增强树冠与背景的对比度;然后应用面向对象的多尺度分割方法,排除背景区域的干扰,针对树冠区域进行单木树冠的快速提取;最后对3种影像下提取的杉木和桉树人工林单木树冠的流程和方法,以及树冠提取精度进行研究分析。结果采用小波变换对无人机和机载平台影像增强效果显著,无人机平台下桉树和杉木实验区单木分割精度分别为87%和93.3%,冠幅估测精度为84.2%和85.1%;机载平台下桉树和杉木实验区单木分割精度为89%和91.1%,冠幅估测精度为83.9%和84.4%;而小波变换对星载平台影像增强效果不佳,桉树和杉木实验区的单木分割精度为82%和89%,冠幅估测精度为72.3%和73.3%。结论在无人机和机载平台下,应用多尺度分割得到的树冠提取精度相接近;在星载平台下,直接应用多尺度分割进行单木树冠提取,受影像自身空间分辨率的局限,提取精度低于前两种平台,但也能够满足森林调查的基本需求。   相似文献   

7.
应用地面三维激光扫描仪,在大小兴安岭地区的4块白桦(Betula platyphylla)次生林样地进行单木扫描,对扫描后树干点云进行分层处理并设置阈值;运用Hough变换算法提取单木位置与胸径,利用树干生长方向得到树高与冠幅;运用回归分析对算法估计值和实测值进行拟合,判断算法的准确性;利用体元模拟法与传统体积计算方法分别估测树冠体积,分析两种算法的差异。结果表明:4块样地的单木识别率较高,平均为86.5%;4块样地的单木胸径、树高、冠幅估测的决定系数(R~2),分别为0.82、0.79、0.83,相应的均方根误差分别为2.03 cm、1.98m、0.45 m,显示了较好的估算精度;利用体元模拟法与传统树冠体积计算方法得到4块样地中树冠体积的平均差异为35.6%,两种算法间4块样地平均决定系数为0.96,拟合较好。  相似文献   

8.
准确提取单木树冠边界是获取森林数量参数的重要基础,是高分辨率遥感图像林业应用的技术难题。基于DOM航空影像数据源,采用面向对象的方法对研究区内的2个树种的林分进行了单木树冠边界提取研究。首先利用桉树和杉木的空间分布矢量数据对DOM航空影像进行掩膜处理,在掩膜区域内进行多层次多尺度图像分割得到初步树冠分割结果,并剔除非树冠信息;再以树冠信息种子对象为基础,使用区域增长算法对树冠信息种子对象增长得到单木树冠范围;最后使用形态学滤波的方法优化单木树冠边界,完成林区内桉树和杉木两类树种的单木树冠边界提取。结果表明,由于不同树种的树冠存在尺度和形态差异,进行单木树冠分割时需要设置不同的参数才能到达较好的分割效果。本研究中桉树和杉木的单木树冠提取总体精度分别为86.75%与89.21%,可满足林业部门获取森林单木树冠的精度需求。  相似文献   

9.
高分辨率无人机遥感影像单木树冠参数信息提取方法是森林资源精准监测和生态功能评估的重要基础,而自然光照条件下粘连和遮挡单木树冠的准确分割是直接决定单木树冠信息提取精度的关键。针对自然光照条件下山地森林无人机遥感影像中单木树冠相互粘连、遮挡难以分割,以及传统算法泛化能力弱等问题。本研究结合深度学习和标记控制分水岭算法的优点,提出了一种基于U-Net和标记控制分水岭(marker-controlled watershed,MCW)算法(简称U-Net+MCW算法)的山地森林单木树冠提取方法。以新疆山地森林优势树种天山云杉(Picea schrenkiana var.tianschanica)为研究对象,在南山实习林场采集积雪背景下无人机遥感影像作为试验数据,构建了基于深度神经网络U-Net和标记控制分水岭算法的单木树冠提取模型。首先,从无人机遥感影像中选取1 000张训练样本,128张测试样本,并对样本进行标注,通过数据增强将1 000张训练样本扩增为16 000张,按照4∶1分为训练集和验证集,对U-Net模型进行训练,在训练过程中赋予2个或多个树冠间的相邻边界像素较大权重。然后,利用训练好的U-Net模型对测试集样本进行单木树冠提取。最后,在深度神经网络U-Net单木树冠提取的基础上,采用MCW算法对提取结果进行优化,并对单木树冠提取效果进行精度评估。结果表明,U-Net+MCW算法对于单木尺度的F测度为74.04%,比单一使用U-Net模型提高了28.52%,以该方法提取遥感影像中的天山云杉树冠信息为基础,计算其单木树冠面积和冠幅的精度分别为81.05%和89.94%。因此,U-Net+MCW算法能够有效解决自然光照条件下,由于原始图像背景复杂且树冠内部亮度变化不均匀和树冠间粘连、遮挡等因素,导致的单个树冠内、树冠聚集处或连接重叠区域出现的树冠错分割、过分割、合并等问题,是一种低成本、高效率的单木树冠提取方法,能够满足中小尺度山地森林资源调查和监测要求。  相似文献   

10.
以年珠实验林场为研究区,以无人机可见光正射影像和激光雷达数据为数据源,采用分水岭分割与面向对象结合的方法提取不同郁闭度下杉木单木树冠信息,并对提取精度进行验证首先采用面向对象法基于无人机可见光影像提取树冠区域,然后基于构建的CHM进行分水岭分割获取单木树冠初步分割结果,最后基于初步分割结果对树冠区域进行二次分割,提取单木树冠信息。结果表明:不同郁闭度林分条件下单木树冠信息提取效果较好,其中单木树冠提取F测度分别为88.07%~95.08%和78.57%~88.29%;提取的树冠面积与实测面积建立的线性回归模型,R2分别为0.8591和0.7367,RMSE分别为2.49 m2和3.29 m2;提取的冠幅与实测冠幅建立的线性回归模型,R2分别为0.8306和0.7246,RMSE分别为0.46 m和0.57 m。基于无人机可见光影像采用面向对象多尺度分割法提取树冠区域很好的消除了样地内裸地及林下灌木等因素的影响;同时,无人机LiDAR数据能够更加精确的区分单木信息,2种数据源结合发挥了二者的优势,提高了单木树冠的提取精度。本研究可为快速获取不同郁闭度林分下单木树冠信息提供参考。  相似文献   

11.
高空间分辨率遥感的单木树冠自动提取方法与应用   总被引:4,自引:0,他引:4  
用高空间分辨率遥感影像对单木树冠进行自动提取和轮廓描绘,是获取森林信息的一种快速有效的方法。也是近年来林业遥感领域研究的热点。详细介绍了目前高分辨率遥感单木树冠信息自动提取的各种方法.包括局部最大值法、模板匹配法、谷地跟踪法、多尺度法、种子区域生长法、分水岭分割法、局部射线法.并对单木树冠提取在林业上的应用进行了探讨,最后结合国内外研究现状,对单木树冠自动提取的未来作了展望。参51  相似文献   

12.
【目的】高郁闭度华北落叶松林Larix principis-rupprechtii林木树冠交叉重叠,传统的基于高分辨影像的单木识别方法识别精度不高。利用机载LiDAR三维点云数据可提高高郁闭度华北落叶松林的单木识别精度。【方法】在点云数据预处理基础上,提出基于点云空间特征的高斯核函数改进的均值漂移单木位置识别方法 (MSP),比较并分析MSP法与基于点云空间特征的区域生长点云分割方法 (RGP)、基于冠层高度模型的局部最大值单木位置识别方法 (LMC)和基于冠层模型的多尺度分割单木位置识别方法 (MSC)的单木识别效果。【结果】4种方法单木位置识别精度从大到小依次为MSP(89.30%)、LMC (85.60%)、RGP (77.50%)和MSC (70.00%),MSP的漏分误差和错分误差最小,分别为8.7%和8.0%,平均单木冠幅提取精度为90.18%。【结论】提出的MSP法对高郁闭度华北落叶松林单木位置识别具有较好的适用性,利用机载LiDAR可为提取华北落叶松林森林结构参数提供新的途径。图3表3参28  相似文献   

13.
为探究无人机激光雷达(UAVLS)获取单木树冠三维结构的能力,利用无人机载激光雷达数据,对人工长白落叶松进行单木树冠特征因子的提取以及树冠轮廓的模拟,并与机载激光雷达(ALS)单木树冠特征因子的提取进行比较。结果表明:利用UAVLS数据1∶1匹配的单木数量远高于利用ALS数据匹配的单木数量,且UAVLS单木位置探测的精度达到0.338 1 m,比ALS提高了0.185 1 m;UAVLS单木树高的提取精度达到0.578 5 m,比ALS提高了1.294 5 m;对于冠幅及冠基高的提取,UAVLS也有更高的精度。与ALS相比,UAVLS不仅具有更高的单木探测精度,也具有更高的单木树冠结构参数提取精度;3种树冠轮廓模型拟合的R~2均高于0.75,表明3种常用的轮廓模型都能够很好的描述从UAVLS数据中获取的树冠外部轮廓,其中二次抛物线模型具有最强的模拟效果(M_(AE)=0.256 4,M_(RAE)=4.59%)。因此,无人机激光雷达数据提取单木树冠结构,可以提高林业调查的效率。  相似文献   

14.
基于机载激光雷达的寒温带典型森林高度制图研究   总被引:1,自引:0,他引:1  
以内蒙古根河市潮查林场境内的寒温带兴安落叶松原始林及其次生林为研究对象,利用机载激光雷达点云数据与地面调查的66个样地数据,采用不同算法计算样地实测树高(Lorey's高、冠幅面积加权树高和算术平均高)分别与基于双正切角树冠识别算法获取的LiDAR估测高(冠幅面积加权树高、算术平均高)和基于点云提取的百分位高构建树高回归模型(冠幅面积加权树高模型、算术平均树高模型和LiDAR百分位树高模型)。对比不同树高模型的训练精度与估测精度的差异,探讨双正切角树冠识别算法对本研究区的适用性;同时了解冠幅面积加权的样地实测树高与Lorey's高对林分平均高代表性的差异,确定最优解释变量,筛选最优树高模型,计算研究区森林高度空间分布图,为后续生物量和碳储量研究提供参考数据。结果表明:样地冠幅面积加权树高的模型训练精度和估测精度与Lorey's高的结果一致性较好,略低于Lorey's高的估测结果。LiDAR百分位树高模型中的50%分位高与样地实测树高相关性显著且回归模型拟合效果较好,其中,以Lorey's高为样地实测树高时模型的R2=0.869、RMSE=1.366m;以冠幅面积加权树高为样地实测树高时模型的R2=0.839、RMSE=1.392m;Lorey's高的50%分位高模型的估测精度最高,各独立验证样本点估测精度均高于85%,平均估测精度为94.73%,最高估测精度可达99.78%,其中混交林平均估测精度(96.72%)高于针叶林的平均估测精度(93.58%)。因此,选择Lorey's高的50%分位高模型计算研究区的森林高度空间分布。   相似文献   

15.
为探索机载激光雷达对高郁闭度人工林单木分割的应用潜力,选取黑龙江省森林植物园内红松(Pinus koraiensis)、云杉(Picea asperata)、樟子松(Pinus sylvestris)3块具有代表性的样地作为研究对象,应用多旋翼无人机搭载ZENMUSE L1激光雷达获取密度较高的点云数据,经过去噪、滤波、地面点分类预处理。分别采用标记控制分水岭算法和点云间距聚类算法,并调整相应的参数对试验区内的3块样地进行单木分割。结果表明:采用标记控制分水岭算法的单木分割,冠层高度栅格分辨率为0.1 m时分割效果最好(总体调和值为84.2%),红松、云杉和樟子松样地的调和值分别为87.8%、81.8%、82.4%,调和值随着分辨率的降低而降低;采用点云间距聚类算法的单木分割,距离阈值为平均冠幅半径时分割效果最好(总体调和值为85.9%),红松、云杉和樟子松样地的调和值分别为87.1%、83.5%、87.0%,距离阈值过大过小都导致调和值降低。因此,结合机载激光雷达高密度的点云数据,标记控制分水岭算法和点云间距聚类算法都适用于高郁闭度人工林较精准的单木分割,通过调整参数、高分辨率的冠层...  相似文献   

16.
以广西壮族自治区南宁市树木园坛里管理区为研究区域、以桉树(Eucalyptus spp.)人工林为研究对象,在坛里管理区内设置6块20 m×20 m的典型样地,实地测量单木树高、胸径(1.3 m高)、冠幅直径,获得287株桉树样木数据;样地调查同时进行无人机航拍数据采集,获取分辨率为8 cm像素影像(110张),通过正射校正、倾斜校正、投影差校正对无人机影像进行处理,消除环境因子的影响,采用面向对象的影像分析方法对遥感影像上的桉树林提取林分单木冠幅;根据样地实测数据建立冠幅-胸径模型、冠幅-树高模型,将无人机影像提取的修正后的桉树单木冠幅数据代入构建的模型中,选择相关系数最高的模型推算胸径和树高,利用桉树二元材积公式估算样地的蓄积量,分析依据无人机遥感影像提取桉树单木冠幅数据估算林分蓄积量的可行性与精确度。结果表明:利用无人机影像提取冠幅与实测冠幅之间存在显著正相关,提取的平均精度为90.85%,建立的桉树冠幅-胸径曲线估计模型,其中对数函数方程拟合效果最好(决定系数为0.799);桉树冠幅-树高模型,拟合效果最好的是三次方函数方程(决定系数为0.755)。影像提取的单木冠幅,通过模型...  相似文献   

17.
以3年生福建省明溪县云南红豆杉原料林为研究对象,以地径、树高为基础自变量,导入冠幅、冠形率、树冠率等树冠形态特征自变量,用逐步回归的方法优选系列单木生物量理想数学模型。采用独立样本的检验方法,对优选模型进行t检验与偏差检验,估算预测精度。结果表明:导入树冠形态特征自变量后明显提高单木生物量模型的判定系数,且模型较未导入树冠形态特征有着更好偏差与预测精度表现。树冠形态结构显著影响红豆杉单株生物量;冠幅和冠形率明显促进枝叶生物量、茎干生物量、地上生物量,树冠率、冠幅明显促进红豆杉总生物量。在系列红豆杉单木模型导入树冠形态特征因子是必要的,可提高系列生物量模型的预测效果。系列优选的生物量模型均通过t检验、偏差检验,模型的预测精度均在92.36%以上,可以用于生产中的生物量预测。  相似文献   

18.
利用机载激光雷达数据提取单株木树高和树冠   总被引:17,自引:2,他引:15  
机载激光雷达是一种主动遥感技术。在林业应用方面,高采样密度激光雷达能够获取单株木三维结构特征,采用不同的数据处理方法,可以得到不同精度的单株木参数。该文利用高采样密度的机载激光雷达数据(离散回波,平均激光点间隔0.52 m、平均光斑直径0.3 m),研究了单株木的树高提取技术和树冠边界识别算法,针对单株木的树冠特征,提出了一种双正切角树冠识别算法;最后,使用重庆铁山坪林场的9个外业样地数据,对单株木树高和冠幅,以及样地平均树高和平均冠幅进行了验证。结果表明,单株木树高和冠幅的R2分别为0.34和0.03,样地平均树高和平均冠幅的R2分别为0.97和0.71,样地尺度的相关性明显高于单株木尺度的相关性。   相似文献   

19.
基于标记控制区域生长法的单木树冠提取   总被引:4,自引:0,他引:4  
根据2009年激光雷达数据、正射影像图及二类调查数据,选取凉水国家自然保护区针叶林和阔叶林样地进行单木树冠提取研究,包括利用动态窗口局域最大值法对单木位置进行探测,以及采用标记控制区域生长法进行树冠边界的勾绘,分别从样地和单木两个层次进行评价。结果表明:样地尺度上,针叶林和阔叶林的树冠面积相对误差的平均值分别为8.74%和-8.24%。单木尺度上,针叶林样地的生产者精度在62.2%~77.3%浮动,用户精度在71.5%~83.9%浮动;而阔叶林样地的生产者精度达到76.1%~91.2%,用户精度达到78.5%~92.5%。阔叶林样地勾绘精度浮动较大,但略优于针叶林样地的勾绘精度,是由于阔叶林样地中树冠分布较稀疏所致;而"位置匹配但过度生长"的情况过多是针叶林样地树冠提取精度不高的主要原因。  相似文献   

20.
不同方法提取无人机影像树冠信息效果分析   总被引:4,自引:0,他引:4  
以无人机航空拍摄的影像为数据源,采用目视解译和面向对象法提取胡杨、柽柳树冠信息,获得树木冠幅及林分郁闭度.结果表明,单木冠幅、林分冠幅、样地郁闭度的实测值、面向对象法估测值和目视解译法估测值无显著差异(P>0.05),表明面向对象与目视解译法都可有效获取单木冠幅、林分冠幅和样地郁闭度信息;面向对象法与目视解译法估测精度无显著差异(P>0.05),表明这两种方法获取森林单木冠幅、林分冠幅、样地郁闭度参数效果相当.但基于无人机航拍数据的面向对象树冠提取,能克服人机对话目视解译速度慢、误差大小因人而异的弊端,具有进行大面积林分调查因子定量提取的优势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号