共查询到20条相似文献,搜索用时 0 毫秒
1.
《Communications in Soil Science and Plant Analysis》2012,43(4):433-444
Abstract The production of marketable malting barley requires careful N management to meet the quality standards set by the malting industry. Nine field trials were conducted over an eight‐year period at four locations to develop N fertilization guidelines for irrigated malting barley. Residual soil NO3‐N (0 to 60 cm) ranged from 15 to 103 kg N/ha. Nitrogen fertilizer was applied preplant as either urea or NH4NO3 at rates ranging from 0 to 269 kg N/ha. Maximum yields were obtained when the sum of residual plus applied N (available N) was above 110 kg N/ha. However, the percentage of plump kernels generally fell below acceptable levels (85%) when available N exceeded 135 kg N/ha. Grain protein exceeded acceptable levels (12%) when available N was above 210 kg N/ha. Stem NO3‐N sufficiency levels were determined from high‐yielding barley with acceptable quality parameters. At the three‐leaf stage, the barley stem NO3‐N sufficiency level was approximately 6,000 μg/g and decreased to about 1,000 μg/g at the eight‐leaf stage. 相似文献
2.
Maria V. Criado Irma N. Roberts Cintia G. Veliz Mariela Echeverria Flavio H. Gutierrez Boem Carla Caputo 《Archives of Agronomy and Soil Science》2018,64(4):492-504
Understanding the way in which N and P availability affects the transport of sugar and amino acids is crucial to improve grain quality and yield. Thus, in the present study, two greenhouse and field experiments were conducted with barley plants grown with different N and P availabilities to assess the dynamics of the phloem transport of assimilates in relation to the beginning of flowering and senescence. The phloem transport of assimilates decreased before the beginning of protein degradation in all treatments, but the onset of flowering and senescence varied according to the N and P availability, as evidenced by the concentrations of proteins, amino acids, and sugar and the gene expression of senescence-related proteases and all glutamine synthetase isoforms. In N-deficient plants, the phloem transport decreased before flowering, but only when P was not limiting; in N- and P-sufficient plants it decreased at flowering; and in P-deficient plants it decreased after flowering. Therefore, only N-deficient but P-sufficient plants have a post-anthesis period with high export rate of assimilates. This alteration of phenology in relation to phloem leads to important consequences in assimilate utilization, as shown by the higher yield and N content of the former compared to P-deficient plants. 相似文献
3.
Annbjørg Øverli Kristoffersen Mikkel Bakkegard Bernt Olav Hoel 《Acta Agriculturae Scandinavica, Section B - Plant Soil Science》2013,63(4):252-263
Abstract Field experiments were carried out on three representative soils, to evaluate the effect of various starter fertilizers, together with different rates of band placed phosphorus (P), on nutrient uptake and yield of spring barley (Hordeum vulgare L.) and spring wheat (Triticum aestivum L.). The starter fertilizers were placed in the immediate vicinity of the seed, while the band placed P was placed at about 5 cm below the seeds and spaced at 25 cm between alternate seed rows. As starter fertilizer, monoammonium phosphate (MAP), calcium nitrate (CAN), ammonium nitrate (AN) and triple superphosphate (P20) were compared. In both species, effects of starter fertilizer on P uptake were most marked early in the growing season. At GS 13 application of 20 kg P ha?1 as MAP increased the P uptake by 50% in barley and by 35% in wheat, compared to no seed-placed nutrients. For grain, the increase in P content was 8% for both species. The higher P uptake at GS 13 was supported by observations of higher plant vigour in the treatments with either P20 or MAP as starter fertilizer. The use of N only as starter fertilizer did not increase the vigour of the plants. Band placement of P also gave more vigorous plants in spring barley. The grain yield increased on the silty clay loam and on the silt soil when starter fertilizer was applied, especially with the use of MAP. Smaller and non-significant yield differences were found when starter fertilizer was used on the loam soil. No delay or reduction of emergence was observed with starter fertilizer. Therefore, on soils where root growth or nutrient uptake becomes limited during the first weeks after sowing, application of starter fertilizer is recommended in Norway for both spring barley and spring wheat. Crops grown on silty soils seem to have an especially high demand for easily available P given as starter fertilizer. 相似文献
4.
Kazimierz Noworolnik 《Acta Agriculturae Scandinavica, Section B - Plant Soil Science》2017,67(4):303-307
The aim of the study was to determine the effect of herbicides on yields, yield components and malting quality of the grains of barley cultivars. Literature worldwide lacks works on the impact of herbicides on the brewing quality of barley. This work presents the results of field experiments and laboratory studies concerning the evaluation of the impact of herbicides, differing in terms of an active substance, on the yields, weed control and malting quality of selected cultivars of barley. The research was conducted in Poland. The herbicides affected the increase in grain yields of barley, due to their high effectiveness of weed control, resulting in an increase in the number of ears per area unit. Certain herbicides increased grain protein content and grain filling. As for malt extractivity, Kolbach index, Q index, diastatic power and beta-glucans content in wort, there were interactions between herbicides and cultivars. The impact of herbicides on parameters varied depending on cultivars. The herbicides, especially Chwastox Turbo 340 SL (MCPA?+?dicamba) and Secator 125 OD (amidosulfuron?+?iodosulfuron-methyl-sodium), worsened several (not many) malt quality parameters, depending on cultivars, but it did not contribute to disqualifying malting quality of grains. Therefore, all tested herbicides can be recommended for use by farmers. 相似文献
5.
Jian Cai Fulai Liu Tingbo Dai Weixing Cao 《Acta Agriculturae Scandinavica, Section B - Plant Soil Science》2013,63(5):410-420
Abstract Split nitrogen applications are widely adopted to improve grain yield and enhance nitrogen use effective in crops. In a two-year field experiment at two eco-sites, five fractions of topdressed nitrogen of 0%, 20%, 30%, 40% and 50% were implemented. Responses of radiation interception and leaf photosynthesis after anthesis, dry matter accumulation and assimilates remobilization, nitrogen use efficiency and grain yield to fraction of topdressed nitrogen treatments were investigated in malting barley. Net photosynthetic rate of the penultimate leaf, leaf area index and light extinction coefficient increased with increasing fraction topdressed nitrogen from 0% to 30%, and then decreased from 30% to 50%. The putative gross maximum canopy photosynthesis was the highest for fraction of topdressed nitrogen of 30%, which was concomitant with the highest amount of post-anthesis accumulated assimilates. The remobilization of pre-anthesis stored assimilates from vegetative organs into grains was hardly significantly affected by fractions of topdressed nitrogen. Grain yield was the highest for fraction of topdressed nitrogen of 30%, which coincided with the highest plant nitrogen uptake and physiological and agronomic nitrogen use efficiencies. The enhanced nitrogen use efficiency was corresponding to the improved photosynthetic nitrogen-use efficiency in the leaves at fraction of topdressed nitrogen of 30%. In conclusion, appropriate fraction of topdressed nitrogen application on malting barley improved assimilation rate and nitrogen use efficiency resulting in higher grain yields and proper grain protein content in malting barley. 相似文献
6.
《Communications in Soil Science and Plant Analysis》2012,43(10):1399-1420
Rice (Oryza sativa L.) is a staple food for more than 50% of the world’s population, and phosphorus (P) is one of the most yield-limiting nutrients for rice production in tropical acidic soils worldwide. A greenhouse experiment was conducted to evaluate efficiency of six P sources for upland rice production. The P sources used were simple superphosphate (SSP), polymer-coated SSP (PSSP), triple superphosphate (TSP), polymer-coated TSP (PTSP), monoammonium phosphate (MAP), and polymer-coated MAP (PMAP). There were four P rates [50, 100 200, and 400 mg phosphorus (P) kg?1] applied with four sources plus one control treatment [0 mg phosphorus (P) kg?1]. Plant height, straw yield, grain yield, panicle density, root dry weight, maximum root length, and 1000-grain weight were significantly increased with increasing P rates in the range of 0 to 400 mg P kg?1. However, P-use efficiency (mg grain produced per mg P applied) was decreased with increasing P rate. Based on regression equation, overall maximum plant height was obtained with the application of 235 mg P kg?1, maximum straw yield with the application of 265 mg P kg?1, and maximum grain yield at 227 mg P kg?1. Based on maximum grain yield, the P source were classified as PMAP > SSP = MAP > PSSP > TSP > PTSP in the upland rice production efficiency. Overall, maximum panicle density was obtained with the addition of 231 mg P kg?1 and maximum 1000-weight was obtained with the addition of 226 mg P kg?1. Similarly, overall root dry weight and maximum root length were achieved with the application of 261 and 298 mg P kg?1 of soil. Most of the growth and yield components had a significant positive association with grain yield. Optimum soil acidity indices such as pH; exchangeable calcium (Ca), magnesium (Mg), and potassium (K); Ca, Mg, and K saturation; base saturation; and acidity saturation were established for maximum upland rice grain yield. 相似文献
7.
Ievina Sturite Arta Kronberga Vija Strazdina Aina Kokare Mauritz Aassveen Anne Kari Bergjord Olsen 《Acta Agriculturae Scandinavica, Section B - Plant Soil Science》2019,69(1):1-11
Multilocation testing remains the main tool for understanding varietal responses to the environment. Here, Latvian and Norwegian hull-less and hulled barley varieties were tested in field experiments in Latvia and Norway in order to assess the varieties adaptability across environments (sites). Two Latvian (cv Irbe and cv Kornelija) and one Norwegian hull-less barley variety (cv Pihl) were tested along with one Latvian (cv Rubiola) and one Norwegian hulled barley variety (cv Tyra) under conventional and organic management systems. The grain yield, together with physical and chemical grain parameters were compared, and variety yield and protein stability determined. Overall, grain yield of hull-less barley varieties was significantly lower than for hulled barley varieties regardless of climatic conditions and management system. However, in the organic farming systems this difference between barley types was less pronounced. The hull-less barley varieties cv Pihl and cv Irbe, along with both hulled varieties, had good yield stability across environments and were well adapted to both cropping systems. Hull-less barley varieties tended to contain more protein and β -glucans than hulled barley varieties. Despite being bred for local conditions in Norway and Latvia, our study shows that all the varieties used may be successfully transferred across countries. 相似文献
8.
《Communications in Soil Science and Plant Analysis》2012,43(9):889-894
Abstract Malting barley is a specialized agricultural crop in which high yields and quality are production objectives. We evaluated the effects of different N rates on barley yields and selected malting quality parameters grown on irrigated silt loam soils (Xerollic calciorthids). Maximum barley yields having acceptable malting quality parameters were obtained when the preplant soil NO3‐N plus fertilizer N was between 100 to 120 kg N/ha. About 33 kg N/ha was taken up by the plants from the mineralization of soil organic N. Higher available N levels decreased malting quality parameters below acceptable levels. Germination percentage was not changed by the different N rates. 相似文献
9.
《Communications in Soil Science and Plant Analysis》2012,43(13):1628-1635
Lowland rice significantly contributes to world as well as Brazilian rice production and information on genotypes potassium-use efficiency is limited. A greenhouse experiment was conducted with the objective to evaluate lowland rice genotypes for potassium (K)–use efficiency. Ten genotypes were evaluated at 0 mg K kg?1 (low) and 200 mg K kg?1 (high) of soil. Grain yield and shoot dry weight were significantly affected by K as well as genotype treatments. Genotypes CNAi 8860, CNAi 8859, BRS Fronteira, and BRS Alvorada were the best in relation to K-use efficiency because they produced best grain yield at low as well as at higher K levels. Shoot dry weight, number of panicles per pot, and 1000-grain weight had highly significant (P < 0.01) association with grain yield. Spikelet sterility, however, had significant negative association with grain yield. These plant parameters were mainly influenced by genotypes, indicating importance of selecting appropriate genetic material for improving grain yield. Soil K depletion was significant at harvest, suggesting large amount of K uptake by lowland rice genotypes. 相似文献
10.
《Communications in Soil Science and Plant Analysis》2012,43(15):2067-2091
Phosphorus (P) deficiency is one of the most yield-limiting factors in lowland rice production on Brazilian Inceptisol. The objective of this study was to evaluate eight P sources for lowland rice production. The P sources were simple superphosphate (SSP), polymer-coated simple superphosphate (PSSP), ammoniated simple superphosphate (ASSP), polymer-coated ammoniated simple superphosphate (PASSP), triple superphosphate (TSP), polymer-coated triple superphosphate (PTSP), monoammonium phosphate (MAP), and polymer-coated monoammonium phosphate (PMAP). These P sources were applied in four rates (i.e., 50, 100 200, and 400 mg P kg?1) + one control treatment (0 mg P kg?1). Plant height, straw yield, grain yield, panicle number, and root dry weight were significantly increased in a quadratic fashion with increasing P levels from 0 to 400 mg kg?1 of all the P sources evaluated. However, overall maximum root length and P-use efficiency were significantly less at greater P levels. Based on regression equation, maximum plant height was obtained with 262 mg P kg, maximum straw yield was obtained with 263 mg P kg?1, maximum grain yield was obtained with 273 mg P kg?1, and maximum panicle density was obtained with 273 mg P kg?1. Plant growth and yield components had significant positive association with grain yield, except maximum root length. Based on grain yield and average P rate of maximum grain yield, which is 273 mg kg?1, P sources were classified for P-use efficiency in the order of PSSP = TSP > PTSP > PASSP > SSP > MAP > ASSP. Soil chemical properties [pH; P; potassium (K); calcium (Ca); magnesium (Mg); hydrogen (H) + aluminum (Al); cation exchange capacity (CEC); base saturation; Ca, Mg, and K saturation; acidity saturation; Ca/Mg, Ca/K, and Mg/K ratios] changed significantly with the addition of different P treatments. 相似文献
11.
《Communications in Soil Science and Plant Analysis》2012,43(20):2932-2940
Rice is a main food crop for about half of the world's population, and phosphorus (P) is the main limiting nutrient in rice production in tropical lowlands. A greenhouse experiment was conducted to evaluate P requirements of lowland rice grown on a lowland soil (Inceptisol). Dry matter, grain yield, and yield-attributing characteristics were significantly (P < 0.01) influenced by P fertilization. Based on quadratic response, maximum shoot dry weight and grain yield were obtained with the application of 190 mg P kg?1 of soil. Maximum panicle, tiller number, and plant height were obtained with the application of 177 192, and 175 mg P kg?1 of soil, respectively. Mehlich 1–extractable P for maximum grain yield was 15.6 mg kg?1 of soil. Variability in grain yield with plant growth and yield parameters was in the order of tiller > shoot dry weight > panicle number > spikelet sterility > plant height > grain harvest index > panicle length > weight of 1000 grains. Phosphorus uptake in shoot and concentration and uptake in grain significantly (P < 0.01) increased grain yield. However, variability in grain yield was greater with concentration and uptake of P in the grain. Similarly, P harvest index was also significantly associated with grain yield. Agronomic P-use efficiency, apparent P-recovery efficiency, and P-utilization efficiency decreased quadratically with increasing P rates, whereas physiological P-use efficiency increased quadratically and agrophysiological P-use efficiency decreased linearly with increasing P rates. Agrophysiological and utilization P-use efficiencies had significant positive correlation with grain yield. 相似文献
12.
Kirill Pavlov 《Soil Science and Plant Nutrition》2016,62(5-6):500-503
The effects of local placement of potassium (K) on mineral nutrition dynamics of barley (Hordeum vulgare L.) in fertile Сhernozem were studied. A pot experiment with local K-placement at 4–5 cm soil depth was carried out and the dynamics of nitrogen, phosphorus, potassium (NPK) concentrations in tillers, organs and parts of spring barley was measured. K-placement increased the productivity index from 0.49 to 0.54, despite optimal and slightly varying NPK concentrations during the second half of the vegetation period (60–100 d). This occurs due to partitioning of assimilates, N, K, and especially P in generative organs of primary and secondary tillers forming quality grains. Nutrient concentrations in certain primary tiller parts of a 60-d plant (senescing leaves and the main spike axis) proved to be more sensitive indicators of the K-placement effect than average whole-plant characteristics. While being beneficial, K-placement had little impact on the overall NPK removal in barley, which shows a significant role of factors related to K uptake kinetics. Thus, the chosen parameters in the soil–plant system (the high content of available K in Chernozem, in the second part of the vegetation period) have for the first time allowed the evaluation of the impact of local K-placement on mineral nutrition dynamics in barley. 相似文献
13.
系统研究增施生物肥对啤酒大麦"甘啤6号"的生长发育、产量性状、原麦品质、麦芽品质的影响。结果表明:从生长发育看,增施生物肥对啤酒大麦的出苗期、拔节期、孕穗期、抽穗期无明显影响,但成熟期较对照推迟2 d,同时增施生物肥促进啤酒大麦的株高、穗、茎、叶、鞘生长发育;从产量性状看,增施生物肥明显提高啤酒大麦的成穗数、穗粒数、千粒重,其中对成穗数影响最大,其次为穗粒数,最后为千粒重,增施生物肥的产量较对照增加3.4%,但经济系数较对照降低1.3个百分点,降幅为2.6%;从原麦品质看,增施生物肥使啤酒大麦的籽粒蛋白质含量、淀粉含量和饱满度升高,千粒重增大,瘦秕率降低;从麦芽品质看,增施生物肥的麦芽微粉浸出率、粗粉浸出率、a-氨基氮、可溶性氮含量有不同程度增高,麦芽糖化力、粘度、粗细粉差、β-葡聚糖含量、蛋白质含量有不同程度降低,但对糖化时间和色度无影响。 相似文献
14.
Dr. Cuma Akinci Mehmet Yildirim 《Acta Agriculturae Scandinavica, Section B - Plant Soil Science》2013,63(1):33-41
Abstract Barley (Hordeum vulgare L.) landraces display a high degree of variability in morphological and developmental traits, in disease resistance, and in protein content. Representatives of 29 barley landraces from southeast Turkey were collected from farmers’ fields, for a total of 800 accessions. The objectives of this study were to characterize these accessions over four years for morphological and agronomical traits to be used for future selection and breeding program. The observed variation between landraces was very large for all traits. In the first year of testing the accessions showed average grain yields ranging from 197–2225 kg ha?1. After three years of selection, promising accessions were tested at two different geographical regions and using two different irrigation methods. One line was identified which significantly out-yielded the local landrace in all of the testing years and had a higher average yield than the check genotypes. 相似文献
15.
铝和镉胁迫对两个大麦品种矿质营养和根系分泌物的影响 总被引:7,自引:0,他引:7
A hydroponic experiment was carried out to study the effect of aluminum (Al) and cadmium (Cd) on Al and mineral nutrient contents in plants and Al-induced organic acid exudation in two barley varieties with different Al tolerance. Al- sensitive cv. Shang 70-119 had significantly higher Al content and accumulation in plants than Al-tolerant cv. Gebeina, especially in roots, when subjected to low pH (4.0) and Al treatments (100 μmol L^-1 Al and 100 μmol L^-1 Al +1.0 μmol L^-1 Cd). Cd addition increased Al content in plants exposed to Al stress. Both low pH and Al treatments caused marked reduction in Ca and Mg contents in all plant parts, P and K contents in the shoots and leaves, Fe, Zn and Mo contents in the leaves, Zn and B contents in the shoots, and Mn contents both in the roots and leaves. Moreover, changes in nutrient concentrations were greater in the plants exposed to both Al and Cd than in those exposed only to Al treatment. A dramatic enhancement of malate, citrate, and succinate was found in the plants exposed to 100 μmol L^-1 Al relative to the control, and the Al-tolerant cultivar had a considerable higher exudation of these organic acids than the Al-sensitive one, indicating that Al-induced enhancement of these organic acids is very likely to be associated with Al tolerance. 相似文献
16.
Effect of Si on alleviation of Mn toxicity of barley (Hordeum vulgare L.) seedlings was investigated with special reference to the effect on Mn microdistribution and peroxidase activity. Manganese treatment was conducted by growing the seedlings in nutrient solutions containing different concentrations of Mn. Silicon treatment was conducted by growing the seedlings in the solutions with or without Si supply. Silicon supply alleviated the necrotic browning in the leaves but did not affect the chlorosis caused by Mn toxicity. Silicon treatment did not appreciably alter the uptake of Mn by the plants. Electron probe X‐ray microanalysis revealed that Mn accumulated in high concentration around the necrotic brown spots and that Si supply prevented the uneven distribution of Mn in the tissues. Increase in the level of Mn supply caused an increase in peroxidase activity in the tissues, and Si supply prvented the increase in peroxidase activity. 相似文献
17.
Shafaqat Ali Fanrong Zeng Boyin Qiu Shengguan Cai Long Qiu Feibo Wu 《Soil Science and Plant Nutrition》2013,59(1):68-79
Aluminum (Al) and chromium (Cr) stresses often occur simultaneously in agricultural soils, and pose a great damage to crop growth, yield formation and product safety. In the current study, the influence of combined Al and Cr stresses on plant biomass, metal and nutrient contents was determined in comparison with that of Al or Cr stress alone. A hydroponic experiment was conducted to investigate the effect of pH, Al and Cr in the medium solution on the uptake of mineral elements as well as Al and Cr in the two barley genotypes differing in Al tolerance. Aluminum sensitive genotype Shang 70-119 had significantly higher Cr and Al contents in plants than Al-tolerant genotype Gebeina. Barley roots had much higher Al and Cr contents than above-ground plant parts. Chromium contents were much higher in the solution with pH 4.0 than in that with pH 6.5. Aluminum stress reduced phosphorus (P), calcium (Ca), magnesium (Mg), sulfur (S), copper (Cu), manganese (Mn), zinc (Zn) and boron (B) contents in roots and restrained potassium (K) and iron (Fe) from being translocated into shoots and leaves. Chromium stress resulted in reduced P, K, Mg, S, Fe, Zn and Mn contents in roots at pH 6.5 and P, K, Ca, Mg, S, Zn and Mn contents at pH 4.0. Translocation of all nutrients from roots to upper parts of plants was inhibited except Ca in pH 6.5 with Cr addition. Lower contents of all nutrients were observed at pH 4.0 as compared to pH 6.5. Combined stress of Cr and Al, on the whole, caused further reduction in mineral content in all plant parts of the two barley genotypes as compared to Al or Cr stress alone. Moreover, the reduction was more pronounced in Al sensitive genotype Shang 70-119. 相似文献
18.
The resistance of most plants to salt can be impaired by concurrent waterlogging. However, few studies have examined this interaction during germination and early seedling growth and its implications for nutrient uptake. The aim of the study was to examine the response of germination, early growth, and nutrient uptake to salt (NaCl) and hypoxia applied to barley (Hordeum vulgare L. cv. Stirling), in solution culture. Hypoxia, induced by covering seeds with water, lowered the germination from 94% to 28% but salinity and hypoxia together lowered it further to 13% at 120 mM NaCl. While the germination was 75% at 250 mM NaCl in aerated solution, it was completely inhibited at this NaCl concentration under hypoxia. Sodium ion (Na+) concentrations in germinated seedlings increased with increasing salinity under both aerated and hypoxic conditions during germination, while K+ and Mg+ concentrations were decreased with increasing salinity in 6 d old seedlings. After 20 d, control seedlings had the same dry weights of the roots and shoots with and without hypoxia but at 10 mM NaCl and higher, shoot and root dry weight was depressed with hypoxia. Sodium ion increased in roots and shoots with increased NaCl under both aerated and hypoxic conditions while K+ was depressed when salinity and hypoxia were applied together and Ca2+ was mostly decreased by NaCl. In general, hypoxia had greater effects on nutrient concentrations than NaCl by decreasing N, P, S, Mg, Mn, Zn, and Fe in shoots and by increasing B concentrations. The threshold salinity levels decreased markedly for germination, uptake of a range of nutrients, and for seedling growth of barley under hypoxic compared to well‐aerated conditions. 相似文献
19.
Dereje Shanka Nigussie Dechassa Setegn Gebeyehu Eyasu Elias 《Communications in Soil Science and Plant Analysis》2018,49(11):1302-1313
Phosphorus (P) deficiency in the soil is one of the major factors limiting common bean production in Ethiopia. A pot experiment was conducted in a glasshouse at Hawassa University in southern Ethiopia to evaluate twelve common bean cultivars for P use efficiency at three phosphorus rates (0, 120, and 240 kg P2O5 ha?1). The results of the study revealed that the interaction effect of cultivar and P rates significantly (P < 0.01) influenced grain yield efficiency index (GYEI), grain yield and yield attributing traits, leaf P concentration, root length, diameter and surface area. Grain yield efficiency index at low and medium phosphorus rates indicated that Red-Wolaita, Dinkinesh, Tabour, Nasir and Haramaya are P-efficient, whereas Chore was found to be P-inefficient. These genotypic variations could be exploited for sustainable production of the crop by fitting suitable varieties to soils with variable P availability. Thus, the P-efficient cultivars indicated above could be recommended for cultivation by smallholder farmers in soil with low P availability that is dominant in the study area. 相似文献
20.
《Communications in Soil Science and Plant Analysis》2012,43(15):1813-1835
Abstract The effects of Ca and K levels on barley (cv. Johnston) yield were studied in soil media containing high levels of Mg. The dry matter yield of barley decreased with increasing concentrations of Mg in soils, but the decrease was small. Dry matter yield was positively related to concentration of K in the soil. However, additions of fertilizer Ca or K did not increase dry matter yield, indicating that depressed yield associated with high Mg levels was not due to reduced availability of Ca or K. In commercial agriculture, applications of either Ca or K to such soils are unlikely to prove beneficial in increasing crop yields. Concentrations of Mg in soil solutions of unfertilized soils were lower than levels which were previously shown to reduce crop yield. Additions of N fertilizer increased Mg concentrations to levels which could reduce barley yield 相似文献