首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aluminum (Al) toxicity is an important factor in limiting crop production. The present study examined the Al alleviation effects on the growth of hybrid (breeding) and clonal (tissue culture) of D × P oil palm seedlings. The experiment was performed using calcium carbonate (CaCO3), and ground magnesium limestone (GML) and magnesium carbonate (MgCO3) as soil-amendments at different rates in Colombia and Malaysia, respectively. The effects of the treatments were evaluated monthly on vegetative variables and visual symptoms. Chlorophyll concentrations were recorded in Malaysia at the fifth month growing stage. The different amendments improved the soil fertility and it was reflected on better performance of shoot and root growth. The chlorophyll content in the frond number 3 for both materials enhanced significantly when Al saturation was low (0–30%). The results from the experiment revealed the importance of neutralization of Al in reducing its toxicity in oil palm.  相似文献   

2.
Exchangeable and soluble soil aluminum (Al) is limiting plant growth in many soils worldwide. This study evaluated the effects of increasing rates of dolomite and magnesium carbonate (MgCO3) on Al3+, pH, dissolved organic carbon, cations, anions, and Al speciation on oil palm Deli dura × AVROS pisifera root growth. Dolomite and MgCO3 additions significantly raised linearly soil solution pH, magnesium (Mg2+), nitrate (NO3 ?) and chlorine (Cl?) concentrations; exponentially decreased the activity of phytotoxic Al species [aluminum (Al3+), aluminum sulfate (Al2SO4), and aluminum fluoride (AlF3)]; and reduced manganese (Mn) concentration and activity. High activity of those species exponentially reduced root dry weight. Optimum oil palm growth was achieved at: <50 μM monomeric Al, < 30 μM Mn, and <0.20 unit of the ratio Al+Mn to calcium (Ca)+Mg. High activity of Al species and Mn in acidic soil solution cause significant reduction of the root growth. Soil acidity alleviation either with dolomite or MgCO3 mitigates the toxic effect of Al and Mn.  相似文献   

3.
Abstract

An experiment was conducted to determine the effects of palm oil mill effluent (POME) application on soil chemical properties. The POME was incorporated into the top 0–30 cm of Batang Merbau soil, an Ultisol. POME was applied at 0, 5, 10, 20, and 40 t ha‐1, both in the presence and absence of 2 t ground magnesian limestone (GML). A succeeding crops of maize and groundnut were planted. The results of the experiment showed that POME application up to the rate of 40 t ha‐1 did not significantly change the topsoil pH and exchangeable calcium (Ca), magnesium (Mg), and aluminum (Al). The addition of POME improved the soil fertility, which resulted in an increase of maize yield. The Ca and Mg from the POME accumulated in the topsoil, being held by the negative charge present on the exchange complex. The beneficial effects of POME and/or GML application lasted for about 3 years. The study indicated that application of POME together with GML is a good agronomic option to alleviate soil acidity in Ultisol for maize production.  相似文献   

4.
The effects of a low-external-input soil fertility enhancement solution – hereafter termed ‘nitrolimigation’ were examined, as a preferred technique of applying nitrogen and calcium in the “Acid Sands” soils of southern Nigeria. Two types of nitrogenous fertilizer sources [urea and liquid pig manure (LPM)] and two types of lime {limestone (CaCO3) and hydrated lime [Ca(OH)2]} were used both in greenhouse and in field experiments at varying levels: Urea [CO (NH2)2] 0, 40, 50, 80, 100, 120, and 150 kg ha?1; lime 0, 0.1, 0.3, 0.5, 1.0, 5.0, and 10.0 metric tonnes per hectare (t ha?1) and LPM 0, 30, 60, 90, and 120 t ha?1. The rates were arranged factorially and laid out in randomized complete block design (RCBD). The results indicated that combining lime at 9 t ha?1 and LPM at 90 t ha?1 in irrigation water had significant (P < 0.01) positive effects on the fertility status of the “Acid Sands” soils and growth of okra- Abelmoschus esculentus, the test crop. When urea was combined with hydrated lime, it reduced acidity and provided nutrient balance in the Acid Sands of Calabar. Total nitrogen was significantly (P < 0.01) boosted from 0.05 to 0.11%, base saturation (BS) from 46 to 62%, and exchange acidity was reduced from 2.93 to 1.35 cmol kg?1. Combining urea (46-0-0) at 80 kg ha?1 with lime (CaCO3) at 5 t ha?1 raised the soil pH from 4.4 to 7.1. Exchange acidity was reduced from 0.8 cmol kg?1 to a negligible value, but electrical conductivity was improved from 170.7 to 291.9 μS cm?1. When LPM and lime were combined, organic carbon was increased from 2.75 to 2.93%, BS was increased from 46.72 to 75.19%, and pH was raised from 6.0 to 6.73. Plant height was increased from 9.5 to 16.9 cm while mean number of leaves was also increased from 5.6 to 6.3 only with lower level of lime (3 t ha?1) and LPM at 90 t ha?1. Of the nitrogen and calcium sources, LPM and limestone were better at 120 t ha?1 and 9 t ha?1, respectively, to offset soil acidity, boost nutrient availability, and provide balanced nutrition to arable crops grown on the “Acid Sands” of southern Nigeria.  相似文献   

5.
A field experiment conducted on rapeseed (Brassica juncea L.) during 2005–2006 in a typical lateritic soil (Alfisol) of West Bengal, India revealed that sources of sulfur viz. gypsum and magnesium sulfate and levels of sulfur (0, 20, 40, 60 kg S ha?1) have significant influence on grain yield, total biological yield, sulfur concentration in grain and stover, total sulfur uptake, oil content and oil yield and chlorophyll content. The maximum grain yield (18.28 q ha?1) and oil yield (8.59 q ha?1) was obtained with magnesium sulfate followed by gypsum yielded the grain yield of 17.99 q ha?1 and oil yield of 8.22 q ha?1 at 40 kg S ha?1. Overall, the best performance was recorded when sulfur was applied at 40 kg S ha?1 either as magnesium sulfate or gypsum. Results revealed that magnesium sulfate may be considered as the better source of sulfur than gypsum to raise the mustard crop in sulfur deficient acidic red and lateritic soils of West Bengal and if farmers apply either magnesium sulfate or gypsum to soils, the possible deficiency of sulfur and magnesium/calcium in soils and plants can be avoided.  相似文献   

6.
Most tropical soils have high acidity and low natural fertility. The appropriate application of lime and cattle manure corrects acidity, improves physical and biological properties, increases soil fertility, and reduces the use of chemical and/or synthetic fertilizers by crops, such as soybean, the main agricultural export product of Brazil. This study aimed to assess the effects of the combination of the application of dolomite limestone (0, 5, and 10 Mg ha?1) and cattle manure (0, 40, and 80 Mg ha?1) on grain yield and the chemical properties of an Oxisol (Red Latosol) cultivated with soybean for two consecutive years. The maximum grain yield was obtained with the application of 10 Mg ha?1 of lime and 80 Mg ha?1 of cattle manure. Liming significantly increased pH index, the concentrations of calcium (Ca2+) and exchangeable magnesium (Mg2+), and cation exchange capacity (CEC) of soil and reduced potential acidity (H+ + Al3+), while the application of cattle manure increased pH level; the concentrations of potassium (K+), Ca2+, and exchangeable Mg2+; and CEC of the soil. During the 2 years of assessment, the greatest grain yields were obtained with saturation of K+, Ca2+, and Mg2+ in CEC at the 4.4, 40.4, and 17.5 levels, respectively. The results indicated that the ratios of soil exchangeable Ca/Mg, Ca/K, K/Mg, and K/(Ca+Mg) can be modified to increase the yield of soybean grains.  相似文献   

7.
Field experiments were conducted at Owo, southwest Nigeria to select organic fertilizer treatments most suitable for sustaining high soil fertility and yam productivity on a nutrient-depleted tropical Alfisol. Eight organic fertilizer treatments were applied at 20 t ha?1 with a reference treatment inorganic fertilizer (NPK 15–15–15) at 400 kg ha?1 and natural soil fertility (control), laid out in a randomized complete block design with three replications. Results showed that organic fertilizers significantly increased (p = 0.05) tuber weight and growth of yam, soil and leaf N, P, K, Ca and Mg, soil pH and organic C concentrations compared with the NSF (control). The oil palm bunch ash + poultry manure treatment increased tuber weight, vine length, number of leaves and leaf area of yam by 66, 25, 21 and 52%, respectively, compared with inorganic fertilizer (NPK) and 37, 22, 19 and 44%, respectively, compared with poultry manure alone. Sole or mixed forms of organic fertilizers showed significant improvement in soil physical conditions compared with IF (NPK) and NSF (control). Synergistic use of oil palm bunch ash + poultry manure at 10 t ha?1 each was most effective for sustainable management of soils and for improving agronomic productivity of yam.  相似文献   

8.
A study was conducted into the alleviation of the infertility of an acid sulphate by using ground basalt with or without ground magnesium limestone (GML) and organic fertilizer. Fresh soils were treated with the amendments and subjected to two cycles of submergence and drying. The soil was dominated by kaolinite, mica and smectite. The untreated soil pH was <3·5 and solution Al was high. GML application at 4 t ha−1 was able to increase pH and subsequently reduced Al toxicity sufficiently to allow for rice growth. After 4 months of submergence, the pH of the sample treated with 4 t ground basalt ha−1 had increased from 3·61 to 3·94, with concomitant decrease of Al. In the same cycle, the soil pH increase was much higher (reaching 5·22). Ground basalt is thus comparable with GML as an acid soil ameliorant. Within the experimental period, the ground basalt had mostly disintegrated and dissolved. The solution pH had further increased (to 5·94) in the second cycle because of dissolution of more ground basalt. This means that it takes time for ground basalt to completely dissolve and consequently supply Ca, Mg, K and P to the growing crop in the field. Applying 0·25 t organic fertilizer ha−1 into the soil had no significant effect on either pH or Al. This form of organic matter (compost) contains essential nutrients. It is recommended that 4 t ground basalt should be applied in combination with 0·25 t organic fertilizer ha−1 a few months ahead of the growing season for maximal benefit. This study showed that ground basalt can be effectively used to ameliorate highly acidic soils. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Abstract

Nitrous oxide (N2O) emissions were measured monthly over 1 year in three ecosystems on tropical peatland of Sarawak, Malaysia, using a closed-chamber technique. The three ecosystems investigated were mixed peat swamp forest, sago (Metroxylon sagu) and oil palm (Elaeis guineensis) plantations. The highest annual N2O emissions were observed in the sago ecosystem with a production rate of 3.3 kg N ha?1 year?1, followed by the oil palm ecosystem at 1.2 kg N ha?1 year?1 and the forest ecosystem at 0.7 kg N ha?1 year?1. The N2O emissions ranged from –3.4 to 19.7 µg N m?2 h?1 for the forest ecosystem, from 1.0 to 176.3 µg N m?2 h?1 for the sago ecosystem and from 0.9 to 58.4 µg N m?2 h?1 for the oil palm ecosystem. Multiple regression analysis showed that N2O production in each ecosystem was regulated by different variables. The key factors influencing N2O emissions in the forest ecosystem were the water table and the NH+ 4 concentration at 25–50 cm, soil temperature at 5 cm and nitrate concentration at 0–25 cm in the sago ecosystem, and water-filled pore space, soil temperature at 5 cm and NH+ 4 concentrations at 0–25 cm in the oil palm ecosystem. R2 values for the above regression equations were 0.57, 0.63 and 0.48 for forest, sago and oil palm, respectively. The results suggest that the conversion of tropical peat swamp forest to agricultural crops, which causes substantial changes to the environment and soil properties, will significantly affect the exchange of N2O between the tropical peatland and the atmosphere. Thus, the estimation of net N2O production from tropical peatland for the global N2O budget should take into consideration ecosystem type.  相似文献   

10.
The effects of ammonium sulphate (NS) on the accumulation of nutrients in above and below ground biomass and soil were studied in a Norway spruce stand in south-west Sweden during 1988–1993. Ammonium sulphate addition resulted in nitrogen accumulation with 326 and 16 kg ha?1 in above and below ground biomass, respectively. Corresponding figures for the control plots (C) were 34 and 3 kg ha?1. Nitrogen accumulation in forest floor of NS was 266 kg ha?1 and 47 kg ha?1 in mineral soil. About 70% of added sulphate by fertiliser was retained in NS plots (482 kg S ha?1) of which 274 kg ha?1 was adsorbed in the mineral soil. The sulphate addition resulted in increased leaching of nitrogen, magnesium, calcium and sulphur. It is suggested that the spruce stand at the study site has a high capacity to accumulate nitrogen with a high above ground production. The high input of ammonium sulphate may in the long run result in increased losses of cations to ground water.  相似文献   

11.
ABSTRACT

The effects of long-term (1959–2005) liming in combination with cattle manure application on the chemical properties and aggregate stability of acid soil were investigated in the whole soil profile to a 100 cm depth. Investigations were performed in a long-term liming and fertilizing field trial at Vezaiciai Branch of Lithuanian Research Centre for Agriculture and Forestry situated in West Lithuania. The soil of the study site is Bathygleyic Distric Glossic Retisol (WRB 2014) with a texture of moraine loam. Acid soil had been periodically limed and manured at different intensity for 47 years. The experiment involved the following treatments: (1) unlimed and unfertilized (control); (2) unlimed and 60 t ha?1 manure; (3) limed and unfertilized; and (4) limed and 60 t ha?1 manure. During the 47-year period, liming was performed using pulverized limestone at a rate 1.0 (by hydrolytic soil acidity) every 7 years. During the whole study period, the soil received 38.7–36.5 t ha?1 CaCO3; 840 t ha?1 cattle manure, 2740 kg ha?1 mineral nitrogen; 3030 kg ha?1 phosphorus and 3810?kg?ha?1 potassium. The data showed that long-term (47 years) periodic liming of different intensities in combination with cattle manure application significantly changed the chemical properties of the whole soil profile. The soil acidification was neutralized in the topsoil and subsoil to the 60?cm depth when the soil had been systematically limed with 1.0 rate every 7 years in combination with 60?t?ha?1 manure application every 3–4 years. Periodic long-term liming in combination with manuring had a positive effect on the improvement of chemical properties of acid soil profile in the ElB1 and ElB2 horizons. The data of the soil structure in the topsoil and subsoil showed that such liming practice together with manuring had a positive effect on soil aggregate stability.  相似文献   

12.
ABSTRACT

Limestone mining industries produce large quantities of by-products that can generate environmental impacts if disposed inappropriately. This study aimed to evaluate the agronomic viability of limestone tailings as soil aciditys and the availability of Ca + Mg in an Oxisol. The experiment was carried out under a randomized complete design, in a 6 × 5 factorial scheme, with four replications. Six sources of limestone [Blended Limestone 1 (BL1), Unblended Limestone 1 (UL1), Blended Limestone 2 (BL2), Unblended Limestone 2 (UL2), Commercial Limestone (CC) and Pure Limestone (PL)] were studied at five application doses (0.0, 0.5, 1.0, 2.0 and 4.0 t ha?1). During the incubation time of the soil, it was determined the active (pH) and potential acidity (H + Al), as well as the contents of Ca + Mg. It is concluded that the maximum efficiency dose for the limestone sources BL1, UL1, BL2 and UL2 was 4.0 t ha?1, with responses higher than or equal to commercial limestone. Thus, these sources (BL1, UL1, BL2 and UL2) can be used as soil acidity correctors, since they have adequate reactivity and neutralization power, contributing positively and promisingly in the correction of both active and potential acidity, in addition to increasing the availability of Ca and Mg.  相似文献   

13.
Soil acidity is one of the most important factors limiting crop production. The objective of this work was to evaluate the effects of limestone application on the soil chemical properties, nutrition and yield of mango plants in an orchard under implementation. The design was randomized blocks, with five limestone doses (0; 2; 4; 6 and 8 t ha?1) and four replications. Soil chemical analyses were performed (at 12, 24, 36 and 48 months after the experiment implementation) in the layers 0–20; 20–40 and 40–60 cm deep. Nutrition status and yield were assessed during the first and second crop seasons. The highest fruit yield was associated with the application of 3.9 and 3.8 t ha?1 of limestone in the 2008/09 and 2009/10 seasons, respectively, that is, the dose recommended by the literature for raising base saturation to 80%, as a function of the fertility conditions of the soil initially obtained.  相似文献   

14.
Converting oil palm empty fruit bunches into biochar is an alternative waste management method and has strong potential to improve N fertiliser use efficiency in agriculture. The aim of this study was to determine the effectiveness of oil palm empty fruit bunch biochar (EFBB) in improving recovery of 15N-labelled nitrogen fertiliser by maize (Zea mays L.) and leaching of mineral N and K. An experiment was conducted in a mini-lysimeter system with randomised complete block design layout and six replications under controlled environment in a rain shelter. Each mini-lysimeter was filled with 20 kg of sandy loam soil before adding EFBB (0, 5, 10 and 20 Mg ha?1). The N source used was (15NH4)2SO4 at 80 kg N ha?1 (2 at% 15N excess). Maize was irrigated to induce leaching every 4 days. Maize plant and soils were sampled 58 days after sowing (tasselling stage). Application of EFBB significantly reduced cumulative leachate volume and mineral N leaching. Soils applied with EFBB significantly improved 15N fertiliser recovery in maize and dry matter weight. This study shows that EFBB has the potential to be applied on highly weathered acidic soil as an amendment to improve fertiliser efficiency and crop growth.  相似文献   

15.
Abstract: High soil acidity influences the availability of mineral nutrients and increases that of toxic aluminium (Al), which has a jeopardizing effect on plant growth. The objective of this research was to evaluate the effects of soil liming on the development of guava (Psidium guajava L.) plants, on soil chemical characteristics, and on fruit yield. The experiment was carried out at the Bebedouro Citrus Experimental Station, state of São Paulo, Brazil, in a Typic Hapludox soil, from August 1999 to March 2003. The treatments consisted of limestone dose: D0 = zero; D1 = half dose; D2 = total dose; D3 = 1.5 times the dose, and D4 = 2 times the dose to raise the V value to 70%. The doses corresponded to zero, 1.85, 3.71, 5.56, and 7.41 t ha?1 applied to the upper soil layer (0–30 cm deep) before planting. The results showed that liming caused an improvement in the evaluated soil chemical characteristics up to a depth of 60 cm in soil samples both in the line and between lines. The highest fruit yields were obtained when the base saturation reached a value of 55% in the line and 62% between the lines. Foliar levels of calcium (Ca) and magnesium (Mg) were 8.8 and 2.5 g kg?1, respectively. The highest limestone dose maintained the soil base saturation (at the layer of 0–20 cm) in the line close to 55% during at least 40 months after the incorporation of limestone.  相似文献   

16.
Soybean is an important crop for the Brazilian economy, and soil acidity is one of the main yield-limiting factors in Brazilian Oxisols. A field experiment was conducted during three consecutive years with the objective to determine soybean response to liming grown on Oxisols. Liming rates used were 0, 3, 6, 12, and 18 Mg ha?1. Liming significantly increased grain yield in a quadratic trend. Ninety percent maximum economic grain yield (2900 kg ha?1) was achieved with the application of about 6 Mg lime ha?1. Shoot dry weight, number of pods per plant, and 100-grain weight were also increased significantly in a quadratic fashion with increasing liming rate from 0 to 18 Mg ha?1. These growth and yield components had a significant positive association with grain yield. Maximum contribution in increasing grain yield was of number of pods per plant followed by grain harvest index and shoot dry weight. Uptake of nitrogen (N) was greatest and phosphorus (P) was least among macronutrients in soybean plant. Nutrient-use efficiency (kg grain per kg nutrient accumulation in grain) was maximum for magnesium (Mg) and lowest for N among macronutrients. Application of 3 Mg lime ha?1 neutralized all aluminum ions in soil solution. Optimal acidity indices for 90% of maximum yield were pH 6.0, calcium (Ca) 1.6 cmolc kg?1, Mg 0.9 cmolc kg?1, base saturation 51%, cation exchange capacity (CEC) 4.8 cmolc kg?1, Ca/Mg ratio 1.9, Ca?/?potassium (K) ratio 5.6, and Mg/K ratio 3.0.  相似文献   

17.
Abstract. After six years of bush‐fallow, residual effects on soil productivity of tillage practices prior to the fallow were investigated on an Alfisol in south western Nigeria. In 1996 fallow was followed by maize intercropped with cover crops of Pueraria phaseoloides, Mucuna pruriens or cowpea (Vigna unguiculata) and no intercrop. Parameters measured included soil properties, ground cover, crop growth and yield, rainfall erosivity, runoff and soil loss. In spite of six‐years of bush‐fallow and establishment of cover crops, soil erosion was significantly greater on plots that had been conventionally cultivated previously using disc ploughs, harrows and mechanical rotovators (1.78 t ha?1season?1) compared to previously no‐till plots (1.34 t ha?1season?1). Crop growth and yields were least and soil loss greatest (2.83 t ha?1season?1) on the previous bare plot. Maize grain yield was highest using Pueraria phaseoloides as an intercrop (2.15 t ha?1) followed by a cowpea intercrop (1.92 t ha?1), maize without intercrop (1.87 t ha?1) and Mucuna pruriens intercrop (1.71 t ha?1). The maize grain yields reflected levels of competition from the cover crops. Cowpea–maize intercrop may be most suitable for farmers because maize yields were satisfactory and cowpea grain serves as additional subsistence. Cowpea yields were 390 kg ha?1. Soil erosion was also moderate using cowpea as an intercrop (1.71 t ha?1season?1). However, Pueraria phaseoloides gave the best erosion control with a soil loss of 1.34 t ha?1season?1.  相似文献   

18.
The role of mounds of the fungus-growing termite Macrotermes bellicosus (Smeathman) in nutrient recycling in a highly weathered and nutrient-depleted tropical red earth (Ultisol) of the Nigerian savanna was examined by measuring stored amounts of selected nutrients and estimating their rates of turnover via the mounds. A study plot (4?ha) with a representative termite population density (1.5?mounds?ha?1) and size (3.7?±?0.4?m in height, 2.4?±?0.2?m in basal diameter) of M. bellicosus mounds was selected. The mounds were found to contain soil mass of 9249?±?2371?kg?ha?1, composed of 7502?±?1934?kg?ha?1 of mound wall and 1747?±?440?kg?ha?1 of nest body. Significant nutrient enrichment, compared to the neighboring topmost soil (Ap1 horizon: 0–16?cm), was observed in the nest body for total nitrogen (N) and exchangeable calcium (Ca), magnesium (Mg) and potassium (K), and in the mound wall for exchangeable K only. In contrast, available (Bray-1) phosphorus (P) content was found to be lower in both the mound wall and the nest body than in the adjacent topmost soil horizon. Consequently, the mounds formed by M. bellicosus contained 1.71?±?0.62?kg?ha?1 of total N, 0.004?±?0.003?kg?ha?1 of available P, 3.23?±?0.81?kg?ha?1 of exchangeable Ca, 1.11?±?0.22?kg?ha?1 of exchangeable Mg and 0.79?±?0.21?kg?ha?1 of exchangeable K. However, with the exception of exchangeable K (1.2%), these nutrients amounted to less than 0.5% of those found in the topmost soil horizon. The soil nutrient turnover rate via M. bellicosus mounds was indeed limited, being estimated at 1.72?kg?ha?1 for organic carbon (C), 0.15?kg?ha?1 for total N, 0.0004?kg?ha?1 for available P, 0.15?kg?ha?1 for exchangeable Ca, 0.05?kg?ha?1 for exchangeable Mg, and 0.06?kg?ha?1 for exchangeable K per annum. These findings suggest that the mounds of M. bellicosus, while being enriched with some nutrients to create hot spots of soil nutrients in the vicinity of the mounds, are not a significant reservoir of soil nutrients and are therefore of minor importance for nutrient cycling at the ecosystem scale in the tropical savanna.  相似文献   

19.
ABSTRACT

A field study was conducted with the objective of determining response of dry bean (Phaseolus vulgaris L.) to liming and copper (Cu) fertilization applied to an Oxisol. The lime rates used were 0, 12, and 24 Mg ha?1 and Cu rates were 0, 2.5, 5, 10, 20, and 40 kg Cu ha?1. Liming significantly increased common bean grain yield. Liming also significantly influenced soil chemical properties in the top (0–10 cm) as well as in the sub (10–20 cm) soil layer in favor of higher bean yield. Application of Cu did not influence yield of bean significantly. Average soil chemical properties across two soil layers (0–10 and 10–20 cm) for maximum bean yield were pH 6.4, calcium (Ca), 4.2 cmolc kg?1, magnesium (Mg) 1.0 cmolc kg?1, H+Al 3.2 cmolc kg?1, acidity saturation 40.4%, cation exchange capacity (CEC) 8.9 cmolc kg?1, base saturation 63.1%, Ca saturation 45.7%, Mg saturation 18.0%, and Potassium (K) saturation 2.9.  相似文献   

20.
Afforestation of grasslands can increase C sequestration and provide additional economic and environmental benefits. Pine plantations, however, have often been found to deplete soil organic C and trigger detrimental effects on soils. We examined soil characteristics under a 45-year-old Pinus radiata stand and under adjacent grassland on maritime dunes in temperate Argentina. Soil under the pine plantation had greater soil organic C (+93%), total N (+55%) and available P (+100%) concentrations than under grassland. Carbon was stored under the pinestand at an estimated mean accretion rate of 0.64 Mg ha?1 y?1. At 0- to 25-cm depth, soil C amounted to 61 Mg ha?1 under pine and 27 Mg ha?1 under grassland. Soil C accumulated more on dune slopes (35 Mg ha?1 y?1) than on ridges(29 Mg ha?1 y?1) and bottoms (12 Mg ha?1 y?1). Compared with the grassland, soil acidity, cation-exchange capacity, base losses (K > Ca = Mg) and C/N ratio increased under pine. Spatial heterogeneity in soil characteristics was greater under pine than under grassland. Such variability was non-systematic and did not support the ‘single-tree influence circle’ concept. Afforestation increased C in soil, forest floor and tree biomass in dunes with ustic climate regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号