首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Genetic parameters for feed efficiency traits of 740 Wagyu bulls and growth and carcass traits of 591 of their progeny, and the genetic relationship between the traits of bulls and their progeny were estimated with the residual maximum likelihood procedure. The estimations were made for the test periods of 140 days (77 bulls), 112 days (663 bulls) and 364 days (591 steer progeny). Feed efficiency traits of bulls included feed conversion ratio (FCR), phenotypic residual feed intake (RFIphe) and genetic residual feed intake (RFIgen). Progeny traits were bodyweight at the start of the test (BWS), bodyweight at finish (BWF), average daily gain (ADG), rib eye area (REA), marbling score (MSR), dressing percentage (DRS) and subcutaneous fat thickness (SFT). The estimated heritability for MSR (0.52) was high and for BWS (0.35), BWF (0.40) and ADG (0.30) were moderate, whereas REA, DRS and SFT were low. Positive genetic correlations among BWS, BWF, ADG and SFT and negative genetic correlations between MSR and DRS and between REA and SFT were found. The genetic correlations between residual feed intake (RFIphe and RFIgen) of bulls and bodyweights (BWS and BWF) of their progeny ranged from ?0.27 to ?0.61. Residual feed intake was positively correlated with REA and DRS and negatively correlated with MSR and SFT. No responses in ADG and weakly correlated responses in REA and DRS of progeny were found to select against feed efficiency traits of bulls. The present experiment provides evidence that selection against lower RFI (higher feed efficiency) would be better than selection against lower FCR for getting better correlated responses in bodyweights.  相似文献   

2.
Performance test results of 3250 sire candidates were used to estimate the genetic parameters of growth and feed utilization traits in Japanese Black cattle. Growth traits analyzed were six body measurements at the end of the performance test and daily gain (DG) during the test. Feed utilization traits were intakes and conversions of concentrate, roughage, digestible crude protein and total digestible nutrient (TDN). Genetic (co)variance components were estimated by the restricted maximum likelihood procedure using an expectation maximization algorithm under the two‐trait animal model. Heritabilities for growth traits ranged from 0.40 to 0.70 and for feed utilization traits from 0.21 to 0.74. Genetic correlations of DG were positive with feed intake (0.15–0.77) and negative with feed conversions (?0.63 to ?0.30). These relationships indicate that the selection based on DG improves feed efficiency but it simultaneously increases feed intake. Feed conversions showed genetic correlations ranging from ?0.09 to 0.03 with total available energy consumption, TDN intake. Thus the results suggested that feed conversions were not efficient selection criteria to decrease TDN intake and to improve comprehensive feed utilization ability.  相似文献   

3.
Genetic parameters for carcass traits of 1774 field progeny (1281 steers and 493 heifers), and their genetic relationships with feed efficiency traits of their sire population (740 bulls) were estimated with REML. Feed efficiency traits included feed conversion ratio (FCR) and residual feed intake (RFI). RFI was calculated by the residual of phenotypic (RFIphe) and genetic (RFIgen) regression from the multivariate analysis of feed intake on metabolic weight and daily gain. Progeny traits were carcass weight (CWT), rib eye area (REA), rib thickness (RBT), subcutaneous fat, yield estimate (YEM), marbling score (MSR), meat quality grade, meat color, fat color, meat firmness and meat texture. The estimated heritability for CWT (0.70) was high and heritabilities for all the other traits were moderate (ranged from 0.32 to 0.47), except for meat and fat color and meat texture which were low (ranged from 0.02 to 0.25). The high genetic correlation (0.62) between YEM and MSR suggests that simultaneous improvement of high carcass yield and beef marbling is possible. Estimated genetic correlations of RFI (RFIphe and RFIgen) of sires with CWT (− 0.60 and − 0.53) and MSR (− 0.62 and − 0.50) of their progeny were favorably negative indicating that the selection against RFI of sires may have contributed to produce heavier carcass and increase in beef marbling. The correlated responses in CWT, REA and RBT of progeny were higher to selection against RFI than those to selection against FCR of sires. This study provides evidence that selection against RFI is preferred over selection against FCR in sire population for getting better correlated responses in carcass traits of their progeny.  相似文献   

4.
Records on 514 bulls from the sire population born from 1978 to 2004, and on 22,099 of their field progeny born from 1997 to 2003 with available pedigree information (total number = 124,458) were used to estimate genetic parameters for feed intake and energy efficiency traits of bulls and their relationships with carcass traits of field progeny. Feed intake and energetic efficiency traits were daily feed intake, TDN intake, feed conversion ratio (FCR), TDN conversion ratio (TDNCR), residual feed intake (RFI), partial efficiency of growth, relative growth rate, and Kleiber ratio. Progeny carcass traits were carcass weight (CWT), yield estimate, ribeye area, rib thickness, subcutaneous fat thickness (SFT), marbling score (MSR), meat color standard (MCS), fat color standard (FCS), and meat quality grade. All measures of feed intake and energetic efficiency were moderately heritable (ranged from 0.24 to 0.49), except for partial efficiency of growth and relative growth rate, which were high (0.58) and low (0.14), respectively. The phenotypic and genetic correlations between FCR and TDNCR were >or=0.93. Selection for Kleiber ratio will improve all of the energetic efficiency traits with no effect on feed intake measures (daily feed intake and TDN intake). The genetic correlations of FCR, TDNCR, and RFI of bulls with most of the carcass traits of their field progeny were favorable (ranged from -0.24 to -0.72), except with fat color standard (no correlation), MCS, and SFT. Positive (unfavorable) genetic correlations of MCS with FCR, TDNCR, and RFI (0.79, 0.70, and 0.51, respectively) were found. The SFT was negatively genetically correlated with FCR and TDNCR (-0.32 and -0.20, respectively); however, the genetic correlation between RFI and SFT was not significantly different from zero (r(g) = -0.08 +/- 0.12). Favorable correlated responses in CWT, yield estimate, ribeye area, rib thickness, MSR, and meat quality grade would be predicted for selection against any measure of energetic efficiency. The correlated responses in CWT and MSR of progeny were greater for selection against RFI than for selection against any other energetic efficiency trait. Results of this study indicate that RFI should be preferred over other measures of energetic efficiency to include in selection programs.  相似文献   

5.
Interest in selection for improved feed efficiency is increasing, but before any steps are taken toward selecting for feed efficiency, correlations with other economically important traits must first be quantified. The objective of this study was to quantify the genetic associations between feed efficiency measured during performance testing and linear type traits, BW, live animal value, and carcass traits recorded in commercial herds. Feed efficiency data were available on 2,605 bulls from 1 performance test station. There were between 10,384 and 93,442 performance records on type traits, BW, animal value, or carcass traits from 17,225 commercial herds. (Co)variance components were estimated using linear mixed animal models. Genetic correlations between the muscular type traits in commercial animals and feed conversion ratio (-0.33 to -0.25), residual feed intake (RFI; -0.33 to -0.22), and residual BW gain (RG; 0.24 to 0.27) suggest that selection for improved feed efficiency should increase muscling. This is further evidenced by the genetic correlations between carcass conformation of commercial animals and feed conversion ratio (-0.46), RFI (-0.37), and residual BW gain (0.35) measured in performance-tested animals. Furthermore, the genetic correlations between RFI and both ultrasonic fat depth and carcass fat score (0.39 and 0.33, respectively) indicated that selection for improved RFI will result in leaner animals. It can be concluded from the genetic correlations estimated in this study that selection for feed efficiency will have no unfavorable effects on the performance traits measured in this study and will actually lead to an improvement in performance for some traits, such as muscularity, animal price, and carcass conformation. Conversely, this suggests that genetic selection for traits such as carcass quality, muscling traits, and animal value might also be indirectly selecting for more efficient animals.  相似文献   

6.
Feed intake and efficiency of growth are economically important traits of beef cattle. This study determined the relationships of daily DMI, feed:gain ratio [F:G, which is the reciprocal of the efficiency of gain (G:F) and therefore increases as the efficiency of gain decreases and vice versa, residual feed intake (RFI), and partial efficiency of growth (efficiency of ADG, PEG) with growth and carcass merit of beef cattle. Residual feed intake was calculated from phenotypic regression (RFIp) or genetic regression (RFIg) of ADG and metabolic BW on DMI. An F1 half-sib pedigree file containing 28 sires, 321 dams, and 464 progeny produced from crosses between Alberta Hybrid cows and Angus, Charolais, or Alberta Hybrid bulls was used. Families averaged 20 progeny per sire (range = 3 to 56). Performance, ultrasound, and DMI data was available on all progeny, of which 381 had carcass data. Phenotypic and genetic parameters were obtained using SAS and ASREML software, respectively. Differences in RFIp and RFIg, respectively, between the most and least efficient steers (i.e., steers with the lowest PEG) were 5.59 and 6.84 kg of DM/d. Heritabilities for DMI, F:G, PEG, RFIp, and RFIg were 0.54 +/- 0.15, 0.41 +/- 0.15, 0.56 +/- 0.16, 0.21 +/- 0.12, and 0.42 +/- 0.15, respectively. The genetic (r = 0.92) and phenotypic (r = 0.97) correlations between RFIp and RFIg indicated that the 2 indices are very similar. Both indices of RFI were favorably correlated phenotypically (P < 0.001) and genetically with DMI, F:G, and PEG. Residual feed intake was tendentiously genetically correlated with ADG (r = 0.46 +/- 0.45) and metabolic BW (r = 0.27 +/- 0.33), albeit with high SE. Genetically, RFIg was independent of ADG and BW but showed a phenotypic correlation with ADG (r = -0.21; P < 0.05). Daily DMI was correlated genetically (r = 0.28) and phenotypically (r = 0.30) with F:G. Both DMI and F:G were strongly correlated with ADG (r > 0.50), but only DMI had strong genetic (r = 0.87 +/- 0.10) and phenotypic (r = 0.65) correlations with metabolic BW. Generally, the phenotypic and genetic correlations of RFI with carcass merit were not different from zero, except genetic correlations of RFI with ultrasound and carcass LM area and carcass lean yield and phenotypic correlations of RFI with backfat thickness (P < 0.01). Daily DMI had moderate to high phenotypic (P < 0.01) and genetic correlations with all the ultrasound and carcass traits. Depending on how RFI technology is applied, adjustment for body composition in addition to growth may be required to minimize the potential for correlated responses to selection in cattle.  相似文献   

7.
The objectives were to conduct a genetic evaluation of residual feed intake (RFI) and residual feed intake adjusted for fat (RFIFat) and to analyse the effect of selection for these traits on growth, carcass and reproductive traits. Data from 945 Nellore bulls in seven feed efficiency tests in a feedlot were analysed. Genetic evaluation was performed using an animal model in which the feed efficiency test and age of the animal at the beginning of the test were considered as a systematic effect. Direct additive genetic and residual effects were considered as random effects. Correlations and genetic gains were estimated by two‐trait analysis between feed efficiency measures (RFI and RFIFat) and other traits. Feed conversion showed low heritability (0.06), but dry matter intake (DMI), average daily gain, RFI, RFIFat, metabolic body weight and scrotal circumference measured at 450 days of age (SC450) showed moderate to high heritability (0.49, 0.28, 0.33, 0.36, 0.38 and 0.80, respectively). Similarly, ribeye area, backfat thickness, rump cap fat thickness, marbling score and subcutaneous fat thickness also had high heritability values (0.46, 0.37, 0.57, 0.51 and 0.47, respectively). Genetic correlations between RFI and SC450 were null, and between RFIFat and SC450 were strongly positive. Genetic and phenotypic correlations of RFI and RFIFat with carcass traits were not different from zero, as correlated responses for carcass traits were also not different from zero. The Nellore selection for feed efficiency by RFI or RFIFat allows the recognition of feed efficient animals, with DMI reduction and without significant changes in growth and carcass traits. However, because of the observed results between RFIFat and SC450, selection of animals should be analysed with caution and a preselection for reproductive traits is necessary to avoid reproductive impairments in the herd.  相似文献   

8.
番鸭生长性状遗传参数的估测   总被引:4,自引:1,他引:3  
对白羽番鸭RF系各阶段的生长性状进行表型分析和遗传参数估计。结果:各阶段的体重遗传力较高,日增重的遗传力中等,而0-70日龄料肉比和0-84日龄料肉比遗传力偏低。同时还表明,各阶段体重之间和日增重之间存在较强的正遗传相关,而各阶段日增重与料肉比之间存在不同程度的负遗传相关。生长性状遗传相关的变化范围在-0.824-0.912。  相似文献   

9.
Direct and maternal genetic parameters for measures of feed consumption and feed efficiency were estimated using data recorded on 514 performance tested young male Japanese Black cattle during the period from 1978–2004. Measures of feed consumption were daily feed intake, concentrate intake, ratio of roughage intake to feed intake, total digestible nutrient intake, digestible crude protein intake (DCPI) and metabolizable energy intake. Feed efficiency traits included feed conversion ratio (FCR), total digestible nutrient conversion ratio (TCR), digestible crude protein conversion ratio (DCR) and residual feed intake. Data were analyzed using three alternative animal models (including direct and direct plus maternal genetic effects (including or excluding covariance between direct and maternal genetic effects)). The direct heritability estimates for all the measures of feed consumption and feed efficiency were moderate to high, suggesting that sufficient genetic variation exists in these traits which should respond to selection. All the measures of feed consumption were genetically more strongly correlated with residual feed intake than with other measures of feed efficiency. Maternal heritability estimates for DCPI, FCR and TCR were not significantly different from zero, while the corresponding estimates for all the studied traits were low (ranged from 0.07 to 0.24). The estimates of direct heritability for measures of feed consumption were reduced up to 34% when maternal genetic effect was considered in the model. An antagonistic relationship existed between direct and maternal genetic effect (ram) for FCR and DCR, which biased the estimates of direct heritability downwards. The results indicate that maternal effects play an important role in measures of feed consumption and most of the feed efficiency traits, which should be accounted for these traits in genetic evaluation system.  相似文献   

10.
Genetic parameters of average daily gain (ADG), metabolic body weight (MWT), body weight at finish (BWF), daily feed intake (DFI), feed conversion ratio (FCR), and residual feed intake (RFI) were estimated in 740 Japanese Black bulls. RFI was calculated as the difference between actual and expected feed intake predicted by the residual of multiple regression (RFIphe) and genetic regression (RFIgen) from the multivariate analysis for DFI, MWT, and ADG. The estimations were made for the test periods of 140 days (77 bulls) and 112 days (663 bulls). The mean for RFIphe was close to zero and RFIgen was negative. Most of the traits studied were moderately heritable (ranging from 0.24 to 0.49), except for ADG and FCR (0.20 and 0.15, respectively). The genetic correlations among growth traits (ADG, MWT and BWF) and between DFI and growth traits were high, while the phenotypic correlations between them were moderate to high. The genetic and phenotypic correlations between RFIphe and RFIgen were > 0.95 implying that they are regarded as the same trait and the genetic correlations of RFI (RFIphe and RFIgen) with FCR and DFI were favorably high. RFIphe was phenotypically independent of its component traits, MWT (rp = − 0.01) and ADG (rp = 0.01). RFIgen was genetically independent of MWT (rg = − 0.07), while there was a weak genetic relationship (rg = 0.18) between RFIgen and ADG. These results provide evidence that RFIgen should be included for genetic improvement of feed efficiency in Japanese Black breeding program.  相似文献   

11.
Literature on the genetic variation in Voluntary Feed Intake (VFI) and traits related to VFI under ad lib. and restricted feeding has been reviewed. Also differences between breeds and selection lines are reviewed and discussed.Heritability estimates of VFI show average values of 0.12–0.59, with larger variation on real ad lib. feeding compared to “to appetite” feeding twice a day. It is also concluded that the genetic correlation between feed intake and gain is higher under ad lib. feeding than under restricted feeding, and that genetic correlation between daily gain and feed/gain decreases from about ?0.9 under restricted feeding to about ?0.6 under ad lib. feeding.Results from a Norwegian selection experiment indicate that there is no correlated response in daily feed intake (feeding “to appetite”) when selecting on backfat and daily gain, while other selection experiments, where feed conversion ratio has been the major component of the selection index, show reduced appetite.The present paper discusses the danger of reduced appetite in selection programmes that maximize short-term economic gain, and the importance of selection objectives and feeding regime on the genetic correlations between VFI and other production traits. A comparison is also made between population parameters of Norwegian and Danish Landrace pigs.  相似文献   

12.
Most studies on feed efficiency in beef cattle have focused on performance in young animals despite the contribution of the cow herd to overall profitability of beef production systems. The objective of this study was to quantify, using a large data set, the genetic covariances between feed efficiency in growing animals measured in a performance-test station, and beef cow performance including fertility, survival, calving traits, BW, maternal weaning weight, cow price, and cull cow carcass characteristics in commercial herds. Feed efficiency data were available on 2,605 purebred bulls from 1 test station. Records on cow performance were available on up to 94,936 crossbred beef cows. Genetic covariances were estimated using animal and animal-dam linear mixed models. Results showed that selection for feed efficiency, defined as feed conversion ratio (FCR) or residual BW gain (RG), improved maternal weaning weight as evidenced by the respective genetic correlations of -0.61 and 0.57. Despite residual feed intake (RFI) being phenotypically independent of BW, a negative genetic correlation existed between RFI and cow BW (-0.23; although the SE of 0.31 was large). None of the feed efficiency traits were correlated with fertility, calving difficulty, or perinatal mortality. However, genetic correlations estimated between age at first calving and FCR (-0.55 ± 0.14), Kleiber ratio (0.33 ± 0.15), RFI (-0.29 ± 0.14), residual BW gain (0.36 ± 0.15), and relative growth rate (0.37 ± 0.15) all suggest that selection for improved efficiency may delay the age at first calving, and we speculate, using information from other studies, that this may be due to a delay in the onset of puberty. Results from this study, based on the estimated genetic correlations, suggest that selection for improved feed efficiency will have no deleterious effect on cow performance traits with the exception of delaying the age at first calving.  相似文献   

13.
提高猪饲料效率的测定与选择   总被引:1,自引:0,他引:1  
为提高猪饲料效率的选择,本试验测定一些与猪饲料效率相关的生产性状并进行遗传评估。方法:测定60头军牧1号白猪后备公猪的采食量、体增重、背膘厚等生产性状,用猪剩余采食量(RFI)和饲料转化率(FCR)作为评价饲料效率的两个指标,并对其遗传参数进行评估。结果:测定期内军牧1号公猪群体FCR均值为2.61,RFI的标准差为77.52。RFI与FCR的遗传力分别是0.35、0.33,RFI与ADFI(日采食量)、ADG(日增重)、BF(背膘厚)的遗传相关分别是0.89、0.12、-0.05,FCR与ADFI、ADG、BF的遗传相关分别是0.55、-0.65、-0.11。结论:军牧1号白猪品种内饲料效率存在较大的遗传差异,由于RFI与ADG遗传相关很低,因此用RFI作为选择性状可有效提高猪的饲料效率。  相似文献   

14.
Genetic parameters for feed efficiency traits of 380 boars and growth and carcass traits of 1642 pigs (380 boars, 868 gilts and 394 barrows) in seven generations of Duroc population were estimated. Feed efficiency traits included the feed conversion ratio (FCR), and nutritional (RFI(nut)), phenotypic (RFI(phe)) and genetic (RFI(gen)) residual feed intake. Growth and carcass traits were the age to reach 105-kg body weight (A105), loin eye muscle area (EMA), backfat (BF), intra-muscular fat (IMF) and meat tenderness. The mean values for RFI(phe) and RFI(gen) were close to zero and for RFI(nut) was negative. All the measures of feed efficiency were moderately heritable (h(2) = 0.31, 0.38, 0.40 and 0.27 for RFI(nut), RFI(phe), RFI(gen) and FCR respectively). The heritabilities for all growth and carcass traits were moderate (ranged from 0.37 to 0.45), except for BF, which was high (0.72). The genetic correlations of RFI(phe) and RFI(gen) with A105 were positive and high. Measures of RFI were correlated negatively with EMA. BF was more strongly correlated with measures of RFI (r(g) > or = 0.73) than with FCR (r(g) = 0.52). Selection for daily gain, EMA, BF and IMF caused favourable genetic changes in feed efficiency traits. Results of this study indicate that selection against either RFI(phe) or RFI(gen) would give a similar correlated response in carcass traits.  相似文献   

15.
Our objective was to estimate genetic parameters for feed intake, feeding behavior, and ADG in composite ram lambs ((1/2) Columbia, (1/4) Hampshire, (1/4) Suffolk). Data were collected from 1986 to 1997 on 1,239 ram lambs from approximately 11 to 17 wk of age at the U.S. Meat Animal Research Center near Clay Center, NE. Feeding equipment consisted of an elevated pen with an entrance chute that permitted access to the feeder by only one ram lamb at a time, with disappearance of feed measured by an electronic weighing system. Ram lambs were grouped 11 per pen from 1986 to 1989, and nine per pen from 1990 to 1997. Data were edited to exclude invalid feeding events, and approximately 80% of the data remained after edits were applied. Traits analyzed were daily feed intake (DFI), event feed intake (EFI), residual feed intake (RFI), daily feeding time (DFT), event feeding time (EFT), number of daily feeding events (DFE), and ADG. Feed intake traits of DFI and EFI had estimated heritabilities of 0.25 and 0.33, respectively, whereas estimated heritability of RFI was 0.11. Heritability estimates for feeding behavior traits, including DFT, EFT, and DFE, ranged from 0.29 to 0.36. Average daily gain had an estimated heritability of 0.26. Genetic correlations were positive between all pairs of traits, except for RFI and ADG, and that estimate was essentially zero. Phenotypic correlations were generally similar to genetic correlations. Genetic correlations were large (0.80) between DFI and ADG, intermediate between DFI and RFI (0.61) and between DFT and DFE (0.55), and low (0.17 to 0.31) for the other pairs of traits, with the exception of RFI and ADG (-0.03). Genetic correlations between behavioral traits were greater than correlations between behavioral traits and measures of feed intake or ADG; however, selection for ADG and/or feed intake would be expected to cause some changes in feeding behavior.  相似文献   

16.
Genetic parameters for the efficiency of gain traits on 380 boars and the genetic relationships with component traits were estimated in 1,642 pigs (380 boars, 868 gilts, and 394 barrows) in 7 generations of a Duroc population. The efficiency of gain traits included the feed conversion ratio (FCR) and residual feed intake (RFI) and their component traits, ADG, metabolic BW (MWT), and daily feed intake (FI). The RFI was calculated as the difference between the actual and expected FI. The expected FI was predicted by the nutritional requirement and by the residual of phenotypic (RFI(phe)) and genetic (RFI(gen)) regressions from the multivariate analysis for FI on MWT and ADG. The means for RFI(phe) and RFI(gen) were close to zero, and the mean for nutritional RFI was negative (-0.11 kg/d). The traits studied were moderately heritable (ranging from 0.27 to 0.53). The genetic and phenotypic correlations between ADG and FI were moderate to high, whereas the genetic correlation between MWT and FI was moderate, and the phenotypic correlation between them was low. The corresponding correlations between RFI(phe) and RFI(gen) were > 0.95, implying that they can be regarded as the same trait. The genetic and phenotypic correlations of FCR with measures of RFI were high but lower than unity. The RFI(phe) was phenotypically independent of its component traits, MWT (r(p) = 0.01) and ADG (r(p) = 0.03). The RFI(gen) was genetically independent of MWT (r(g) = -0.04), whereas there was a weak genetic relationship (r(g) = 0.15) between RFI(gen) and ADG. Residual FI was more heritable than FCR, and the genetic and phenotypic correlations of RFI(phe) and RFI(gen) with FI were positive and stronger than that of FCR with FI. These results provide evidence that RFI(phe) or RFI(gen) should be included in breeding programs for Duroc pigs to make genetic improvement in the efficiency of gain.  相似文献   

17.
Correlated responses to selection for yearling (AS1 herd) or 18-month weight (AS2 herd) wereevaluated against a control (AC0 herd) in a progeny test herd using 2294 calves born in 1975–1988. A sample of privately-owned Angus bulls, available by artificial insemination (AI), were compared with them for eight liveweight or gain traits up to 18 months, with four carcass traits on steers. Cows of known pedigree in the progeny test herd were also evaluated for seven maternal traits. Other correlated responses were evaluated directly in the ACO and selection herds (three puberty traits, daily food intake, cow weight, and survival and reproduction traits).Realised genetic correlations to selection for yearling weight (AS1 herd) averaged 6% higher (forgrowth and carcass traits) than published paternal half-sib estimates, whilst those with 18-month weight (AS2 herd) were about 10% lower than with yearling weight. The sign of maternal genetic effects for live weights up to weaning varied among selection herds. Realised genetic correlations with selection weight averaged 0.51 (carcass fat depth), 0.93 (food intake), 0.16 (scrotal circumference in bulls), 0. 18 (age at puberty) and 0.37 (weight at puberty in heifers), 0.38 (cow weight, AS I herd) and 0.92 (cow weight, AS2 herd). The selection herd differences from control were not significant for cow or calf mortality or reproductive traits (6501 mating records), but tended to be negative for cow and calf death rates, and variable for overall reproductive rate.  相似文献   

18.
Genetic parameters for feed intake and performance traits of 514 bulls and carcass traits of 22 099 of their progeny, and the relationships of measures of feed intake with performance and carcass traits were estimated. Feed intake traits were dry matter intake (DMI), concentrate intake (CONI), roughage intake, ratio of roughage intake to DMI, metabolizable energy intake (MEI) and digestible crude protein intake (DCPI). Performance traits included daily gain, metabolic weight, live weight at the end of test, dry matter conversion ratio and residual feed intake. Progeny carcass traits were carcass weight, percentage of meat yield, rib eye area (REA), subcutaneous fat, marbling score, meat colour (MCS), fat colour (FCS) and meat quality grade. All the feed intake and performance traits were moderately heritable. The heritabilities for REA and MCS were moderate, and that for FCS was low, while those for the other carcass traits were high. Selection against DMI, CONI and DCPI would reduce excessive intake of feed, but would have undesirable effects on growth and most of the carcass traits. Selection against MEI would lead to improvements in feed efficiency and growth traits. Selection against DCPI would also improve feed efficiency; however, responses in growth traits would decrease. Results indicate that selection against MEI might be better than any other measures of feed intake to improve feed efficiency with simultaneous improvement in growth and most of the carcass traits.  相似文献   

19.
A major proportion of the costs of pork production is related to feed. The feed conversion rate (FCR) or residual feed intake (RFI) is thus commonly included in breeding programmes. Feeding behaviour traits do not directly have economic value but, if correlated with production traits, can be used as auxiliary traits. The aim of this study was to estimate the heritability of feeding behaviour traits and their genetic correlations with production traits in the Finnish Yorkshire pig population. The data were available from 3,235 pigs. Feeding behaviour was measured as the number of visits per day (NVD), time spent in feeding per day (TPD), daily feed intake (DFI), time spent feeding per visit (TPV), feed intake per visit (FPV) and feed intake rate (FR). The test station phase was divided into five periods. Estimates of heritabilities of feeding behaviour traits varied from 0.17 to 0.47. Strong genetic correlations were obtained between behaviour traits in all periods. However, only DFI was strongly correlated with the production traits. Interestingly, a moderate positive genetic correlation was obtained between FR and backfat thickness (0.1–0.5) and between FR and average daily gain (0.3–0.4), depending on the period. Based on the results, there is no additional benefit from including feeding‐related traits other than those commonly used (FCR and RFI) in the breeding programme. However, if correlated with animal welfare, the feeding behaviour traits could be valuable in the breeding programme.  相似文献   

20.
Records on 1,180 young Angus bulls and heifers involved in performance tests were used to estimate genetic and phenotypic parameters for feed intake, feed efficiency, and other postweaning traits. The mean age was 268 d at the start of the performance test, which comprised 21-d adjustment and 70-d test periods. Traits studied included 200-d weight, 400-d weight, scrotal circumference, ultrasonic measurements of rib and rump fat depths and longissimus muscle area, ADG, metabolic weight, daily feed intake, feed conversion ratio, and residual feed intake. For all traits except the last five, additional data from the Angus Society ofAustralia pedigree and performance database were included, which increased the number of animals to 27,229. Genetic (co)variances were estimated by REML using animal models. Direct heritability estimates for 200-d weight, 400-d weight, rib fat depth, ADG, feed conversion,and residual feed intake were 0.17 +/- 0.03, 0.27 +/- 0.03, 0.35 +/- 0.04, 0.28 +/- 0.04, 0.29 +/- 0.04, and 0.39 +/- 0.03, respectively. Feed conversion ratio was genetically (r(g) = 0.66 ) and phenotypically (r(p) = 0.53) correlated with residual feed intake. Feed conversion ratio was correlated (r(g) = -0.62, r(p) = -0.74) with ADG, whereas residual feed intake was not (rg = -0.04, r(p) = -0.06). Genetically, both residual feed intake and feed conversion ratio were negatively correlated with direct effects of 200-d weight (r(g) = -0.45 and -0.21) and 400-d weight (r(g) = -0.26 and -0.09). The correlations between the remaining traits and the feed efficiency traits were near zero, except between feed intake and feed conversion ratio (r(g) = 0.31, r(p) = 0.23), feed intake and residual feed intake (r(g) = 0.69, r(p) = 0.72), and rib fat depth and residual feed intake (r(g) = 0.17, r(p) = 0.14). These results indicate that genetic improvement in feed efficiency can be achieved through selection and, in general, correlated responses in growth and the other postweaning traits will be minimal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号