首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Global crop production systems are challenged by the increasing areas of saline soil in arid and semi-arid regions. Two naked oat (Avena sativa L.) lines (‘VAO-7’ and ‘VAO-24’) with distinct seedling tolerance to salinity were subjected to six levels of salt concentrations in a controlled greenhouse, and the response of yield and yield components to salinity stress was determined. The salt treatments 50, 100, 150, 200, and 250 mM sodium chloride (NaCl) (corresponding to EC: 3.42, 6.74, 9.66, 12.40, 15.04 dS m?1) imposed through modified Hoagland solution. Plain Hoagland was used as control. Complete nutrient elements were provided during the entire growth period. At maturity, the number of tillers with emerged heads was counted; the plant was then harvested and separated into shoots, seeds, and roots. Both plant height and days to maturity were shortened with increasing salt stress. Among the yield components, spikelet, tiller number, and grain dry weight per plant were significantly reduced by increasing salt concentration. Number of spikelets and grain weight per plant were the most salt-sensitive yield components. Thousand grain weight also varied as salinity stress increased. Harvest index remained relatively unchanged until the salinity reached 150 mM and higher. Our data indicate that grain yield reduction in oat due to salinity stress is associated with reduced number of grains per plant and mean grain weight.  相似文献   

2.
Abstract

The efficacy of using various levels of potassium (K) (4, 8, and 16 mM) under saline conditions to alleviate the detrimental effects of salt‐stress were studied using five tomato (Lycopersicon esculentum Mill) cultivars, ‘Strain 19’, ‘Pearson’, ‘Montecarlo’, ‘Maruthuam’, and ‘Pusa Rub’. Results of the study revealed that 50 mM sodium chloride (NaCl) in a Hoagland nutrient solution significantly reduced stem height, fruit weight, and whole plant dry weights, but increased number of fruits/plant and improved fruit quality by increasing total soluble solids. It did not significantly affect leaf count, percent fruit set, or dry weight. The addition of 4, 8 and 16 mM potassium nitrate (KNO3) to the nutrient solution containing 50 mM NaCl resulted in sodium/potassium (Na/K) ratios of 12.5, 6.3, and 3.1, respectively. The Na/K ratios of 12.5 and 6.3 produced significant improvement in stem height, percent fruit set, number of fruits/plant, fruit weight, and whole plant dry weight. The Na/K ratio of 3.1 was found to be detrimental as it resulted in sharp reduction of plant dry weight compared to the control. Percent total soluble solids was not significantly affected by the addition of any level of K to the saline nutrient solution. The performance of the tomatoplant grown under saline conditions supplemented with K in the nutrient solution indicated a higher response at the lowest K concentration used in this study.  相似文献   

3.
Seedlings of elephantgrass (Pennisetumpurpureum, Schum.), cvs. Vruckwona and Napier, were grown in aerated nutrient solution and exposed to pH levels of 4.0, 5.0, 6.0, or 7.0. After 30 days under controlled conditions, the effects on growth were evaluated. Plants exposed to pH 5.0, as compared to those under pH 4.0, showed increases in total leaf area, plant height, number of leaves (NL), and leaf, root, and stem fresh weight. No significant differences were found in stubble fresh weight, maximum individual leaf area, leaf area ratio (LAR), leaf area:plant height ratio, and leaf, root, stem, and stubble dry weight and dry matter percentage. Seedlings exposed to pH 4.0, as compared to those under pH 5.0, exhibited higher leaf:stem ratio on a fresh weight basis (FWR) and a tendency for higher leaf :stem ratio on a dry matter basis (DWR). Cultivar Vruckwona yielded superior results than Napier for most studied parameters, except for NL, LAR, and DWR (in which there were no significant differences) and for stubble length and FWR (in which Napier performed better). The results suggest that reductions below 5.0 in the nutrient solution pH cause growth inhibition, affecting root, stem, and leaf FW to a greater extent. The magnitude of such effects varies among contrasting cultivars. In turn, pH increases above 5.0 induce no significant growth reduction or promotion.  相似文献   

4.
Abstract

Tomato and melon plants were grown in a greenhouse and irrigated with nutrient solution having an EC of 2 dS m?1 (control treatment) and 4, 6, and 8 dS m?1, produced by adding NaCl to the control nutrient solution. After 84 days, leaf water relations, gas exchange parameters, and ion concentrations, as well as plant growth, were measured. Melon plants showed a greater reduction in shoot weight and leaf area than tomato at the two highest salinity levels used (6 and 8 dS m?1). Net photosynthesis (Pn) in melon plants tended to be lower than in tomato, for all saline treatments tested. Pn was reduced by 32% in melon plants grown in nutrient solution having an EC of 4 dS m?1, relative to control plants, and no further decline occurred at higher EC levels. In tomato plants, the Pn decline occurred at EC of 6 dS m?1, and no further reduction was detected at EC of 8 dS m?1. The significant reductions in Pn corresponded to similar leaf Cl? concentrations (around 409 mmol kg?1 dry weight) in both plant species. Net Pn and stomatal conductance were linearly correlated in both tomato and melon plants, Pn being more sensitive to changes in stomatal conductance (gs) in melon than in tomato leaves. The decline in the growth parameters caused by salinity in melon and tomato plants was influenced by other factors in addition to reduction in Pn rates. Melon leaves accumulated larger amounts of Cl? than tomato, which caused a greater reduction in growth and a reduction in Pn at lower salinity levels than in tomato plants. These facts indicate that tomato is more salt‐tolerant than melon.  相似文献   

5.
《Journal of plant nutrition》2013,36(11):1979-1989
Abstract

Two experiments were conducted. In the first one, kiwifruit plants were grown in sand/perlite mixtures and irrigated with modified Hoagland's nutrient solutions containing two boron (B) concentrations (0.025 and 0.2 mM) combined with four levels of salinity (0.75, 2, 4, and 6 dS m?1). Certain growth parameters and B concentration of the various plant parts were investigated. The highest level of salinity imposed was toxic for kiwifruit plants. Significant correlations (significance 0.000***) were found between B and salinity levels of the nutrient solutions and shoot height, mean shoot fresh weight, number of new leaves, mean leaf fresh weight, B concentration of upper leaves, basal leaves, 2-year old shoots and roots of kiwifruit plants. By increasing salinity level, the B concentration of leaves decreased when B concentration in solution was 0.2 mM. In another experiment, the nutrient solutions contained three B concentrations (0.025, 0.15, and 0.3 mM) and the plants were subjected to shading (100, 70, and 30% of full sunshine). Regression analysis indicated that significant correlations were found between B and shading (independent variables) and shoot height, mean shoot fresh weight, number of new leaves, B concentration of various plant organs (significance 0.000***) and mean leaf fresh weight (significance 0.018*).  相似文献   

6.
□ Growth and nutrient acquisition of tomato (Lycopersicon esculentum L.) cv ‘Amani’ were studied under induced salt stress in Hoagland's solution. The plants were treated for 37 days with salinity induced by incorporating different concentrations [0.0 (control), 50, 100, 150, or 200 mM] of sodium chloride (NaCl) to the nutrient solution. Slight reduction was obtained in growth represented by (shoot length and number, leaf number, and dry weight) when seedlings were directly exposed to NaCl stress from 0.0 to 100 mM. At higher concentrations (150 or 200 mM), growth parameters were adversely affected and seedlings died thereafter. Elevated salinity significantly reduced crude protein and fiber in shoots and roots. Tomato shoot and root contents of potassium (K), iron (Fe), and ash were reduced significantly in response to increased levels of salinity. Tissue contents of sodium (Na) and chloride (Cl) increased with elevated salinity treatments.  相似文献   

7.
Aluminum (Al) toxicity was studied in two tomato cultivars (Lycopersicon esculentum Mill. ‘Mountain Pride’ and Floramerica') grown in diluted nutrient solution (pH 4.0) at 0, 10, 25, and 50 μM Al levels. In the presence of 25 and 50 μM Al, significant reduction was found in leaf area, dry weight, stem length, and longest root length of both cultivars. Growth of ‘Floramerica’ was less sensitive to Al toxicity than growth of ‘Mountain Pride’. Elemental composition of the nutrient solutions were compared immediately after the first Al addition and four days later. The uptake of micronutrients copper (Cu), manganese (Mn), molybdenum (Mo), zinc (Zn), boron (B), and iron (Fe) from the nutrient solution was reduced in both cultivars with increasing Al levels. Nutrient solution Al gradually decreased in time for every treatment; less in cultures of ‘Floramerica’ than in ‘Mountain Pride’. Aluminum treatments decreased the calcium (Ca), potassium (K), magnesium (Mg), Mn, Fe, and Zn content in the roots, stems, and leaves. Aluminum treatment promoted the accumulation of P, Mo, and Cu in the roots, and inhibited the transport of these nutrients into stems and leaves. At 25 and 50 μM levels of Al, lower Al content was found in the roots of cv. “Floramerica’ than in the roots of cv. ‘Mountain Pride’.  相似文献   

8.
The effects of salinity [30 or 90 mM sodium chloride (NaCl)] and calcium (Ca) foliar application on plant growth were investigated in hydroponically-grown parsley (Petroselinum crispum Mill). Increasing salinity reduced fresh weight and leaf number. Calcium alleviated the negative impacts of 30 mM NaCl on plant biomass and leaf fresh weight but not in case of 90 mM. Plant height, leaf and root dry weight and root length did not differ among treatments. Total phenols increased with calcium application, chlorophyll b reduced by salinity, while total carotenoids increased with salinity and/or Ca application. Salinity reduced nutrient uptake [nitrate (NO3), potassium (K), phosphorus (P) and Ca] and elemental content in leaves and roots. Calcium application reduced P but increased Ca content in plant tissues. Increments of Na uptake in nutrient solution resulted in higher Na content in leaves and roots regardless Ca application. These findings suggest that calcium treatment may alleviate the negative impacts of salinity.  相似文献   

9.
We studied the effects of salinity stress on biomass production, photosynthesis, water relations, and activity of antioxidant enzymes in two cultivars of common bean (‘HRS 516’ and ‘RO21’). Seedlings were raised in nutrient solution supplemented with increasing concentrations of sodium chloride (NaCl) at 0, 50, and 100 mM. After 10 days of salinity treatment, the plants were sampled to determine the enzyme activity, protein content and dry biomass. Plant biomass and activities of most antioxidant enzymes were adversely affected by salinity stress. Leaf osmotic potential was found to be directly proportional to salt stress. The cultivar, ‘HRS 516’ accumulated less sodium (Na+) than ‘RO21’. Under salinity, superoxide dismutase (SOD) enzyme activity increased 3 folds in both bean cultivars (‘HRS 516’ and ‘RO21’) compared to other antioxidants (APX, CAT, and GR). While not neglecting other possible factors, photosynthesis and biomass remains reliable indicators of plant functioning in response to salinity stress.  相似文献   

10.
The interactive effect of salicylic acid and sodium chloride (NaCl) salinity on wheat (Triticum aestivum L.) cv. ‘Inqlab’ (salt‐sensitive) and cv. ‘S‐24’ (salt‐tolerant) was studied in a sand‐culture pot experiment in a net house. Wheat seeds soaked in water and 100 ppm salicylic acid solution for 6 h were sown in sand salinized with 0, 50, and 100 mM NaCl. Pots were irrigated with quarter‐strength Hoagland's nutrient solution. Fourteen‐day‐old seedlings were harvested, and growth parameters (leaf and root length, leaf and root dry weight) were recorded. Chlorophyll a and b content; soluble sugar (reducing, nonreducing, and total sugars) content; nitrate (NR) and nitrite reductase activity (NiR); soluble proteins, and total soluble amino acid content of fresh leaves were determined. Sodium chloride salinity significantly reduced growth parameters. Salicylic acid treatment alleviated the adverse salinity effect on growth. Salinity decreased the chlorophyll a and b content and chlorophyll a/b ratio in both varieties, but a decrease in the chlorophyll a/b ratio was less in salt‐tolerant wheat variety (‘S‐24’), which could be a useful marker for selecting a salt‐tolerant variety. Salinity (NaCl) stress considerably increased the accumulation of reducing sugars, nonreducing sugars, and total soluble sugars in leaves of 14‐day‐old wheat seedlings of both varieties. The salt‐tolerant variety (‘S‐24’) accumulated a higher sugar content, which also could be a useful marker for selecting a salt‐tolerant variety for slat‐affected areas. Salinity caused a reduction in nitrate reductase and nitrite reductase activity. The salt‐tolerant variety (‘S‐24’) showed resistance to a decrease of nitrate reductase activity under salinity. This could be a useful criterion for selecting salt‐tolerant varieties. In response to salinity, wheat seedlings accumulated soluble proteins and amino acids, which might reflect a salt‐protective mechanism.  相似文献   

11.
□ Plants from 60-day-old Lime Thyme (Thymus citriodorus) cuttings were potted in a medium of coconut fiber and peat moss and were treated with three different nutrient solutions: T1, T2, and T3. T1 was a standard nutrient solution; T2 was incremented with macronutrients up to an electrical conductivity (EC) of 2.8 dS m?1; and T3 was the same as T1 but incremented up to an EC of 2.8 dS m?1 with sodium chloride. The plants were then grown for 90 days in a greenhouse with natural daylight in Almería, Spain. Root growth was not affected by the treatments. The dry weight of the leaves and the total dry weight of the plants benefited from the salinity. The specific salinity of the sodium chloride negatively affected growth compared to the same salinity in the complete nutrient solution.  相似文献   

12.
We analyzed the effect of different copper (Cu) concentrations (0.10, 0.15, 0.20 and 0.35 mM) and time (1 day to 9 days) on several growth and biochemical parameters of roots and shoots of white lupin plants (Lupinus albus cv Estoril) grown in nutrient solution. A significant decrease in leaf fresh weight and leaf area was detected. Copper accumulated in the roots, and an impairment of nutrient translocation was only observed after six days at the highest Cu concentrations applied. A transient increase in the activity of polyphenoloxidase (EC 1.10.3.1) enforces a role for lignification as a defense strategy under enhanced Cu levels. The activities of several antioxidative enzymes were enhanced after Cu application. Our results indicate that Lupinus albus cv ‘Estoril’ is a rather resistant plant that can cope with moderate concentrations of copper, mostly by controlling up to a certain point, the uptake of excessive amounts of this metal.  相似文献   

13.
Rice is a staple food for more than 50% of the world's population and the majority of the global rice is produced from a lowland ecosystem. A greenhouse experiment was conducted with the objective to study lowland rice (cv. ‘BRSGO Guara’) growth, development, and nutrient uptake patterns during growth cycle. Growth observations and plant analysis were performed at initiation of tillering (IT), active tillering (AT), panicle initiation (PI), booting (B), flowering (F) and physiological maturity (PM). Plant height, number of leaves per culm, number of tillers per plant and maximum root length and root dry weight increased in a quadratic fashion with increasing plant age. Similarly, shoot dry weight increased linearly during growth cycle of the cultivar ‘BRSGO Guara’. Concentration and accumulation of most of the macronutrients and micronutrients responded with a quadratic trend with the advancement of plant age. Plant growth parameters were significantly associated with shoot dry weight plus grain yield. Similarly, nutrient accumulation had a significant correlation with shoot dry weight plus grain yield, which indicated the importance of these nutrients in the lowland rice production.  相似文献   

14.
Both drought and salinity cause nutrient disturbance, albeit for different reasons: a decrease in the diffusion rate of nutrients in the soil and the restricted transpiration rates in plants for drought and extreme soil sodium (Na)/calcium (Ca), Na/potassium (K), and chloride (Cl)/nitrate (NO3) ratios for salinity. The objective of this study was to examine short-term effects of drought and salinity on nutrient disturbance in wheat seedlings. Wheat was grown in a greenhouse in soil under drought and saline conditions for 26 days after sowing. At harvest, shoot biomass and length, and fresh weight and dry weight of the blade and sheath in expanded leaves 3 and 4 and expanding leaf 5 were determined. Mineral elements (K, Ca, magnesium (Mg), phosphorus (P), nitrogen (N), Na, sulphur (S), iron (Fe), zinc (Zn), and manganese (Mn)) in leaf blades and sheaths were also analyzed. At harvest, the reduction in plant height, shoot biomass, and accumulative evapotranspiration under drought was similar to that under salinity as compared with control plants. However, drought decreased the accumulation of all ions in the blade of the youngest leaf 5 compared with the control, whereas there was either an increase or no difference in all ion concentrations under saline conditions. The change in concentration for most ions in the blade and sheath of expanded leaves 3 and 4 varied among control, drought, and salinity plants, which indicated a different competition for nutrients between the sheath and blade of expanded leaves under drought and saline conditions. It can be concluded from this study that ion deficiency might occur in expanding leaves under drought but not saline conditions.  相似文献   

15.
《Journal of plant nutrition》2013,36(10):2161-2171
ABSTRACT

Boston Fern (Nephrolepis exaltata Schott. “Rooseveltii”) is often propagated in vitro. Microcuttings grow slowly after transfer from in vitro to ex vitro conditions. The aim of this study was to accelerate growth and to improve quality of plantlets by optimization of mineral nutrition, irradiance and CO2 concentration. Two irradiance levels (50 and 150 μmol m?2 s?1), two concentrations of CO2 (350 and 1200 μmol mol?1), and five concentrations of nutrient solution (electrical conductivity: EC 0.3, 0.7, 1.4, 2.1, and 2.8 mS cm?1) were tested. Microcuttings grown at higher irradiance accumulated more leaf fresh and dry weights than microcuttings grown at low irradiance. The higher irradiance level enhanced leaf nitrogen (N), phosphorus (P), and potassium (K) content. Carbon dioxide enrichment enhanced dry weight accumulation and plant height, decreased N and increased K content of leaves. The highest fresh and dry weight of leaves was measured at EC 2.1–2.8 mS cm?1. Leaf N, P, and K content increased with increasing concentration of nutrient solution, leaf calcium (Ca) and magnesium (Mg) concentrations decreased with increasing concentration of nutrient solution. Microcuttings grown under high level of irradiance and high EC had higher chlorophyll fluorescence (F m , F v /F m , S c ) values than those grown under low light and low EC. Quality of propagation material of Boston fern can be significantly enhanced with the best combination of PPFD, mineral nutrition and CO2 enrichment.  相似文献   

16.
Abstract

Growth, mineral nutrition, leaf chlorophyll and water relationships were studied in cherry plants (cv. ‘Bigarreau Burlat’[BB] and ‘Tragana Edessis’[TE]) grafted on ‘Mazzard’ rootstock and grown in modified Hoagland solutions containing 0, 25 or 50 mmol L?1 NaCl, over a period of 55 days. Elongation of the main shoot of the plants treated with 25 or 50 mmol L?1 NaCl was significantly reduced by approximately 29–36%, irrespective of the cultivar. However, both NaCl treatments caused a greater reduction in the dry weight of leaves and scion's stems in BB than in TE plants. Therefore, BB was more sensitive to salinity stress than TE. The reduction of leaf chlorophyll concentration was significant only when BB and TE plants were grown under 50 mmol L?1 NaCl. Osmotic adjustment permitted the maintenance of leaf turgor in TE plants and induced an increase in leaf turgor of BB plants treated with 25 or 50 mmol L?1 NaCl compared with 0 mmol L?1 NaCl. Concerning the nutrient composition of various plant parts, Na concentrations in all plant parts of both cultivars were generally much lower than those of Cl. For both cultivars, leaf Cl concentrations were much higher than the concentrations in stems and roots, especially in the treatments containing NaCl. Finally, the distribution of Na within BB and TE plants treated with NaCl was relatively uniform.  相似文献   

17.
Dry matter yield and water uptake by barley (Hordeum vulgare L., cv. ‘Gus') and wheat (Triticum aestivum L., cv. ‘Inia 66') grown in full strength Hoagland nutrient solution were compared under three NaCl salinity levels in a growth chamber. Total dry matter yield decreased with increasing salinity for both plants, but wheat was more severely affected than barley at the high salinity level. Reduction in dry matter weights of barley and wheat were 57% and 67%, respectively, at the 1.2 MPa stress. Salt stress substantially decreased the number of tillers in both crops, however, this reduction was more severe for wheat than barley. The numbers of tillers were 10 and 7 for barley plants at 0.6 and 1.2 MPa stress, respectively. The respective values were 6 and 4 for wheat plants. Water uptake in both plants was substantially decreased by increasing salinity stress. This reduction was essentially similar for both plants. Water uptake per gram dry weight was not significantly affected by salt stress for barley. For wheat, only 1.2 MPa stress increased the amount of water absorbed per g dry matter produced.  相似文献   

18.
Seedlings of two bush bean cultivars (Phaseolus vulqaris L. cvs. Mn‐sensitive ‘Wonder Crop 2’ and Mn‐tolerant ‘Green Lord') were grown for 14 days in full strength Hoagland No. 2 nutrient solution containing 0.05 ‐ 2 mg L‐1 of vanadium (V) as ammonium vanadate.

Increasing V concentration in the solution decreased total dry weight of both cultivars. Plant tops were stunted and leaf color became dark green at 1 ‐ 2 mg L‐1 V, especially in ‘Green Lord’. Veinal necrosis similar to that of Mn toxicity was observed in the primary leaves of ‘Wonder Crop 2’ at 0.2 mg L‐1 V or above, but not in those of ‘Green Lord’.

The V concentrations in the roots increased exponentially with increasing V concentration in the solution; however, V concentrations in the leaves and stems were not affected. The Mn concentrations in the primary leaves increased under the higher V treatment in ‘Wonder Crop 2'; but not in ‘Green Lord’. In contrast, Fe concentration in the leaves of ‘Wonder Crop 2’ decreased markedly with increasing V concentration in the solution. Enhanced Mn uptake and greater reduction of Fe uptake by ‘Wonder Crop 2’ may explain the incidence of V‐induced Mn toxicity.  相似文献   


19.
Abstract

Growth and chemical composition of crop plants may be subject to alteration by systemic compounds employed for pest control. A field study was implemented to examine the effects of aldicarb on growth, chemical composition, and nutrient diagnosis of a potato crop at various growth stages. Aldicarb use resulted in increased dry matter production of leaves, stems, and tubers, and final fresh tuber weight during the second year of the study. Higher tuber yields were likely due to greater photosynthetic capacity because the increase in leaf dry matter production with time was greater in the aldicarb treatment than in control. Leaf nutrition was not influenced by aldicarb; however, leaf nutrient content varied greatly with growth stage. Similar nutrient status evaluations were generated by DRIS, regardless of pesticide treatment or growth stage. DRIS was able to diagnose nutrient limitations as early as tuber initiation  相似文献   

20.
Plants have adapted a number of mechanisms to cope with widespread phosphorus (P) deficiency in arable lands. Crop species and even cultivars differ widely in one or more of these adaptive mechanisms hence, in P efficiency. Identification of these mechanisms is pre-requisite for long term breeding programs. Two independent experiments were conducted to study the possible mechanisms of P efficiency in Brassica cultivars. Eight Brassica cultivars (‘B.S.A.’, ‘Toria’, ‘Toria Selection’, ‘Brown Raya’, ‘Peela Raya’, ‘Dunkeld’, ‘Rainbow’, and ‘CON-1’) were selected on the basis of differences in growth under P deficiency from preliminary experiment. In the first experiment, cultivars were grown for 40 days in sand supplied either with sparingly soluble phosphate rock (PR) or soluble mono-ammonium phosphate (MAP). Cultivars differed significantly (P<0.05) for biomass production, P contents and P use efficiency. Low P availability in PR treatment resulted in significantly lower dry weights and P contents than those grown with MAP. The cultivars ‘Rainbow’, ‘Brown Raya’ and ‘Dunkeld’ accumulated more biomass (3.2 g/pot) and P contents (3.0 mg/pot) than other cultivars when grown with PR. Root dry weight was significantly correlated with shoot dry weight, shoot P content and total P content (r > 0.65) indicating significance of improved root growth for P acquisition. While in the second experiment cultivars were grown with adequate P for 30 days and then P was withdrawn from the nutrient solution by replacing fresh P free nutrient solution for 10 days. Induced P deficiency increased P contents in young leaves by two folds indicating remobilization of P from older leaves and shoot. Nonetheless cultivars varied for remobilization but differences in P remobilization could not explain the differences in P utilization efficiency among cultivars. Hence further experimentation to study root morphology, P uptake, and organic acid exudation by these cultivars in relation to P deficiency is recommended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号